
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology

development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-

sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number

of fi elds such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,

protection against and management of hazardous substances, IT security and the potential offered by new sensors.

MERLIN Defence Analyzer v1.2

User Manual

EMIL SALLING, PETER STRÖMBÄCK

FOI-R--3625--SE

ISSN 1650-1942 December 20122

FOI

Defence Research Agency Phone: +46 8 555 030 00 www.foi.se

SE-164 90 Stockholm Fax: +46 8 555 031 00

MERLIN Defence Analyzer v1.2
User Manual

Emil Salling, Peter Strömbäck

FOI-R--3625--SE

Titel

Title

Report no

Month

Year

Pages

Customer

Project no

Approved by

Division

ISSN

This work is protected under the Act on Copyright in Literary and Artistic Works (SFS
1960:729). Any form of reproduction, translation or modification without permission
is prohibited.

FOI Swedish Defence Research Agency

MERLIN Defence Analyzer v1.2
Användarmanual

MERLIN Defence Analyzer v1.2
User Manual

FOI-R--3625--SE

December

2012

48

Swedish Armed Forces

E36500

Lars Höstbeck
Head, Division for Information and Aeronautical Systems

ISSN-1650-1942

Information and Aeronautical Systems

2

FOI-R--3625--SE

Abstract

Keywords

MERLIN Defence Analyzer (MDA) is an application for interactively running
and analyzing MERLIN models. This manual describes how to use and install
version 1.2 of the application.

The intended reader of this document is working with simulation models for
assessing and analyzing weapon systems and computer generated forces. The
document covers how to use the components and functionality provided in the
v1.2 release of MDA. Development of components and plugins are not covered.

MDA includes the capability to generate scenarios of multiple platforms, vi-
sualize behaviors, control simulations by setting simulation time step, logging,
replaying of generated results as well as parameter variation on full scale sce-
narios.

MDA, Simulation, MERLIN, MERLIN Defence Analyzer

3

FOI-R--3625--SE

Sammanfattning

Nyckelord

MERLIN Defence Analyzer (MDA) är ett program för att interaktivt köra och
analysera MERLIN-modeller. Denna manual beskriver hur man installerar och
använder version 1.2 av MDA.

Dokument riktar sig till läsare som arbetar med simuleringsmodeller för
utvärdering och analys av vapensystem och syntetiska aktörer och inneh̊aller
en beskrivning av komponenter och funktioner. Utveckling av komponenter
och pluginer beskrivs ej.

I MDA finns förm̊agan att sätta upp scenarion inneh̊allande flera plattformar,
visualisera beteenden, styra simuleringsingstid, logga resultat, spela upp tidi-
gare körningar och genomföra parametervariation p̊a fullskaliga scenarion.

MDA, Simulering, MERLIN, MERLIN Defence Analyzer

4

FOI-R--3625--SE

Contents

1 Introduction 9

1.1 Scope . 9

1.2 Definitions, Acronyms and Abbreviations 9

1.3 Intended Use . 10

1.4 Supported Platforms . 10

1.5 Installing MDA . 11

1.5.1 Prerequisites . 11

1.5.2 Environment Variables 11

1.6 Running MDA . 12

1.7 Reference Frames . 12

2 Components in MDA 13

2.1 Launch Missile . 14

2.2 Signatures . 14

2.3 Radar . 14

2.4 Logging . 14

2.5 Drawable Object Model . 14

2.6 EMChannel Drawables . 14

3 User Interface 15

3.1 Scenario Inspector . 15

3.1.1 Entities Tab . 15

3.1.2 Actors Tab . 16

3.1.3 Drawables Tab . 16

3.2 Entity Inspector . 17

3.2.1 Info Tab . 17

3.2.2 Actors Tab . 18

3.2.3 Drawables Tab . 18

3.2.4 Attachables Tab . 18

3.3 3D Scenario View . 19

3.4 Toolbar . 19

3.5 Camera Navigation . 19

3.6 Keyboard Shortcuts . 19

4 Creating Scenarios and Entities 21

4.1 Adding Entities . 21

4.2 Decorating Entities . 21

4.3 Create an Entity Prototype . 21

5

FOI-R--3625--SE

4.4 Editing a Prototype . 21

5 Running a Scenario 23

5.1 Preparing the Carrier . 23

5.1.1 Actor for Launching Missiles 23

5.1.2 Aircraft Radar . 24

5.2 Preparing the Target . 25

5.3 Saving the Scenario . 26

5.4 Firing the Missile . 26

5.5 Running the Simulation . 26

5.6 Stopping/Reloading a Scenario 26

5.7 Inspecting the Missile . 26

5.8 End Conditions . 27

5.9 Default Scenario Actors . 27

5.10 Extend Visualization . 27

6 Logging 29

6.1 Scenario Entity Logger . 29

6.1.1 Log structure . 29

6.1.2 File entity.xml . 29

6.1.3 File entity.log . 30

6.1.4 File event.log . 31

6.2 Component Logger . 31

6.2.1 Manually adding a Component Logger 32

6.2.2 Automatically creating Component Loggers 32

6.2.3 Log Files . 33

7 Parameter Variation 35

7.1 Overview . 35

7.2 Example . 35

7.2.1 Step 1. Design the Scenario 36

7.2.2 Step 2. Setup End Conditions 36

7.2.3 Step 3. Add Loggers . 37

7.2.4 Step 4. Save Scenario 37

7.2.5 Step 5. Configure Parameter Variation 37

7.2.6 Step 6. Running the Parameter Variation. 39

7.2.7 Step 7. Analyze Results 39

8 Overview of MDA Extensions 41

8.1 Joystick support . 41

8.2 HLA networking . 41

8.3 Computer Generated Forces - CGF 41

6

FOI-R--3625--SE

8.4 Missile simulation models . 41

A MDA Components 43

B Scenario File Format 45

7

FOI-R--3625--SE

1 Introduction
The Swedish Defence Research Agency has developed a realtime architecture
for simulations of airborne weapon systems and platforms. This architecture
is called MERLIN.

This document describes MERLIN Defence Analyzer (MDA) which is an ap-
plication for interactively running and analyzing MERLIN models such as air-
crafts and missiles. In MDA these models are referred to as scenario entities,
or just entities for short. Entities can have subsystems such as radars and
signatures. The behavior of both entities and subsystems can be studied in
MDA.

MDA has several ways of running, controlling and displaying different features
of the models. This is done through three fundamental concepts in MDA;
Actors, Drawables and Attachables. These will be explained in more details in
chapter 2.

MDA is built upon the concept of plugins. This makes it possible to extend
MDA and adapt it for your specific needs by using the built-in components,
as well as adding your own extensions. MDA allows you to extended the
functionality of your simulation models and GUI.

1.1 Scope
This document describes version 1.2 of MDA and is intended to be a user
manual. It covers how to use the components and functionality provided in
the v1.2 release, but does not cover how to develop your own components for
MDA.

1.2 Definitions, Acronyms and Abbreviations

$AVALON HOME is the path to your MERLIN installation folder. This
path is typically set using your system environment variables. Using the
$AVALON HOME path MDA knows where to search for MERLIN model de-
pendencies and extensions to the core application. The MDA application
is also installed in $AVALON HOME/MDA.

CGF Computer Generated Forces.

Component A software component is a module that encapsulate a set of
related functionality and data.

DIS Distributed Interactive Simulation (DIS) is an IEEE standard for real-
time simulations. See also http://en.wikipedia.org/wiki/Distributed-
Interactive Simulation.

EMChannel is a software component in MERLIN that handles the distribu-
tion of electromagnetic signals between entities.

EMEmitter is a software component modeling an emitter of electromagnetic
radiation.

EMReceiver is a software component modeling an object that receives and
interprets electromagnetic radiation. A radar is typically both an EMEmit-
ter and an EMReceiver.

9

FOI-R--3625--SE

EMReflector is a software component modeling objects that reflects electro-
magnetic radiation, like aircrafts.

HLA High Level Architecture. See http://en.wikipedia.org/wiki/High -

Level Architecture (simulation) for more information.

IR Infra Red.

MERLIN is a software architecture used for real time simulation models.
MDA is constructed to run and evaluate models developed using MER-
LIN. MDA also uses the MERLIN architecture for its own building blocks,
See MERLIN software architecture document for an overview of this pack-
age1.

MERMOC A mermoc is an xml-file describing a model composition and a
fundamental part of MERLIN. MERMOC is the abbreviation for MER-
LIN Model Composition and the abbreviation mostly occurs as file ex-
tension the the model compositions (*.mermoc).

MDA MERLIN Defence Analyze, a software for analyzing scenarios and sim-
ulation models for defence purposes.

Qt Qt is a GUI platform independent framework used in to create the graphical
user interface. See http://qt.digia.com for more information about
Qt.

RCS Radar Cross Section.

WGS84 World Geodetic System 84, is a standard describing the features of
the earth and often used in geodesy, aerospace and navigation applica-
tions. See http://en.wikipedia.org/wiki/World Geodetic System.

1.3 Intended Use
MDA was initially designed to aid in the evaluation and verification of missile
models in air-to-air duels. MDA was then an abbreviation for MERLIN Duel
Analyzer. Today it has been used for several different applications and nowa-
days MDA is an abbreviation for MERLIN Defence Analyzer. A few of the
applications in which MDA has been used are listed below:

∙ Studying missile duels using MERLIN missile models.

∙ Verifying developed missile models by analyzing their behavior.

∙ Developing and running CGF models.

∙ Scenario parameter variation studies.

∙ Evaluation of chaff bundle radar interaction.

1.4 Supported Platforms
MDA is built on a platform independent architecture which means that most
common platforms are supported. However, in the 1.2 version release of MDA
no prebuilt packages are available for Microsoft Windows.

Prebuilt releases of MDA are available for 32 and 64bit Linux.

1Salling et al, MERLIN Software Architecture Document, FOI-R–2486–SE, 2009

10

FOI-R--3625--SE

1.5 Installing MDA
MDA is delivered as a compressed file, MDA 1 2 Linux i686 Release.tar.gz,
and installed as a standard MERLIN product by decompressing the file into a
directory called AVALON HOME. For more information about MERLIN installa-
tions see MERLIN Software Architecture Document, FOI-R–2486–SE.

1.5.1 Prerequisites
MDA has a few MERLIN dependencies. In your AVALON HOME directory you
must have the following packages:

∙ MERLIN version 1.5.3

∙ MERLIN EXAMPLES version 1.4.7

∙ MERLIN UTILITIES version 1.2

∙ MDA version 1.2

You also need a few third party libraries installed on your system.

∙ Qt 4.6 (or higher)

∙ OpenGL

∙ libxml2

∙ zlib

∙ Java 6.0 (or higher)

It is recommended that these are installed using the operating system’s own
package management system. For Ubuntu and Debian distributions installing
third party libraries can be done by using apt-get. Note that zlib and libxml2
are often preinstalled in linux/unix distributions.

apt-get install libqt4

apt-get install libxml2

apt-get install zlib1g

On some systems you might need to complement the libqt4 with libqt4-webkit.

apt-get install libqt4-webkit

1.5.2 Environment Variables
In order to let MERLIN know where all deployed products are located, an en-
vironment variable must be set called $AVALON HOME and the operative system
needs to know where the shared libraries are located. On Linux and Unix this
is done by setting the following environment variables (using bash):

export AVALON_HOME=YOUR_PATH_TO_AVALON_HOME

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$AVALON_HOME/merlin/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$AVALON_HOME/merlin_utilities/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$AVALON_HOME/MDA/lib

11

FOI-R--3625--SE

1.6 Running MDA
If your environment variables are correctly set you should now be able to run
MDA by writing the following command in a terminal:

> $AVALON_HOME/MDA/bin/MDA

When MDA is started from the command line there are some options available.
These will be displayed if you add the --help option as shown below.

> $AVALON_HOME/MDA/bin/MDA --help

MDA - MERLIN Defence Analyzer

Usage: MDA [OPTION..]

Options:

--help : print help

-h : print help

-help : print help

-s <arg> : start up with scenario (absolute mermoc path)

-wgs84 : startup simulation in WGS84 round world model

Examples:

Start MDA with scenario.mermoc preloaded:

> $AVALON_HOME/MDA/bin/MDA -s $PWD/scenario.mermoc

Start scenario in wgs84 mode

> $AVALON_HOME/MDA/bin/MDA -wgs84

1.7 Reference Frames
By default, MDA starts up in a flat earth, NED-frame, where vectors expressed
in the fixed inertial frame are expressed relative to North, East and Down. It
is also possible to run MDA with a WGS84 earth representation where vectors
expressed in the inertial frame are expressed in ECEF (Earth-Centered-Earth-
Fix) coordinates.

To run MDA in a WGS8 mode add the -wgs84 option to the command line.
MDA will then start up with a default scenario in WGS84. E.g.:

> $AVALON_HOME/MDA/bin/MDA -wgs84

When running in WGS84 mode, the position of the entities are expressed in
longitude and latitude in the entity inspector view for convenience.

Note that a scenario has to be constructed in WGS84 or flat earth. In version
1.2 of MDA there is no functionality to convert between scenarios defined in
different frames.

MDA stores which reference frame that is used in the scenario file and auto-
matically switches to the correct frame when opening the scenario.

12

FOI-R--3625--SE

2 Components in MDA
Components are an important concept in MDA that bring different types of
functionality to a scenario and allows the user to add/change behaviors or ap-
pearances in the scenario, such as adding a RCS-signature to a target, coloring
hostile entities red, generating log files for all entities in the scenario, etc.

Components in MDA are organized into different categories. Scenario com-
ponents are separated from entity components (see figure 2.1), where scenario
components act globally on the whole scenario and entity components act on
a single entity in the scenario.

The scenario- and entity components are divided into actors, drawables and
attachables. The concept of actors and drawables are available as both sce-
nario components and entity components while attachable are only available
for entity components.

Actors are components that influence the simulation, often by user input. An
example of a entity actor is a component that launches a missiles when
the user presses a button.

Drawables are components that add visualization to the scenario or to the
entity.

Attachables are passive components that add extended (but passive) func-
tionality (like and RCS- or IR-signatures).

Figure 2.1: The components in MDA are grouped into scenario components and entity com-
ponents. The concept of actors and drawables are available for both scenario components and
entity components while attachables are only available for entity components.

Section 3.1 covers the user interface for accessing the scenario components
and section 3.2 for accessing the entity components. In the following sections
some of the more important components (actors/drawables/attachables) that
are shipped with MDA are reviewed. In appendix A a complete list of all the
components shipped with the standard release of MDA is presented.

13

FOI-R--3625--SE

2.1 Launch Missile
The LaunchMissile entity actor equips an entity with the capability to fire
munitions. Most aspects regarding preparation of a MERLIN missile can be
configured in the GUI. You are able to choose among different firing modes,
engagement order number and target. IR missiles can be opened and slaved
while attached to the aircraft.

2.2 Signatures
If you want your entities to be detectable by various systems, you must add
suitable signatures to them. Radar systems require the existence of a radar
cross section (RCS) signature for an entity to be detected. Infrared (IR) sys-
tems require an IREmitter signature to be detectable. In MDA signatures are
implemented as attachables.

2.3 Radar
If your missile needs radar up-link, you must setup your carrier with a radar.
This is performed in the same way as adding a signature to an entity (see section
2.2). In all MDA installations there is an ideal radar called merlin RadarProxy,
which you can use for this purpose.

2.4 Logging
When you examine a scenario (or many sets of scenarios) you likely need to log
various data from the simulation. There are two different types of logging actors
included in MDA, the Scenario Entity Logger and the Component Logger. The
Scenario Entity Logger logs the position, velocity, orientations and events for
all the entities in the scenario. The Component Logger acts on a specific entity
and is capable of logging a significant part of all sub models of the entity. In
chapter 6, a more detailed description of logging is given.

2.5 Drawable Object Model
This entity drawable let you associate 3D-model (a Wavefront 3D obj file) for
visualization of your entity. There is a collection of object models shipped with
MDA that you can use.

2.6 EMChannel Drawables
There is a collection of scenario drawables that draw the EMRecievers, EMRe-
flectors and EMEmitters currently registered in EMChannel.

14

FOI-R--3625--SE

3 User Interface
The MDA user interface revolves around the main window which can be seen
in figure 3.1. The main window consist of four sections. To the left is the
Scenario Inspector, which contains information related to the scenario. In
the middle there is a 3D view of the scenario is displayed, and to the right
the Entity Inspector is displayed which contains information related to the
currently selected entity. A toolbar with control for the scenario runtime is
available in the top of the main window.

Both the Scenario Inspector and the Entity Inspector can be rearranged within
the main window. You can also resize them and drag them out of the main
view to become floating tool views. MDA is filled with tooltips that appears
when hovering over the different GUI elements with the mouse pointer.

Figure 3.1: MDA user interface. To the left is the Scenario Inspector, to the right is the Entity
Inspector and in the middle the scenario is displayed in 3D.

3.1 Scenario Inspector
Properties related to the scenario is provided in the the Scenario Inspector. It
contains three different tabs: Entities, Actors and Drawables.

In the bottom of each tab view there is an Add button to add entities, actors
or drawables, depending on the active tab. For the Entities tab there is also
a remove button. Removing scenario actors and drawables is instead done by
pressing the cross icon, see figure 3.2.

3.1.1 Entities Tab
The Entities tab (see figure 3.2a) contains a list of all entities in the scenario.
To select an entity, you can left click the corresponding entity name in the list.
When the selection is made, the selected entity will receive camera focus in the

15

FOI-R--3625--SE

(a) Scenario Entities. (b) Scenario Actors. (c) Scenario Drawables.

Figure 3.2: Scenario Inspector views.

3D-view and the Entity Inspector will update and display the selected entity
properties.

By right-clicking an entity name a popup menu appears with options for editing
the entity. This allows you to save the configured entity, create a duplicate
(clone) and add actors, drawables and attachables to the entity. The menu
contains the same information as the Entities in the applications menu.

Renaming an entity is done in the Entity Inspector, and doing so will also
change the name in the entity list.

3.1.2 Actors Tab
This tab (see figure 3.2b) displays all scenario actors contained in the scenario.
The scenario actors helps you to control the simulation. You can add scenario
actors to the scenario by clicking the Add actor button at the bottom of the
tab. Press the add button and a file dialog displaying all available scenario
actors will appear. You can remove existing scenario actors by pressing the
remove icon, placed on the right side of the component name.

3.1.3 Drawables Tab
This tab (see figure 3.2c) displays all scenario drawables contained in the sce-
nario. Similarly to the Actors tab, you can add scenario drawables to the
scenario by clicking the Add drawable button at the bottom of the tab. You
can remove existing scenario drawables by pressing the remove icon, placed on
the right side of the component name.

16

FOI-R--3625--SE

3.2 Entity Inspector
The entity inspector, which is located in the right section of the MDA main
window, displays properties of the currently selected entity. It consists of four
tabs: Info, Actors, Drawables and Attachables (see figure 3.3).

The actor, drawable and attachable tabs contain elements that decorate the
platform. These can be a subsystem such as a radar signature (an attachable),
a 3D-graphics model of an F-16 (a drawable) or a user interface to select,
configure and fire a missile (an actor). As a user you can add a lot of features
to the entities by adding different sets of actors, drawables and attachables.

A set of different components are included with the MDA release. A complete
list of these components is available in appendix A. You can also browse the
different available components by adding a new component. MDA will then
display a list of all available components with their corresponding descriptions.

(a) Entity Info tab. (b) Entity Actors tab.

Figure 3.3: The Entity Inspector has four tabs. Here the Info tab and the Actors tab are displayed.

3.2.1 Info Tab
The Entity Information tab (see figure 3.3a) has three sections, Info, Displace-
ment and Fraction. The first section of the entity information tab displays the
entity instance name (a unique name in the simulation), a platform type name,
and the text string version of the DIS type. There is an editable field for entity
marking, which is a string that can contain application/scenario specific entity
descriptions.

The Displacement section is where you define and view the placement of plat-
form. There are editable fields for position and orientation orientation with
respect to the fixed inertial frame and velocity and angular velocity with re-
spect to the body frame. Mach number, angle of attack (alpha) and angle of
sideslip (beta) are displayed as well. Hover with your mouse over the fields to
display the unit of the field.

The Fraction section of the Info tab display which fraction and group the entity

17

FOI-R--3625--SE

is part of. Fraction settings defines which team the entity is a member of, for
instance Red, Blue or Neutral. Group is a marker for a group within the fraction
and could for example be Strike One or Escort Two. The fraction and group
are especially important when running computer generated forces simulations
(see section 8.3). When running a non-CGF scenario, fraction and group is
just a marker and has no effect on the simulation.

3.2.2 Actors Tab
In the Actors tab all actors associated with the selected entity are listed, see
3.3b. An entity actor is a component that allows you to ”act” on the entity
in some way. Adding actors to an entity is typically the way to add user
interaction to an entity, or to influence the simulation.

3.2.3 Drawables Tab
In the Drawables tab all drawables associated with the selected entity are listed,
see figure 3.4a. An entity drawable, as the name implies, adds some graphical
properties to the platform. A typical example is when you want to add a 3D
representation of your entity or a drawable that display the trajectory of entity.

3.2.4 Attachables Tab
In the Attachables tab all attachables associated with the selected entity are
listed. Attachables are a special kind of components that implement the MER-
LIN interface called IToScenarioEntityAttachable. This is an interface con-
structed for runtime connection of an entity to a subsystem in MERLIN. Ex-
amples of attachables are signatures (IR, RCS), radars, chaff or flare ejecting
systems.

(a) Entity Drawables tab. (b) Entity Attachables tab.

Figure 3.4: The Entity Inspector has four tabs. Here the Drawable tab and the Attachable tab are
displayed

18

FOI-R--3625--SE

3.3 3D Scenario View
The 3D view in MDA displays the scenario. What will be displayed in the
3D view is determined by the added scenario entities and their corresponding
Drawables. The scenario may also have scenario drawables adding graphics to
the scene. By adding your specific set of drawables you can emphasize what
is important to visualize in your problem set. The camera is always focused
on the currently selected scenario entity. User interaction with the 3D view is
described in section 3.5.

3.4 Toolbar
The toolbar at the top of the MDA window expose functionality to control the
scenario runtime, start/pause and stop (reload) the scenario. You can use the
slider to alter how fast the simulation runs to make simulation time progress
faster than clock time or slower. By default, this slider is set to 1.0. I.e. one
second of simulation time equals one second of real world time. 2.0 means the
simulations runs twice as fast as real time.

Figure 3.5: The UI toolbar has controls for starting, stopping and pausing the scenario. You can
also change the realtime multiplier using the slider.

Pressing the stop button will reload the scenario. Use the pause button for
pausing. You can also press the spacebar to pause the scenario.

3.5 Camera Navigation
Camera navigation in the MDA 3D view is very simplistic at this time. The
camera always focuses on the currently selected entity. By left mouse clicking
and dragging in the 3D view you change the view angle of the entity. By
default you will rotate around the down vector and control pitch relative to
the ground. You can change the camera distance from the entity by using the
mouse scroll wheel or by clicking META (Ctrl on Windows/Linux, Cmd on
OS X) and left mouse drag up and down in the 3D view. In the camera menu
there’s also a Focus command that set the camera to focus at close distance
from the entity (shorthand is Ctrl/Cmd F).

Pressing and holding shift while navigating the camera will speed up the camera
movements.

The camera menu also exposes a toggle command called Switch follow host. If
you enable this setting, the camera will roll along with the selected entity.

3.6 Keyboard Shortcuts
Some predefined keyboard shortcuts are available. These are listed in table 3.1

19

FOI-R--3625--SE

Table 3.1: Listing of keyboard shortcuts.

Name Linux OS X
Open Scenario Ctrl+O Cmd+O
Save Scenario Ctrl+S Cmd+S
Save Scenario As Shift+Ctrl+S Shift+Cmd+S
New Scenario Ctrl+N Cmd+N
Start/Pause Space Space
Focus Entity Ctrl+F Cmd+F

20

FOI-R--3625--SE

4 Creating Scenarios and Entities
On startup, MDA displays a simple default scenario. This scenario consists of
two aircrafts called Carrier and Target. The target aircraft has been provided
with both EM- and IR signatures. The carrier is prepared with a radar and an
actor to be able to fire missiles.

Using the default scenario as a start is often a good idea for a new users, but
if you want to start a new scenario from scratch, select New Scenario under
the File menu. A new scenario will contain no entities, no scenario actors
drawables.

4.1 Adding Entities
Adding entities to the scenario can be done either by selecting New Entity
under the entities menu or by pressing the Add button on the bottom under the
Entities tab in the Scenario Inspector. When doing so, a file dialog showing will
appear displaying all entities installed on your system. For an entity to show
up in this dialog it need to implement the MERLIN IMutableScenarioEntity
interface (MERLIN IMissiles are however not displayed here). In the file dialog,
decorated entities are also displayed.

4.2 Decorating Entities
Selectively adding functionality to entities is a key concept in MDA. The three
different ways to add functionality to an entity are the Actors, Drawables and
Attachables (see section 3.2). We call a simulation model that has one or several
of these add-on’s a decorated model/entity.

To decorate an entity select it in the Scenario Inspector to display the prop-
erties of the entity in the Entity Inspector. You can then browse the deco-
rations already associated with the entity and their settings. To add a new
actor/drawable/attachable use the Entities menu or the Add button at the
bottom of the Entity Inspector.

You will most likely want to add signatures to your entities. If you don’t,
weapons, radars etc, will not be able to detect them. The signatures are added
to the entity under the Attachables tab.

4.3 Create an Entity Prototype
As a user you often want a ready set of models to use. As described in section
4.2 you can decorate your entities with the graphics and sub system properties
you want. To save a setting for an entity select it and choose Save Entity in
the Entity menu. You can also right click the entity in the entity list (in the
Scenario Inspector) and select Save Entity from the popup menu.

4.4 Editing a Prototype
To edit an existing prototype, add it to your scenario and modify it there.
Then save it, by using Save Entity as described above, with the same name.
Don’t forget to remove the prototype when you are done editing it, unless you
want it to be a part of the current scenario file.

21

FOI-R--3625--SE

5 Running a Scenario
In this section, how to run a scenario in MDA will be explained through the
example of the simple air duel that is the default scenario.

The default scenario is preloaded with two aircrafts, one called Carrier and
the other Target. Selecting the Carrier in the entity list allows the user to
examine the entity properties in the Entity Inspector. In the Info tab in the
Entity Inspector, it can be seen that the Carrier is located at an altitude of
1000 meters traveling at 100 m/s.

5.1 Preparing the Carrier
Before being able to launch missiles from the carrier, there are two components
that needs to be prepared. The carrier needs an actor that launches missiles
and a radar to detect and provide the missile with up-link data. Here, the
functionality of these two components will be described.

5.1.1 Actor for Launching Missiles
Switching to the Actors tab in the Entity Inspector allows the user to see which
actors are associated with the entity. In the default scenario the carrier has
an actor called Launch Missile. This actor provides the carrier entity with the
capability to fire a missile towards a target, see figure 5.1.

Figure 5.1: The Launch Missile actor.

At this point in time no munition model has been selected and firing is therefore
not possible. Pressing the fire button will display an error message. To select
a munition, press the Select Munition button. A dialog will appear listing all
available munitions in your MERLIN installation, see figure 5.2. You should at
least see three munitions called xmo ActiveRadarX1, xmo SemiActiveRadarX1
and xmo IRMissileX1. Selecting a munition will display the munition proper-
ties. Feel free to browse the available missiles before selection. For this example
we will select the xmo ActiveRadarX1 munition, an active radar missile. After
selection is completed, notice that the xmo ActiveRadarX1 name now is shown
next to the Select Munition button, displaying your selection.

23

FOI-R--3625--SE

Figure 5.2: Dialog for selecting munition.

Next to the fire button, see figure 5.1, there is a drop-down menu where you
can select which target you want to fire at. When pressing the popup menu
both the Target and Carrier entity names are listed in the menu. The Carrier
name is followed by a “- self” tag, informing you that this is your own entity.
Make sure the Target entity is selected or the entity will try to fire against
itself. In the 3D-view there will be a green box for each available target and a
line from the carrier to the selected target.

As can be seen in figure 5.1 there is a selection for Automatic fire. If this is
selected, a missile will automatically be launched when the simulation start.
This is mostly intended for offline and batch simulations.

The Launch Missile actor also provides the capability of launching the missile
with different engagement order numbers (EON) and in different launch modes.
These depend on which type of missile is used.

5.1.2 Aircraft Radar
Shifting to the Attachables tab, an attachable called merlin RadarProxy can
be seen. This is a simple, ideal radar providing the capability to send link to
the selected munition. In the 3D view, this radar (which is an EMEmitter) is
displayed as a red transparent cone. The radar can be removed by pressing
the cross icon at the far right of the merlin RadarProxy component, see figure
5.3. In the 3D-view the red cone representing the emitting radar device has
now disappeared. Switching back to the actors tab there will also be a warning
message in the Launch Missile actor:

24

FOI-R--3625--SE

Figure 5.3: A radar attached to the aircraft. Removing Attachables is done by pressing the cross
icon.

WARNING! Entity doesn’t have any radar and this missile
needs link/illumination.

No target uplink will be sent to the missile if fired in this state. How the
missile will respond to this depend on the specific missile implementation.
The radar can be re-attached by pressing the Add attachable button in the
Attachables. This brings up a list of all available attachable components. Select
the merlin RadarProxy and the red cone reappears in the 3D view and the
warning message in the Launch Missile actor disappears.

5.2 Preparing the Target
To inspect the properties of the Target entity, select it in the scenario inspector
Entities tab. When doing this you can immediately see a few differences by
just looking at the target in the 3D view. A blue transparent sphere is drawn
around the entity and if you look closely you can also see white transparent
ellipsoids, see figure 5.4. The blue sphere and white ellipsoids are visualizations
of the entities electromagnetic signature and IR-signatures, respectively.

Figure 5.4: 3D view of the target where the RCS and IR-signatures are shown.

By selecting the Attachables tab, the two components merlin ConstantRCS-

25

FOI-R--3625--SE

Reflector and merlin SimpleIRSignature are shown. The signatures can be
removed by pressing the cross icon in the Attachables tab or the Add attachable
button. The 3D-visualization will disappear or appear as the signatures are
removed or added. For a radar missile to acquire its target the target must have
a radar cross section, and for an IR missile an IR-signature must be present.

It is possible to select if a graphics object, such as the SU37 3D-model in figure
5.4, should be displayed or not. This is done by toggling a property called
mIsVisible, which is available in the entity Drawables tab when expanding e.g.
the SU37 3D-model component.

5.3 Saving the Scenario
To save the scenario, select Save or Save Scenario As... from the File menu.
The name of the saved scenario will appear as the title of the MDA main
window.

5.4 Firing the Missile
Firing a missile is done by selecting the carrier entity and pressing the fire
button in the Launch Missile component under the actors tab. A new entity is
then added to the Scenario Inspectors Entities list which represents the missile.
It is named something like Carrier ActiveRadarX1 id3. The first substring,
Carrier, informs us that it was the Carrier entity that created the missile,
the second substring ActiveRadarX1 is the name of the specific missile, and
finally a unique id is provided.

The missile has now been created, but since the simulation has not yet started,
the missile is located at the center of the Carrier in the 3D view.

5.5 Running the Simulation
To start the simulation, press the Play button at the top left MDA window.
The time indicator in the bottom left corner of the MDA main window will start
ticking and the entities moving. If the missile hits the target both the target
and the missile will be removed from the scenario by default. The simulation
can be paused by pressing the Pause button or the space bar key.

5.6 Stopping/Reloading a Scenario
Once you have launched the scenario you can easily return to the last saved
state of the scenario by pressing the Stop button. The time indicator in the
bottom of the left corner of the MDA main Window will reset to zero and the
two entities will return to their starting position.

Be careful: Any changes done to the scenario since the last time it was saved
are lost when the scenario is reloaded.

5.7 Inspecting the Missile
During the simulation you can select the missile entity and inspect its status
during flight. Just as for the Carrier and Target, the Info tab shows the current
position, velocity and orientation of the missile.

In the Actors tab an actor called Missile Inspector is available, providing in-
formation about the missile seeker states and a list of events related to the
missile, see figure 5.5.

26

FOI-R--3625--SE

Figure 5.5: The Missile Inspector actor is automatically added to missiles when launched and
provides information about the seeker state and missile related events.

5.8 End Conditions
In the default scenario no end conditions for the simulation is included. The
simulation will continue forever. It is possible to add end conditions to the
scenario. This is done by adding a specific actor to the scenario, which is done
in the Scenario Inspector under the Actors tab.

Two generic end condition actors are provided with MDA. One called act Max-

SimTimeEndCondition and one called act GenericEventEndCondition. The
act MaxSimTimeEndCondition actor allows the user to set a time when the
simulation should end and the act GenericEventEndCondition allows the user
to set a MERLIN event and will stop the simulation when such an event is
received. An example of such an event is the merlin MunitionDetonation-

TerminalEvent which is sent by missiles when detonating.

When an end condition actor is triggered, the simulation is paused and the
user can study the results of the simulation.

5.9 Default Scenario Actors
The default scenario has two scenario actors already setup when loaded. The
Remove entities when hit actor which, as the name suggests, remove entities
when they have been hit. A hit occurs when a merlin MunitionDetonation-

TerminalEvent has been received. If this actor is included in the scenario, all
entities within the blast range will then be removed.

In some models, missiles are launched without interacting with MDA and the
Launch Missile actor. It is then impossible for MDA to obtain information
about them unless the Add External Missiles actor is included in the scenario.

5.10 Extend Visualization
As has been shown before, it is possible to extend the 3D visualization of both
the scenario and the entities. For studies of missile behaviors the scenario

27

FOI-R--3625--SE

drawable called MissileInfo is recommended. It provides a predicted impact
point, current closing velocity, distance to target, time to target and seeker
states directly into the 3D view, see figure 5.6.

Figure 5.6: The Missile info drawable can display missile properties in the 3D view such as
distance to target, closing velocity, seeker state etc.

28

FOI-R--3625--SE

6 Logging
The functionality of logging is provided in MDA through Actors and two such
actors are included in the release of MDA 1.2. The first one is a high level log
and works on all scenario entities. This is the Scenario Entity Logger which can
be enabled by adding the scenario actor called act ScenarioEntityLogger to
the scenario, se section 3.1.2.

The second provided logging functionality is a detailed component logger as-
sociated with a specific entity or a specific type of entities. It is available as
both a scenario actor (act ComponentLoggerAttacher) and as an entity actor
(act ComponentLogger). When used as a scenario actor, the user must select
which prototype that should be logged (e.g. xmo ActiveRadarX1.mermoc).

6.1 Scenario Entity Logger
The Scenario Entity Logger provides the capability of logging kinematic data
from all entities in the scenario. Here kinematic data refers to the positions,
velocities, and orientations of the entities.

As soon as the act ScenarioEntityLogger is added to the scenario it will
start to log the available and any added entities.

6.1.1 Log structure
The Scenario Entity Logger creates a directory where MDA was started from,
with the same name as the name of the scenario (e.g. DefaultScenario). In
this directory, new directories for each of the entities are created (e.g. Default-
Scenario/Target). In these directories log files are stored for each individual
entity. The log files are all provided as ascii text files.

For each entity the Scenario Entity Logger will create three types of log files.

∙ entity.xml - which contain DIS type information about the entity.

∙ entity.log - which contain position, velocity and orientation information.

∙ event.log - which contains all event history related to the entity.

For the Default Scenario the log structure would look like this:

DefaultScenario/

Carrier/

entity.xml

entity.log

event.log

Target/

entity.xml

entity.log

event.log

6.1.2 File entity.xml
An example of entity.xml file for a missile called Carrier Active id3 in the
Default Scenario is displayed below:

29

FOI-R--3625--SE

<?xml version="1.0" encoding="UTF-8"?>

<info>

<name>Carrier_Active_id3</name>

<type>ActiveRadarX1</type>

<id>3</id>

<dis>

<type>2 1 1 225 2 0 0</type>

<kind>Munition</kind>

<domain>Anti-Air</domain>

<category>Guided</category>

<countryCode>United States</countryCode>

<subcategory>

AIM-120 Advanced Medium-Range Air-to-Air Missile (AMRAAM)

</subcategory>

<specific>NIL</specific>

<extra>NIL</extra>

</dis>

</info>

6.1.3 File entity.log
The entity.log file contains the kinematic state data in a blank space separate
ascii file. The first line is a header, describing the individual columns. This
line starting with a Matlab comment sign.

The logged data in the file has the following structure:

∙ Column 1 represents the simulation time in seconds.

∙ Column 2-4 represents the position (here in North, East and Down coor-
dinates but could be ECEF x,y,z.) in units of meters.

∙ Column 5-8 represents the orientation in the form of a quaternion. The
quaternion represents the transformation of the vector x expressed in
body coordinates, 𝐵, to fixed frame coordinates, 𝐸, by the quaternion
multiplication x𝐸 = q∘x𝐵 . Column 5-7 represents the vector part of the
quaternion and column 8 the scalar part.

∙ Column 9-11 represent the velocity in body frame coordinates (Forward,
Right and Down) in units of meters per second.

∙ Column 12-14 represents the angular velocity of the body expressed in
body frame coordinates (commonly denoted as pqr) in units of radians
per second.

Below is an example of an entity.log file:

% t[s] getDisplacement_0 getDisplacement_1 getDisplacement_2 ...

0.04 4 0 -1000 0 0 0 1 100 0 0 0 0 0

0.06 6 0 -1000 0 0 0 1 100 0 0 0 0 0

0.08 8 0 -1000 0 0 0 1 100 0 0 0 0 0

0.1 10 0 -1000 0 0 0 1 100 0 0 0 0 0

0.12 12 0 -1000 0 0 0 1 100 0 0 0 0 0

0.14 14 0 -1000 0 0 0 1 100 0 0 0 0 0

30

FOI-R--3625--SE

6.1.4 File event.log
The event.log file provides a list of the events that was emitted by this specific
entity. The file consists of 5 columns. The first line is a header starting with a
Matlab comment character.

∙ Column 1 represents the time in seconds.

∙ Column 2-4 represents the position of the entity at the time of the event.
Position is given in fixed frame coordinates, here in the flat NED-frame
but could be ECEF coordinates as well. Position is provided in units of
meters.

∙ Column 5 represents the triggered event in a string format.

∙ Column 6 is optional and provides additional data related to the event.

Below is an example of an event.log for a missile.

% t[s] entityPosE EventName additional data

0 0 0 -1000 merlin_MissileFiredInfoEvent \...

launcher:Carrier target:Target distance:5001

1 200 0 -1000 merlin_MissileLaunchInfoEvent

1 100 0 -1000 merlin_BoosterIgnitionInfoEvent

1.03 103.38 0 -999.995 merlin_LinkMsgWasReceivedInfoEvent

1.06 106.87 0 -999.979 merlin_LinkMsgWasReceivedInfoEvent

1.1 110.47 0 -999.952 merlin_SeekerOpenInfoEvent

1.13 114.18 0 -999.914 merlin_SeekerAcquiredTargetInfoEvent

2.06 261.86 -2.32 -996.207 merlin_LinkMsgWasReceivedInfoEvent

3.06 507.36 -35.65 -1013.84 merlin_LinkMsgWasReceivedInfoEvent

4.06 847.64 -104.49 -1049.1 merlin_LinkMsgWasReceivedInfoEvent

5.06 1289.4 -197.74 -1088.04 merlin_LinkMsgWasReceivedInfoEvent

6.06 1837.5 -298.6 -1118.29 merlin_LinkMsgWasReceivedInfoEvent

7.06 2493.72 -388.53 -1130.77 merlin_LinkMsgWasReceivedInfoEvent

8 3202.17 -448.83 -1122.53 merlin_BoosterBurnOutInfoEvent

8.06 3255.93 -452.01 -1121.2 merlin_LinkMsgWasReceivedInfoEvent

9.06 4041.33 -480.00 -1094.05 merlin_LinkMsgWasReceivedInfoEvent

10.0 4789.18 -476.19 -1058.97 merlin_LinkMsgWasReceivedInfoEvent

11.0 5501.72 -443.50 -1019.48 merlin_LinkMsgWasReceivedInfoEvent

11.5 5816.91 -418.93 -1000 merlin_MunitionDetonationTerminalEvent \...

killed: Target missDistance=0.00624176

6.2 Component Logger
The Component Logger allows you to log detailed information about entities
and its subcomponents. It uses the interface loggers that are build in to MER-
LIN and automatically generated by the MERLIN build system. Thus, all
MERLIN models/components you have installed on your system will have an
appropriate logger.

The Component Logger comes in two flavors, one that is added directly to an
entity and one that is added to the scenario but acts on a selected class of
entities.

31

FOI-R--3625--SE

6.2.1 Manually adding a Component Logger
If you have an existing entity in the scenario, an aircraft for example, you can
add a ComponentLogger to this entity. This is done in the Entity Inspector,
Actors tab.

The Component Logger provides you with a list of all subcomponents in the
entity and the capability to select which methods/data within those subcom-
ponents you want to log, see figure 6.1. Some of the subcomponents make little
sense to log but are included since they are automatically generated. 1.

Figure 6.1: An MDA ComponentLogger entity actor is added to an entity and the model sub
component, mock RudimentaryAircraft, method getPositionE is selected for logging.

By hovering over each method with the mouse pointer you get a tooltip de-
scribing the method. Logging is enabled by clicking the checkbox next to the
method name. You can also specify how often you want the logger to query
the methods for each component. The default sampling time for logging is set
to 0.02 seconds, i.e. 50 Hz.

If you save the scenario all logging settings are saved and therefore persistent
the next time you open the scenario.

Currently the Component Logger functionally is fairly complex and unintuitive
for non MERLIN-developers. It is however a powerful method to probe into
the behavior of subcomponents of complex models and is therefore provided
with MDA and described in this document.

6.2.2 Automatically creating Component Loggers
In many cases models are created during the execution of the scenario. One
example of this is missiles. Many missiles can be fired during a scenario and
adding loggers manually to the missile entities becomes a lot of work.

1The GUI display all components inside the model in the order they appear in the
mermoc file). If you open up the components you find a list of all the available methods for
that particular component.

32

FOI-R--3625--SE

To solve this problem a scenario Actor called act ComponentLoggerAttacher

is provided with MDA. This scenario Actor lets you specify a specific model
filename, see figure 6.2, (e.g. xmo ActiveRadarX1.mermoc) and provides the
user with a similar GUI as for the ComponentLogger where subcomponents can
be selected for logging. As soon as an entity is created that matches the model
filename, a ComponentLogger is automatically added to that entity with the
same logging settings as specified in the scenario actor template, see figure 6.3.

Figure 6.2: An MDA ComponentLoggerAttacher scenario actor just added to the scenario but still
not configured.

(a) ComponentLoggerAttacher with
xmo ActiveRadarX1 selected.

(b) ComponentLoggerAttacher with
xmo ActiveRadarX1 and SeekerIdeal
getSeekerState method selected.

Figure 6.3: ComponentLoggetAttacher with logging prototype set.

6.2.3 Log Files
The Component Logger stores the data into an ordered folder structure. The
root folder for the log output has the same name as the scenario and is placed

33

FOI-R--3625--SE

in MDA’s current working directory, typically the same directory as where you
launched MDA.

Inside the root log folder you will find a directory for each logged entity. Those
folders are named after the entities name in the scenario. In each entity log
folder you find a log file for each logged entity component. The log files are
named after the name of the components, followed by their order in the mermoc
file (closing document order, which is the same order as you see in the logger
GUI). The numbering starts with #1.

The path to the log for the Target entity in the default scenario could look like
this DefaultScenario/Target/mock RudimentaryAircraft#5.log. I.e., the file-
name indicates that we have logged properties from the model component
mock RudimentaryAircraft, which is the fifth component in the scenario entity
with name Target in the scenario named DefaultScenario. A complete logging
folder might look like figure 6.4.

DefaultScenario

Carrier_OpenAMRAA_id3

foicomp_Missile#23.log

merlin_ActivationGroup#1.log

xmo_SeekerIdeal#6.logendcondition.txt

kills.txt

structure.xml

Target mock_RudimentaryAircraft#5.log

Figure 6.4: An example of the folder structure created by the loggers

The file structure.xml contains an xml description of the logging files. The
component log files are ascii files with columns separated by spaces. The first
line is a header describing the individual columns. The name of logged methods
appear in the header for their respective column. Methods that return vectors
or quaternions append a number at the end of the method name to indicate
which element of the vector the column represents.

Below is an example of the method getPosition() being logged.

% t[s] getPositionE_0 getPositionE_1 getPositionE_2

0.02 2 0 -1000

0.04 4 0 -1000

0.06 6 0 -1000

0.08 8 0 -1000

0.1 10 0 -1000

34

FOI-R--3625--SE

7 Parameter Variation
When studying a model or a scenario it is often useful to be able to run the
scenario in many different variations and to analyze the results to achieve a
greater understanding of the studied problem.

MDA has a built-in engine for parameter variation that can be used together
with the logging functionality described in chapter 6 to study variations in
complex scenarios.

In this chapter the parameter variation functionality will be described through
an example based on the Default Scenario delivered along with MDA.

7.1 Overview
How to Use the built-in parameter variation engine in MDA can be described
in a series of steps:

Step 1 Design you scenario in MDA by setting up and configuring the models
you want to include. Make sure the scenario can run without any user
interactions. For example make sure to use features such as the Launch
Missile’s automatic fire (see section 5).

Step 2 Setup End Conditions that will terminate the simulation. You can use
the built in variants or create your own solutions, see section 5.8.

Step 3 Add loggers for the data you want to extract and evaluate, see chapter
6.

Step 4 Save the edited scenario. The variation engine uses the saved scenario
file to run the scenario with different settings. If the scenario is not saved
the engine will not run the scenario with correct setup.

Step 5. Select which parameters that should be varied and how they should
vary. This is the parameter dialog that appears if you select Parameter
variation... in the Simulation menu.

Step 6. Run the parameter variation.

Step 7. Analyze the results.

In version 1.2 of MDA it is only possible to vary parameters that are single
floating point values, like mass, time, etc. This means that it is not possible to
vary parameters like vectors.

It is possible to vary parameters of sub models that appears as a link to another
mermoc files. In the example in section 7.2 this will be demonstrated on a
missile.

7.2 Example
In this section the steps of using parameter variation will be explained through
a concrete example, using the Default Scenario provided with MDA.

35

FOI-R--3625--SE

7.2.1 Step 1. Design the Scenario
The first step to running parameter variation is to create/design your scenario.

∙ Load the default scenario.

∙ Select the xmo ActivateRadarX1 missile in the Launch Missile entity
actor for the Carrier.

∙ Make sure to check the Automatic fire checkbox. This check box will
make the launch missile actor fire a missile as soon as the scenario is
started.

∙ Save the scenario under some suitable name, for instance ParameterVari-
ationTest.

∙ Test running the scenario and make sure you hit your target.

∙ Press the stop button to reload the saved version of the ParameterVari-
ationTest scenario.

7.2.2 Step 2. Setup End Conditions
Next, some break condition need to be added to make sure the scenario end
when some criterion is reached. In this example we will use two built in end
condition scenario actors. MaxSimTimeEndCondition and GenericEventEnd-
Condition. The MaxSimTimeEndCondition stops the scenario after a time
limit has been reached.

Figure 7.1: The scenario end condition Max Time set to 150 seconds.

This end condition is useful for catching the cases when no other end condition
has occurred. It can be used as a safe guard if no other end condition are
triggered and thus avoid the simulation to continue forever.

∙ Activate the Actors tab in the Scenario Inspector and press the Add actor
button. Add the MaxSimTimeEndCondition actor.

∙ Set the stopTime to 100 seconds, which is enough for this scenario.

∙ Save the scenario and run it. You can speed up the simulation time by
adjusting the time multiplier slider in the top toolbar. Notice how the
scenario is paused after 100 seconds have passed. Press the stop button
to reload the scenario.

Now, add an end condition for when a missile detonates.

∙ Activate the Actors tab in the Scenario Inspector and press the Add actor
button. Add the GenericEventEndCondition actor, see figure 7.2.

36

FOI-R--3625--SE

∙ Select the merlin MunitionDetonationTerminalEvent. To see the whole
GUI for this actor you might have to widen the Scenario Inspector tab.
Make sure to widen it until you see the full width of the actor.

∙ Save the scenario.

∙ Run the scenario to make sure it pauses when a missile hits the target.

∙ Reload the scenario by pressing the stop button.

Figure 7.2: A GenericEventCondition with the default merlin MunitionDetonation event chosen.

7.2.3 Step 3. Add Loggers
Adding loggers to a scenario is described in details in chapter 6.

∙ Add the ScenarioEntityLogger by pressing the Add actor button in the
Actors tab of the Scenario Inspector and selecting it.

7.2.4 Step 4. Save Scenario
As a precaution, save the scenario again, before configuring the parameter
variation.

7.2.5 Step 5. Configure Parameter Variation
Configuring the parameter variation is done by selecting which parameters in
the scenario file that should be varied, between which values and with what
kind of distribution. The scenario is presented to the user as a raw object
graph containing dependencies between objects (entities and sub components)
and the parameters. Appendix B describes the file format of the scenario in
more detail and could be useful for better understanding the object graph
shown in the parameter variation dialog.

In this example the mass of a missile will be varied.

∙ Open the Parameter Variation dialog by selecting the Parameter Varia-
tion field under the Simulation menu.

∙ The displayed variation dialog that opens up should look somewhat sim-
ilar to figure 7.3.

37

FOI-R--3625--SE

∙ Locate the mMissileMermoc parameter under mda Scenario>mEntityList
>mda ScenarioEntity>mEntity>mActorList>act LaunchMissile.

∙ Double click the mMissileMermoc to open a second object graph window.
This window then displays the object graph of the missile model.

∙ Locate the parameter called EmptyMass available under xmo Missile
>mDynamics>EmptyMass, see figure 7.4a.

∙ Double click EmptyMass to display a dialog for selecting the type of
variation, see figure 7.4b

∙ Select start value 80, end value 120 and number of values 10. Use the
constant step variation type and press OK.

∙ Close the parameter variation dialog for the missile by pressing Done.

By default the variation type is set to Constant step. The Constant step will
accept a parameter range, defined by a start value, an end value and the number
of steps the range should be partitioned into. The pop up menu let you select
other variations as well such as uniform distribution and normal distribution,
see figure 7.4b.

Figure 7.3: In the parameter variation dialog all scenario properties are shown. Only the non
greyed properties can be configured for variation at this time.

38

FOI-R--3625--SE

(a) The EmptyMass parameter that should be
varied.

(b) Different distributions are available for the
parameter variation.

Figure 7.4: Dialog for varying the parameter EmptyMass with a constant step between 80 kg and
120 kg.

7.2.6 Step 6. Running the Parameter Variation.
To start the parameter variation, press the Run button in the Scenario Varia-
tion dialog box. When you do this, MDA displays a status dialog showing the
progress, see figure 7.5. When the variation is finished close all dialogs.

(a) Progress dialog initiating. (b) Run finished.

Figure 7.5: Progress of the parameter variation.

7.2.7 Step 7. Analyze Results
In your current working directory, there will now be a directory called MIROOP 0.
If you have run multiple variation executions you may have several MIROOP
directories with an increasing number suffix. Inside the MIROOP 0 directory
you will find ten (the number of variations we ran) Sim X directories, each
containing data for the variation runs. There are also two files describing the
setup of the variation. These are called miroop-run.txt and miroop.xml (see
figure 7.6).

Inside the Sim directories there is a copy of the original scenario file, Parameter-
VariationTest.mermoc. This file contains the scenario mermoc for this specific
variation. In this example they will look the same for all variations, since
the parameter that was varied was in another mermoc file. Instead a folder
called LocalAvalon has been created that contains the missile mermoc with the
variation settings.

39

FOI-R--3625--SE

Figure 7.6: During a parameter variation a directory called MIROOP 0 is created containing sub
folders with results from each different parameter variation.

The loggers have also created a folder with the scenario name, ParameterVari-
ationTest, containing all of the scenario logs. In this folder the results will be
located. Read chapter 6 for descriptions of the scenario output folder and its
contents.

Finally there are two MERLIN and MDA log output files MLog.txt and MDA-
Log.txt. These files are mostly used for debugging.

7.2.7.1 Quick Visualization of the Results

One quick way to visualize the outcome of all variation runs is to open the
automatically generated scenario called ResultScenario.mermoc. It will play
back all entities from each scenario run simultaneously. Note that this file can
become very large depending on how many variations you have performed.

It is suggested to use this feature only for small numbers of variations. It can
be useful when defining the scenario, to quickly find out the effect of the chosen
variation.

Note also the scenario actor ScenarioEntityLogger, must be present in the sce-
nario for the ResultScenario to be created. Output from the parameter vari-
ation example described in this chapter can be seen in figure 7.7. Notice how
the missile trajectories differ due to the changed empty mass. If you run the
scenario you will also find that the time of impact also differs.

Figure 7.7: An EmptyMass variation visualized by running the ResultScenario.

40

FOI-R--3625--SE

8 Overview of MDA Extensions
MDA is built using a plugin architecture and allows you to configure your
simulations in endless ways without enforcing all users to suffer from unused
components in their respective GUI.

This document only describe the available components that is part of the MDA
core package. Several extensions has been made for MDA (and simulation
models) that are not part of the MDA core package. This section briefly covers
a few of those to make you aware of their existence.

8.1 Joystick support
The FOI aircraft software includes an MDA extension for connecting USB
joysticks to MDA. This extension (it’s an entity actor) will work with any
joystick, but has extra support for ThrustMasters R○ A10 Wartog HOTASTM

hardware, including both the thrust and stick.

8.2 HLA networking
MDA has an HLA 1516 evolved connection with the FOM from the P2SN 2.0
1 agreement. At this time this solution is constructed as a separate program
package. In future releases of MDA HLA support will be included in the
standard installation.

8.3 Computer Generated Forces - CGF
FOI has built a set of pilot behaviors which can be used within MDA. There are
also some MDA extensions to let the user configure and analyze the behaviors
in detail.

8.4 Missile simulation models
MDA support all MERLIN models. In the standard deployment of MDA v1.2
only the MERLIN example missiles are included.

1The P2SN Federation Agreements and FOM (P2SN FOM) is a reference document
intended to be used as a base-line when developing P2SN based federations. P2SN stands
for Persistent Partner Simulation Network

41

FOI-R--3625--SE

A MDA Components
The components included in the standard release of MDA are listed in this
appendix with a short description of their functionality. A more complete
documentation of the components are built into MDA.

Entity Actors

Name Description
act ComponentLogger Add logging facilities to an entity
act LaunchMissile Add functionality to equip an entity with a missile, con-

figure it and and fire against targets
act LogReader You can replay a stored trajectory using this component
act RangeDisplay Displays a table with current range to all other entities

in the scenario

Entity Drawables

Name Description
drawable ObjModel Renders Wavefront obj 3D objects
drawable Acceleration Render an axis displaying the current load fac-

tor of the entity
drawable AlphaBeta Visualizes alpha and beta of the entity
drawable CoordinateSystem Render a body fix coordinate system
drawable NEDCoordinateSystem Render a North, East, Down inertial system

that follows with the entity
drawable EMEmitter Render an EMEmitter if there is an EMEmit-

ter model associated with the entity
drawable Path Creates a path trailing the entity
drawable PathTube Creates a circular path trailing the entity

Entity Attachables

Name Description
merlin ConstantRCSReflector Adds a spheric constant size electromagnetic re-

flector to the entity
merlin RadarProxy Add an ideal radar to the entity
merlin F16IRSignature Add a volumetric Infrared Red F16 signature to

the entity
merlin SU27IRSignature Add a volumetric Infrared Red SU27 signature to

the entity
merlin JAS39IRSignature Add a volumetric Infrared Red JAS39 signature

to the entity
merlin JA37IRSignature Add a volumetric Infrared Red JA37 signature to

the entity

43

FOI-R--3625--SE

Scenario Actors

Name Description
act AutoAddExternalMissiles An actor that monitor all created missiles and

attaches them to the scenario without user in-
tervention

act ComponentLoggerAttacher A component that can be configured to attach
a component logger to each entity of a specified
type

act ScenarioEntityLogger This component log kinematic data for all enti-
ties in the scenario. Output can be read back
with the act LogReader

act RemoveDetonatedEntities Removes all entities that are within range of any
MunitionDetonation terminal event

act GenericEventEndCondition An end condition that monitor MERLIN events
act MaxSimTimeEndCondition An end condition that can be configured with a

max simulation time

Scenario Drawables

Name Description
drawable Detonation Render a simplistic detonation at MunitionDetonation

events
drawable EMEmitters Render all EMEmitters registered in EMChannel
drawable EMReceivers Render all EMReceivers registered in EMChannel
drawable EMReflectors Render all EMReflectors registered in EMChannel
drawable GridTerrain Render a configurable infinite grid
drawable IREmitters Render all IREMitters registered in IRChannel
drawable IRSensors Render all IRSensors registered in IRChannel
drawable LinkGfx Display animated graphics for link sent and received

events
MissileInfo Display a selectable set of missile related info, such as

closing velocity, distance to target, predicted point of
impact etc.

drawable Plane Draws a gridded plane using lines
drawable TexturedPlane Draws a texture mapped plane
DrawClockTime Draw time manager clock time

44

FOI-R--3625--SE

B Scenario File Format
The scenario file format in MDA is based on the MERLIN mermoc standard.
A mermoc is an XML file that describes the relation between objects and the
values of the parameters in the object.

In this chapter the MDA scenario file format will be explained by going thought
the DefaultScenario.mermoc file and provide the XML Schema for the scenario
file format.

Example
Below is a truncated listing of the scenario file called DefaultScenario.mermoc.

As can be seen in the listing, the scenario is constructed from five major parts:

∙ Scenario Information, containing information about the scenario and a
flag if the program should exit when an end condition is reached.

∙ A list of additional services. MERLIN is provided with a basic set of
services such as gravity models, atmosphere models and time managers
for numerical integration of differential equation. Here it is possible to
extend the basic set with extra services, required by your models.

∙ A list of entities in the scenario. In the default scenario there are two
entities, the Carrier and the Target. The entities them selfs are also
described with XML. Here the content of their XML description was
replaced with dots to make the illustration of the scenario easier to read.

∙ A list of drawables in the scenario. These are also described with XML
but truncated here for improved readability.

∙ A list of actors in the scenario. Two actors are available in the DefaultSce-
nario, Automatically removal of detonated entities and automatic inser-
tion of missiles created from other entities (and not directly from MDA).

<?xml version=’1.0’?>

<objects>

<mda_Scenario>

<!-- Scenario Information -->

<mFormatVersionNumber value="1.0" />

<mName value="Default Scenario" />

<mPicture value="$AVALON_HOME/MDA/mermocs/DefaultScenario.png" />

<mCoordSystem value="FLAT_XNorthYEastZDown" />

<mDescription value="Missile Duel Scenario" />

<mExitAtEndCondition value="0" />

<!-- List of additional services --->

<mAdditionalServices list="objectPtr">

</mAdditionalServices>

<!-- List of entities in the scenario --->

<mEntityList list="objectPtr">

45

FOI-R--3625--SE

<mda_ScenarioEntity>...</mda_ScenarioEntity> <!--Carrier-->

<mda_ScenarioEntity>...</mda_ScenarioEntity> <!--Target-->

</mEntityList>

<!-- List of Scenario Drawables --->

<mScenarioDrawableList list="objectPtr">

<drawable_GridTerrain>...</drawable_GridTerrain>

<drawable_EMEmitters>...</drawable_EMEmitters>

<drawable_EMReceivers>... </drawable_EMReceivers>

<drawable_EMReflectors>...</drawable_EMReflectors>

<drawable_IRSensors>... </drawable_IRSensors>

<drawable_IREmitters>...</drawable_IREmitters>

</mScenarioDrawableList>

<!-- List of Scenario Actors --->

<mScenarioActorList list="objectPtr">

<act_RemoveDetonatedEntities/>

<act_AutoAddExternalMissiles/>

</mScenarioActorList>

</mda_Scenario>

</objects>

XML Schema
Below is a listing of the XML Schema that describes the scenario file format.

<?xml version="1.0"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:element name="mda_Scenario" substitutionGroup="complexObject">

<xsd:annotation>

<xsd:appinfo>

<implements>

<mda_IScenario/>

<mda_IComponent/>

</implements>

</xsd:appinfo>

<xsd:documentation xml:lang="en">

This is representation of a scenario.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType>

<xsd:complexContent>

<xsd:extension base="complexObjectBase">

<xsd:all>

<xsd:element name="mDescription" type="std_stringParamMember">

<xsd:annotation>

<xsd:documentation xml:lang="en">

Description of the scenario

</xsd:documentation>

</xsd:annotation>

46

FOI-R--3625--SE

</xsd:element>

<xsd:element name="mName" type="std_stringParamMember">

<xsd:annotation>

<xsd:documentation xml:lang="en">

Short name of the scenario

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="mPicture" type="merlin_FilePathParamMember" minOccurs="0">

<xsd:annotation>

<xsd:documentation xml:lang="en">

Optional path to a picture that describe the scenario.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="mCoordSystem" type="std_stringParamMember" minOccurs="0">

<xsd:annotation>

<xsd:documentation xml:lang="en">

The coordinate system used by the scenario.

merlin::ITerrain::CoordinateSystemName.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="mEntityList" type="ObjectPtrListMember">

<xsd:annotation>

<xsd:appinfo>

<withInterface name="mda_IScenarioEntity"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:element>

<xsd:element name="mScenarioDrawableList" type="ObjectPtrListMember" minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<withInterface name="gfx_IScenarioDrawable"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:element>

<xsd:element name="mScenarioActorList" type="ObjectPtrListMember" minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

<withInterface name="mda_IScenarioActor"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:element>

<xsd:element name="mAdditionalServices" type="ObjectPtrListMember" minOccurs="0">

<xsd:annotation>

<xsd:appinfo>

47

FOI-R--3625--SE

<withInterface name="merlin_IServiceControl"/>

</xsd:appinfo>

</xsd:annotation>

</xsd:element>

<xsd:element name="mFormatVersionNumber" type="std_stringParamMember">

<xsd:annotation>

<xsd:documentation xml:lang="en">

Format version number for future compatibility issues.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

<xsd:element name="mExitAtEndCondition"

type="merlin_BoolParamMember"

minOccurs="0">

<xsd:annotation>

<xsd:documentation xml:lang="en">

Setting if the scenario should force an application

exit or pause (or just output end condition data).\n

Defaults to false. Ie dont exit at endcondition.

</xsd:documentation>

</xsd:annotation>

</xsd:element>

</xsd:all>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

</xsd:element>

</xsd:schema>

48

