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Sammanfattning 
I denna rapport beskriver vi simuleringsbaserade beslutstödstekniker för utvärdering av 

operativa planer inom effektbaserad planering. Med ett beslutsstödsverktyg kan 

utvecklare av operativa planer bedöma tusentals alternativa planer mot möjliga 

händelseutvecklingar och avgöra vilka av dessa planer som kan uppnå ett önskat 

sluttillstånd. Syftet är att förstå konsekvenserna av olika planer genom simulering och 

utvärdering. Operativa planer beskrivs enligt konceptet för en effektbaserad syn på 

operationer som en uppsättning aktioner och effekter. Vi kan ha flera olika alternativa 

sätt att utföra varje aktion. Tillsammans utgör de alla möjliga planer, som representeras 

som ett träd av handlingsalternativ som kan genomsökas för att finna den mest 

effektiva följden av alternativa för alla aktioner. Som ett testfall använder vi en 

expeditionär operation med en plan omfattande 43 aktioner och totalt 109 alternativ för 

dessa aktioner, samt ett scenario med 40 gruppaktörer som var och en beskrivs av 15 

parametrar. Beslutsstöd till planerare ges av flera metoder för att analysera effekterna 

av en plan gentemot de 40 aktörerna, exempelvis genom att visualisera flera planers 

tidsserier över avståndet till sluttillståndet och visualisera tidsutvecklingen för alla 

aktörers tillstånd för den bästa planen syftande till att ge planerare en översikt över 

planens prestanda. Detaljerat beslutsstöd ges genom observation av de mest 

inflytelserika aktionerna med hjälp av känslighetsanalys och analys av regressionsträd. 

Slutligen, lära vi gränserna som en operation inte får överskrida utan risk för drastiskt 

misslyckande.  

 

Nyckelord: Datorsimulering, dataanalys, beslutsstödssystem, beslutsträd, planering.
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Summary 
In this report we describe simulation-based decision support techniques for evaluation 

of operational plans within effects-based planning. With a decision support tool 

developers of operational plans are able to evaluate thousands of alternative plans 

against possible courses of events and decide which of these plans are capable of 

achieving a desired end state. The purpose is to understand the consequences of 

different plans through simulation and evaluation. Operational plans are described in 

the effects-based approach to operations concept as a set of actions and effects. For 

each action we may have several different alternative ways to perform the action. 

Together they make up all possible plans, which are represented as a tree of action 

alternatives that may be searched for the most effective sequence of alternative actions. 

As a test case we use an expeditionary operation with a plan of 43 actions and a total of 

109 alternatives for these actions, and a scenario of 40 group actors each described by 

15 parameters. Decision support for planners is provided by several methods analyzing 

the impact of a plan on the 40 actors, e.g., by visualizing multiple plan end state time 

series and visualizing actors time development for the best plan in order to give 

planners a performance overview. Detailed decision support is provided by observation 

of the most influential actions using sensitivity analysis and regression tree analysis. 

Finally, we learn the boundaries that an operation must not move beyond without risk 

of drastic failure.  

 

Keywords: Computer simulation, data analysis, decision support systems, decision 

trees, planning. 
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1 Introduction 
In this report we develop simulation-based decision support through an event-based 

simulation that model military operational plans according to effects-based planning 

(EBP) [1]. The methods developed can be used in an incremental manner by testing the 

plans as they are developed step-by-step and new activities are added. How we model a 

phenomenon depends on the purpose of the model and the questions we want to answer. 

Since our simulation system aims to support decision-making within an effects-based 

approach to operations (EBAO) the modeling has to be based on EBAO concepts as a set 

of effects and actions that together will lead to a desired military end state. Using a 

decision support tool, a decision maker is able to test a number of feasible plans against 

possible courses of events and decide which of those plans is capable of achieving a 

desired military end state. The purpose is to evaluate plans against a large set of actors and 

understand their consequences through simulating the events and producing outcomes 

which result from making alternative decisions regarding actions. Each plan consists of 

many actions, where several actions can be performed in a number of alternative ways. We 

model the plan and evaluate alternative plan instances on how well they are able to drive 

the entire state of the simulation model, simulating a large set of actors, towards a 

predetermined military end state. These plan instances are evaluated as to their 

performance and clustered into clusters where all plan instances have both common 

characteristics and outcomes. The idea is that these clusters, whenever they contain plan 

instances of good performance, are a robust set of alternative plans that can be used for 

minor dynamic re-planning whenever necessary. 

Actors and actions are modeled using a scenario used by the Swedish Armed Forces in 

their Combined Joint Staff Exercises, and multinational “Viking” exercises. The actions of 

the plan are simulated together with all actors and their reactions and possible follow-on 

interactions. As the actions may have several different alternative ways they can be carried 

out, together these alternatives span-up an action tree. This tree is searched where each 

level in the tree corresponds to an action and each node in the tree is an alternative for that 

action. As the action tree is searched, each node is evaluated by the simulator and results 

are stored. By using search to guide the tasks of the simulator we let the simulator work in 

a manner that achieves maximum information value gain. In an experiment we simulate 10 

000 plans out of 2.164 x 10
23

 possible plans. Simulated plans that are similar in both their 

structure and in their consequences are clustered together. These plans make up a robust 

set of similar plans that constitute ready alternatives should dynamic re-planning be 

necessary as the situation evolves. 

Decision support is achieved through a series of statistical analysis, information fusion, 

machine learning, and information visualization techniques. For example, we develop 

methods for effects and end state times series visualization for easy overview over the time 

development of several alternative plans as action-by-action is being executed. 

We develop information fusion explanation functions for simulation-based decision 

support for evaluation of military plans in expeditionary operations. Primarily, this 

methodology highlights the dangerous options in an operational plan, leaving the decision 

maker free to focus his attention on the set of remaining actions. By systematically varying 

one action at a time keeping all the other actions unchanged in a series of simulations, we 

are able to perform a sensitivity analysis for each action in the plan based on the change in 

evaluation score of the plans. This sensitivity analysis shows the relative level of 

importance of making the correct selection of alternative for each action. Using the 

explanation function, a decision maker becomes informed as to which actions of the plan 

are crucial to its success. 

To differentiate between minor re-planning and whenever major re-planning becomes 

necessary in order to avoid drastic negative consequences of plans that begin to deviate 

substantially from the initial planning, we adopt indicators as warning bells. An indicator 

is the boundary between two clusters beyond which drastic changes can occur. We learn 
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boundaries from simulated data from alternative plan instances of an expeditionary 

operation, beyond which drastic changes can occur. We provide decision support during 

execution of a plan by calculating the distance from the plan to the closest boundary step-

by-step as action-by-action is being executed. By visualizing the change in distance during 

execution a commander may observe if the operation is approaching a boundary beyond 

which outcomes may be uncertain. 

This report describes a five year research effort performed at the Swedish Defence 

Research Agency 2008-2012 on developing simulation-based decision support for plan 

evaluation of operational plans constructed experts. 

In Sec. 2 we describe the effects-based planning approach. In Sec. 3 we present an 

overview over the Bogaland scenario used for experimentation. In Sec. 4 we present a 

simulation control approach where a decision maker can focus the attention of the 

simulator. We then model actors and actions (Sec. 5) and develop a simulation 

methodology (Sec. 6). In Sec. 7 we develop a decision support methodology and in Sec. 8 

we analyze simulation results. Finally, in Sec. 9 we provide a discussion of the approach 

and in Sec. 10 draw conclusions. 
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2 Effects-based planning 
How we model a phenomenon depends on the purpose of the model and the questions we 

want to answer. Since our simulation system aims to support decision-making within an 

effects-based approach to operations (EBAO) [2][3] the modeling has to be based on 

EBAO and the concepts used within it, such as plan, action, effect, end state, etc. EBAO is 

a military approach to the management and implementation of efforts at the operational 

level. According to the United States Joint Forces Command (USJFCOM) EBAO are 

“operations that are planned, executed, assessed, and adapted based on a holistic 

understanding of the operational environment in order to influence or change system 

behavior or capabilities using the integrated application of selected instruments of power 

to achieve directed policy aims” [4]. 

Within the framework of EBAO, EBP is a method for developing objectives and effects to 

be achieved through a series of synchronized actions within a military operational plan, 

conceptually developed starting top-down from a desired end state. The methodology in 

EBP is iterative in nature where the development of the plan is made step-by-step and 

tested as it is gradually emerging. To provide decision support for this planning work, we 

develop methods that can be used iteratively when successively modeling different 

elements of the plan and testing them by simulation and evaluation against a scenario with 

operators’ models that reacts to the execution of plan elements. It is possible to measure 

the change in state of all the actors in relation to the desired end state. 

A control theory model of EBP [5] is shown in Fig. 1. As input we have the required 

situation Rs which is compared with the current situation Cs received from assessment. The 

first process is an end state analysis (ESA), followed by effects development (ED). 

Initially when there is no operation the military end state defines the goal of the operation. 

Later when a campaign assessment is carried out, the comparison between Rs and Cs may 

require further analysis in ESA. The output from ED is the required effects Re which is 

compared with the current effects Ce, also received from assessment. 

 

Fig. 1. Effects-based planning. 

In terms of this model the focus of simulation-based decision support is primarily on 

effects development (ED). 

In terms of the Allied Command Operations Comprehensive Operations Planning 

Directive (COPD) [6] we focus the simulation-based decision support on generation and 

testing of alternatives at Joint Force Command (JFC) Operational Concept Development, 

Fig. 2 (JFC Phase 4a). This does not exclude the use of these methods on an earlier 

strategic level. 
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Fig. 2. Operational level crisis response planning (COPD). 
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3 The Bogaland scenario 
We make use of the same scenario that has regularly been used by the Swedish Armed 

Forces in the Combined Joint Staff and “Viking” Exercises. The scenario comprises 

several fictitious countries, two of which, Xland and Bogaland, have been described in-

depth. Background histories offer explanations to why and how sentiments, stances, 

identities, loyalties, economic dependencies and inequalities have evolved over time, 

occasionally resulting in shifts of power. Phenomena that are commonly found in conflict 

areas and post conflict areas have been embedded in scenario contexts that make the 

origins of the phenomena plausible, Fig. 3. 

 

Fig. 3. The Bogaland test scenario. 

In Xland demographic change constitutes a threat to the privileged majority group, and 

puts severe pressure on the government. The country has a constitution that does not give 

the fast growing minority group the same rights as the dwindling majority group. Irregular 

groups originating from the minority group have taken control of the rural parts of the 

country. 

In Bogaland, a newly industrialized country, a civil war broke out ten years ago when 

discontent within the minority ethnic-religious group had reached very high levels. The 

root cause was increasing social stratification caused by what members of the minority 

group perceived as unjust distribution of revenues from a natural resource located in an 

area populated by the minority group. The civil war put an end to the exploitation of the 

resource, in this case oil, and revenues dropped to very low levels. The country was split 

into two parts, roughly along ethnic lines, with each part having its own government. A 

post-war economy evolved over the next decade, and several irregulars and insurgents are 

now challenging the incumbent presidents. 

The incumbent presidents have signed a peace-agreement, and an international force, 

BFOR, is present to support the implementation of the agreement. Irregular groups in 

Bogaland seek to preserve or increase their influence by undermining the efforts of BFOR, 

the governments or competing irregulars. Two of the neighboring countries have much at 
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stake in the conflict, because of economic interests and shared identities with parties 

within Bogaland. Actors within these neighboring countries support irregulars in 

Bogaland. 
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4 Simulation control 
The planning process we analyze corresponds to selecting a sequence of actions from sets 

of alternative actions. Most actions have between two and eight alternative ways of 

execution. A chosen sequence of alternative actions constitutes a plan for trying to reach a 

peaceful end-state in Bogaland. The number of possible plans can theoretically grow very 

large since each combination of alternative actions for the different actions will constitute 

a separate plan. In our test planning problem we have 2.164 x 10
23

 possible plans. Of 

course, in practice, many of these plans can be ruled out because they start out with a 

sequence of actions already evaluated that leads to early failure. 

However, it is also possible to give the simulator instructions on how to select 

combinations of alternatives it should prefer during simulation. In this way the simulator 

can focus its attention on plans within the decision maker’s interests. Three ways to do this 

is to focus the simulator’s efforts towards plans with actions: 

 executed within a specified geographical area, 

 executed within a specified timeframe, 

 that may lie outside the area and timeframe specified, if they strongly influence 

actions within the area and timeframe as described by a cross-impact matrix 

(CIM) [7][8]. 

The CIM is a matrix, set up for all actions where it is specified how much the actions 

counteract or support each other during execution due to resource conflict or one action 

laying the foundation for another one, etc. CIM’s have been used for planning purposes in 

industry since the 1960’s. The CIM is described more in detail in [7]. 

In the graphical user interface, we may accordingly make these selections as a preferred 

area of interest in a map, a timeframe in a Gantt chart, and an action group in a chart with 

actions grouped according to their inter-influencing in the CIM. Each of these three types 

of selections gives each action a weight between 0.0 and 1.0. The spatial and temporal 

weight, for each action, is calculated as the overlap between the selected focus 

area/timeframe, and the corresponding for each action. The final weight for an action, to 

be used for its importance in the simulation, is simply the product of these three weights. 

The simulator will focus its attention in relation to these weights. Fig. 4 shows the screen 

of this user interface. 
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Fig. 4. The simulation control tab of the GUI. Upper left: Each action has an area where it is executed 

in Bogaland (blue filled rectangles). Selection of geographical focus area is done with a red rectangle. 
Upper right: Selection of focus timeframe (purple). Lower left: Selection of connected actions that are 
closely tied in the CIM. One group can be selected (here, purple or red) Lower right: Fused (product) 

weights for the actions which give their importance in the simulation. 
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5 Modeling actors and actions 
In this work we employ an actor modeling approach targeted towards modeling aggregate 

entities of human groups and organizations such as civilians, armed forces, etc., in military 

conflict zones. The modeling approach uses a combination of Bayesian networks and rule-

based methods that operate on state variables that have been selected to represent the 

characteristic properties of aggregate entities representing groups and organizations. 

Specifically, 

 state variables are used to represent the actor’s knowledge or beliefs about itself, 

other actors and the environment, 

 Bayesian networks are used to model the behavior and action selection 

mechanism of the actor, 

 rules are used to model actions and their effects on the actor’s state variables. 

5.1 State variables 

State variables are used here to represent the actor’s knowledge and beliefs about itself, 

other actors and the environment. We have separated the state variables into sets 

representing an actor’s internal state and its relationships to others. Note that in our 

modeling approach all actors known to the actor, including it, are represented using 

separate sets of the abovementioned state variables. The purpose of the state variables is to 

provide a common knowledge representation that can be used when developing behaviors 

and actions as described below. The state variables presented in this section were 

identified using subject matter experts and chosen to represent a wide range of 

characteristics among groups and organizations in military conflict zones. 

The internal state variables, which originate from previous work [1], are represented here 

by a vector I that contains 15 discrete state variables. The name, label (A−O) and a brief 

(non-exhaustive) qualitative interpretation for each variable value is presented in Table 1. 

The variables in the internal state vector are limited to four integer values [0, …, 3]. This 

design decision was made to keep the knowledge space of the actor relatively small which 

ensures that behavior and action modeling remains pragmatic and not too time-consuming. 

Also, such limitation significantly reduces the complexity in terms of search space when 

embedding actor models in real-time planning tools such as the one presented in this 

report. 
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Table 1. Internal state variables. 

 

Similarly to the internal state of an actor, its relationships to others are encoded in a 

relationship state vector R as illustrated in Table 2. Each row in the table represents the 

relationship of this actor towards another actor. Note that, unlike I which is fixed, the 

number of variables in R varies with the number of other actors N known to the actor. The 

relationship variables have four integer values [0, …, 3] which are interpreted as enemy, 

suspicious, neutral and friendly, respectively. 

Table 2. Relationship state variables. 
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Given the state variables described above we introduce the notation used in the remainder 

of this report. Another actor ai known to the actor is represented by ωi = {Iij, Rin} where j = 

{A, B, …, O} and n = {1, 2, …, N}. That is, Iij represents actor ai’s internal state variable j, 

and Rin represents actor ai’s relationship to actor an. Given that the actor knows about N 

actors (including itself) its complete knowledge space is Ω = {ω1, …, ωN}. 

Let’s also introduce the concept of roles that is used here to generalize action and behavior 

modeling: the initiator role is assigned to the actor that initiates an action; the target role is 

assigned to the actor who’s state variables are directly affected by the initiator’s action; 

and the bystander role is assigned to all other actors, other than the initiator and target, 
that may be affected by the action. Henceforth, when referring to the state variables of the 

initiator, target and bystander actors the subscripts i, t and b are used, respectively. For 

instance, ItA refers to the internal state variable A of target actor at. 

5.2 Behavior Modeling 

Using the state variables we introduce a behavior modeling method. The behavior of an 

actor is in essence an action selection strategy implemented as a function that use as input 

the actor’s state variables, Ω, and generates as output the alternative α to execute as shown 

in (1). 

  (1) 

In this work a Bayesian network (BN) [9] approach has been adopted to model f using 

either subject matter expert knowledge in cases where too little or no data is available or 

using machine learning algorithms in cases where large data sets representing the historic 

behavior of an actor are available. We have primarily chosen to use BNs due to their: 

 capability to graphically represent actor behavior using directed acyclic graphs 

(DAGs) which ultimately improves the general understanding of the model, 

 capability to perform inference, or select actions, even in the presence of missing 

or uncertain information,  

 modularity and re-usability. 

The Bayes rule defined in (2) represents the core of any Bayesian modeling approach [9]. 

We have, 

   (2) 

Using the Bayes rule a probability value, the posterior, is calculated for each action 

available to the actor. Typically, the action with the maximum posterior is selected by the 

actor. This is however not always the case as will be discussed below. 

From the Bayes rule it is clear that the posterior p(αn| Ω) of action αn is calculated using 

the prior p(αn) and likelihood p(Ω| αn) functions. The denominator, or the evidence, is a 

normalizing factor that spans all actions M. That is, using the Bayesian approach it is 

ultimately the prior and likelihood functions that the modeler manipulates or that the 

learning algorithm estimates to represent desired actor behaviors. The problem with Bayes 

rule is that one rarely can find enough data to model the likelihood function due to, in our 

case, the high dimensional state variable vector Ω. This is where BNs comes to rescue by 

introducing conditional independence between variables, hence, simplifying the likelihood 

estimation process. 

At its simplest a BN is identical to the naïve Bayes classifier in which all variables in Ω 

are assumed to be conditionally independent. Using this assumption, Bayes rule can be 

reduced to (3), 
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 , (3) 

where K is the dimensionality of Ω. The DAG of an example naïve Bayes classifier BN is 

presented in Fig. 5. 

 

Fig. 5. Naïve Bayes classifier. 

However, clearly not all variables in Ω are conditionally independent of each other. As an 

example, an actor ai’s dissatisfaction IiL to another actor at is conditionally dependent on 

its perceived relationship Rit to at. A modified network incorporating this conditional 

dependency is presented in Fig. 6. Links between any two variables in the DAG indicates 

that there exists a conditional dependency between them. Many inference algorithms that 

are capable of calculating the probabilities at arbitrary nodes in arbitrary structured BNs 

have been discussed in the literature [10]. In this study we have chosen to use the 

algorithm presented in [11]. It is important to know that the time required to infer 

probabilities varies depending on the structure of the BN as well as the amount of 

evidence (or knowledge) that are known prior to inference. 
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Fig. 6. BN classifier where IiL is conditionally dependent on Rit. All other state variables are assumed 

to be independent of each other. 

Using the probabilities inferred at the action node of the BN it is possible to select an 

action in several ways. Which action selection method to use is ultimately the modeler’s 

choice. This actor model supports the following action selection methods: 

 maximum a posterior (MAP), 

 random draw. 

The MAP approach simply selects the action with the maximum posterior. The random 

draw approach selects an action by randomly sampling the posterior values with respect to 

their proportions. 

5.3 Action Modeling 

Actions are the means by which an actor may alter its state, Ω. An action is represented 

here by a set of rules each consisting of a condition, the if-part, and a list of effects, the 

then-part, such that if the condition is true then the list of effects will execute, ultimately 

resulting in state variable changes. On the other hand, if the condition is false then none of 

the effects will execute. 

In this work, subject matter experts have developed hundreds of rules modeling the 

following actions: attack, neutralize, negotiate, support, protect, and nothing. In addition 

to the rules governing the effects of actions, subject matter experts have developed global 

rules modeling phenomena such as the Stockholm syndrome and radicalization. Global 

rules are also used to introduce constraints that filter out invalid or unwanted state variable 

values. 

The conditions (if-parts) of the rules are described using Boolean expressions. The effects 

(then-parts) of the rules are described using a function notation where set, inc and dec 

functions are used to set increment and decrement specific state variable values. For 

instance, set(ItA, 1) assigns the value 1 to the target actor’s internal state variable A. 
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Similarly, inc(ItA, 1) and dec(ItA, 1) increases and reduces the same value by 1 respectively. 

Table 3 illustrates the notation using an example rule that partially models the effects of 

the protect-action. 

Table 3. Example rule partially modeling the protect action. 

 



  FOI-R--3635--SE 

 

 21 

6 Simulation methodology 
The simulation contains models of participating actors and their initial states including a 

probability distribution for different actions they are capable of carrying out, 

environmental data, and the plan that is to be evaluated. A plan in this context is defined as 

a set of actions executed (sequentially or in parallel) by a military force intended to lead to 

a desired end state. Furthermore, the simulation scenario contains an event list which 

consists of actions derived from the other actors’ agendas, and spontaneous/natural events. 

This list is dynamic and changes during the course of the simulation. 

In order to describe the simulation process we define the system state Sn as the 

combination of all actors’ state variables and all environment parameters. Now, consider 

action An. It transforms system state Sn-1 according to Sn = f(Sn-1, An), in the time interval 

[tn-1, tn]. The implementation of An is rarely instantaneous. Instead, it is an interaction 

between our own action, other actors’ agendas and response operations, and other external 

events. Hence, our function f(Sn-1, An) is designed as an event-driven simulation model in 

order to manage the complex interactions in a transparent manner. The events in this case 

are: launching of actions (our own or any other actors’), an actor’s observations of 

initiated actions, and occurrence of an external event. 

Furthermore the outcome of An can vary depending on the circumstances (e.g., the 

operation may even fail), which can be addressed by making the simulation stochastic, 

where the outcome of an action depends on a number of random variables drawn 

according to some given distributions. The disadvantage of this is that we can obtain a per 

se reasonable, but rather unlikely outcome, which would mean that we might needlessly 

throw out a mostly good plan. In order to avoid this outcome we use Monte Carlo 

simulations, thereby obtaining a frequency function of the entire outcome space. 

A consequence of implementing the function f(Sn-1, An) as an event-driven stochastic 

simulation model is that, although the state variables from the beginning are absolute 

values, after a completed action they will be represented by statistical distributions. Hence, 

we can choose to represent the initial states by statistical distributions as well. Similarly, 

the external events can be listed with typical probabilities for the actual operational 

theatre, season, etc. 

We know that the goal of the simulation is to execute different plans and identify those 

plans that result in system states that are closest to our end state, i.e., has the shortest 

distance to it. Given the approach discussed above, the distance to the end state will be 

stochastic. Hence, by calculating the distance value in each Monte Carlo loop we create 

the distribution of this distance in the form of a histogram which approximates the 

frequency function. This means that the A
*
- algorithm (described in the next section) 

needs to evaluate not only a single distance value, but also the importance of the spread in 

the given situation. A large spread around a small average value indicates that we are on 

track, but that this path is unstable and could easily lead to failure. 

Our Monte Carlo simulation is therefore structured as follows, Fig. 7. 
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Fig. 7. Monte Carlo algorithm. 

During the actual time interval [tn-1, tn] our action An is initiated. Probable external events 

are in the same way chosen and placed in the event list according to their given 

distributions. The action An is observed via an information channel by the other actors 

immediately or eventually. Directly, or after a period of analysis which may be biased or 

colored by the information channel, the respective actor’s state is changed, which can lead 

to a new set of probabilities in the action repertoire. An action from each actor’s action 

repertoire is randomly chosen and placed in the event list. As the simulation proceeds and 

actions/events in the event list are executed new actions/events are added in the list (as the 

result of observations and reactions) until the end of the time interval is reached. Finally, a 

summary of the results for the state variables is created. These state variables are 

represented by histograms and serves as an approximation for the respective output 

distribution. 

6.1 A*-search 

The purpose of our simulation system is to search for a sequence of actions that best suits 

the decision maker’s desired end state. However, we also want the simulation to be 

capable of suggesting an alternative solution at any moment in time. Hence, such a 

simulation system can neither be designed according to the principle of “breadth first 

search” nor “depth first search”. In the former case it will take too much time before we 

reach a reasonably correct prediction. In the latter case we get stuck with just one plan, and 

will not have a general view when we are asked to forecast the best solution. Instead, a 

suitable approach in our case is to apply an A
*
-search algorithm. Below is the classic 

representation of the A
*
-search algorithm, 

 f’(n) = g(n) + h’(n) (4) 

where g(n) is the total distance from the starting position to the current location, and h’(n) 

is the estimated remaining distance from the current position to the goal (end) state. A 

heuristic function is used to create this estimate on how far it is to the goal state. The 

function f’(n) is the sum of g(n) and h’(n). This is the current estimated shortest path f(n) is 

the true shortest path which is not discovered until the A
*
-algorithm is finished. 
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It means that, on the basis of a given system state, we simulate the effect of each 

alternative action in our plan, but only one step at a time. Doing so, for every alternative, 

we get a new system state whose distance to the desired end state is calculated. Given the 

alternative that is best, i.e., closest to our end state, we simulate the possible subsequent 

alternative actions that are provided, but only one step ahead in our action/event list. One 

of these alternatives leads to a condition that is closer than the others. However, it is 

possible that all the alternatives actually lead away from the target as seen by Fig. 8. 

 

S0 100 

S11 84 S12 79 S13 103 

A13 A12 A11 

S0 100 

S11 84 S12 79 S13 103 

A13 A12 A11 

S221 88 S222 71 

A221 A222 

S0 100 

S11 84 S12 79 S13 103 

A13 A12 A11 

S221 88 S222 71 

A221 A222 

S3221 98 S3222 112 S3223 87 

A3223 A3222 A3221 

S0 100 

S11 84 S12 79 S13 103 

A13 A12 A11 

S221 88 S222 71 

A221 A222 

S3221 98 S3222 112 S3223 87 

A3223 A3222 A3221 

S211 108 S212 59 

A211 
A212 

Step 4: Activities following S11 are now simulated and S212 is 

the “closest” and next to simulate.  

Step 2: After execution of alternative activities that follow 

S12, S222 is the “closest” to the target. 

Step 4: From S222 all the alternative activities 

that are presented are executed. S11, which was 

calculated earlier appears to be “closest” now. 

Step 1: From the initial state all 

available alternatives are simulated. S12 

appears to be “closest” to the target. 

Fig. 8. An example illustrating the four first steps in a simulation of a plan starting with initial system 
state S0 with the distance of 100 to the desired end state. The available action alternatives Ax are 

executed successively in the currently most favorable plan option. 

Therefore, we must also compare the new distance with the best of the distances that have 

been simulated and recorded in the previous simulation steps, but then had opted out in 

favor of a better sequence of alternative actions. The best sequence now becomes the basis 

for the next simulation step. At any time the user can then ask for the sequence, which at 

that time seems to be the best, i.e., the sequence of alternative actions that leads to a 

simulated state, which is closest to the desired end state. Action lists in the investigated 

plans are obviously not infinite, which means that they will gradually terminate. 

Consequently, the simulation program continues to execute the options that follow the 

second best system state. Given enough execution time all options will eventually be 

investigated. For the tool to function in this way the simulation system stores a list of all 

executed actions, the corresponding system state, and the distance value. Therefore, the 

simulation kernel provides a service to store all this information in a dynamic list and is 

also able to restart the simulation from a previously stored state. 
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6.2 Distance functions in A*-search 

A problem in applying the A
*
-search algorithm is to find a proper distance function. In our 

model the states of the actors and the environment are described by a large amount of 

parameters, which complicates the task of the defining a credible distance function. The 

solution chosen is to define a function that calculates the distance based on the difference 

between parameter values of a given state and the parameter values of the end state. The 

parameters are not represented by real numbers, but rather as histograms. 

A state 
iyiS ,  is a vector of length n with different sub-states jyi i

S ,, , where jyi i
S ,,  is a 

distribution over {0, 1, 2, 3}, e.g., jyi i
S ,,  = (0.2, 0.5, 0.2, 0.1) where the first 0.2 is the 

frequency of “0”, and 0.5 the frequency of “1”, etc. We have, 

 
iyiS ,  = ( 1,, iyiS , 2,, iyiS , …, nyi i

S ,, ), (5) 

where yi is the current sequence of choices made for all activities A1 to Ai. The initial state 

is called S0,0, and the end state is called Se. 

The distance (
iyiS , , 

1,1  iyiS ) between two successive states 
iyiS ,  and 

1,1  iyiS  is 

calculated as 

  
1,1, ,


iyiyii SS     


 


3

0

,,1,,  
1

k

jyijyi kSkS
ii

. (6) 

During simulation an assessment is made of how well each action is performed. This is 

done by the functions g and h. Function g measures the consequence of all actions 

performed as a distance from the initial state S0,0 to the current simulated state 
xyxS ,  

action-by-action [1]. We have, 

    




 


1

0

,1, 1
,

x

i

yiyix ii
SSyg . (7) 

Function h is a heuristic estimate of the remaining distance from 
xyxS ,  to the end state Se. 

The estimated distance from the current state to the end state is given by 

    eyxx SSyh
x
,, . (8) 

With the total distance from the initial state to the end state via the current state is 

 f(yx) = g(yx) + 80h(yx). (9) 

This is the distance function that is minimized by A
*
. The weight “80” was derived by 

experimentation to balance the performance of minimizing g and h and is domain 

dependent. 
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7 Decision support methodology 
Decision support is given as a set of plans that are similar in structure and consequences. 

We cluster the patterns of plan instances that are similar in structure and consequences. 

Similar in structure means that they have more or less carried out similar alternative 

actions. Similar in consequences means that they travel on average the same distance 

action-by-action towards the end state. 

We observe the difference in consequences between two plans. We compare the difference 

in the incremental changes of g and h called G and H, respectively, for each action Ak 

and both plans Pi and Pj as they progress down the sequence of additional actions Ak. We 

have, for each Ak, 

      kjkikjki APgAPgAPAPG ...,.   (10) 

and 

      kjkikjki APhAPhAPAPH ...,.   (11) 

where 

      1...  kikiki APgAPgAPg  (12) 

and 

      1...  kikiki APhAPhAPh , (13) 

and i is an index for different plan instances and k is the index for actions. 

Thus, Pi.Ak is a variable referring to the kth action of the ith plan. It takes an integer value 

that is the number of the alternative chosen for this action, e.g., P1.A3 = 41 imply that 

action number 3 of plan number 1 executes alternative number 41. 

In addition, we need to measure the structural distance between two plans. This is done by 

the Hamming [12] distance Ha which measures the structural distance between Pi and Pj. 

We have, 

  









kjki

kjki

kjki APAP

APAP
APAPHa

..,1

..,0
.,.  (14) 

when both actions Pi.Ak and Pj.Ak exist within the simulated sequences Pi and Pj, otherwise 

0 by definition. 

Using this measure, we compare each action in two different plans to calculate the 

structural distance between the plans. For each action we observe the alternative chosen in 

both plans. 

We put these three measures together into an interaction function that measures the overall 

distance between plan Pi and Pj. 

We have, 
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  (15) 

Here the sums of the second and third lines are normalized by the maximum difference, 

and all sums in the three factors are normalized by the number of actions of the plan. Thus, 

 1,0

ijJ  and is “1” if one of the three measures is at maximum, and is “0” is all three 

measures are at minimum. 

We partition the set of all simulated plans into clusters using the Potts spin model [13] in 

such a way as to minimize the overall sum of all interactions 


ijJ  within each cluster. 

The Potts spin problem consists of minimizing an energy function 

  (16) 

by changing the states of the spins Wia, where Wia  {0, 1} and Wia = 1 means that plan Pi 

is in cluster a. This model serves as a clustering method if 


ijJ  is used as a penalty factor 

when plan Pi and Pj are in the same cluster. 

For computational reasons we use a mean field model, where spins are deterministic with 

iaia WV  , Via  [0, 1], in order to find the minimum of the energy function. The Potts 

mean field equations are formulated [14] as 

  (17) 

where 

  (18) 

and T is a parameter called the temperature that is used to control the influence of the 

interaction. This is a system parameter initialized to 

  (19) 

where K is the number of clusters, and min and max are the extreme eigenvalues of M, 

where 

 . (20) 

Jij

-
1 1

1
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-------- Ha Pi.Ak Pj.Ak( )

k

––=

1
1
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
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In order to minimize the energy function (17) and (18) are iterated until a stationary 

equilibrium state has been reached for each temperature. Then, the temperature is lowered 

step-by-step by a constant factor until i, a. Via = {0, 1} in the stationary equilibrium state, 

Fig. 9 [15][16]. 
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; s = 0; t = 0;  = 0.001;  = 0.9;  = 0.5; 

T0 = Tc (a critical temperature) =  maxmin ,max
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Fig. 9. Potts spin clustering of simulated plans partition the set of simulated plans into clusters of 
similar plans. 
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To find the optimal number of clusters K we plot the energy function (16) in a graph for 

different number of clusters K. We use a convex hull algorithm to calculate the lower 

envelope of E. At an arbitrary abscissa, the envelope function is bisected in a left and right 

part, each of which is fitted by least squares to a straight line. The acute angle between the 

two lines is maximized over all bisection abscissas and the maximizing abscissa is chosen 

as the number of clusters [17]. 

These clusters are sets of alternative plans available, should re-planning be necessary. If a 

plan is in the midst of execution the decision maker can observe evaluations of alternative 

continuations of the plan, and see which alternative activities to avoid and which are 

preferable as they are within a robust subset of plans. 

In the next few sections 7.1−7.7 we present a number of different analysis and decision 

support methodologies. 

7.1 Recording Decision Makers Selection of Action 
Alternatives 

A modified version of the A
*
-algorithm is used in the simulation engine that not only 

searches for the best path, but also records all paths that have hit a leaf node in the search 

tree. These recorded paths can later be visualized with our tree visualization GUI. This 

means that a decision maker will be able to browse the complete tree and see which nodes 

were included in the best path in addition to other nodes that almost were included as well 

as those that were discarded. 

In Fig. 10 we see an example of paths that were visualized with the tree visualization GUI. 

Here, we see that nodes 1, 2 and 41 on the top were included in the best path (green color). 

If the user clicks on node 61 which is on the next level in the tree, he will continue down 

the best path, however, if he clicks on node 42 (orange color) he will select a path of lower 

quality. 

 

Fig. 10. Tree visualization of a plan (level 4). 

If the user clicks on node 61, its children on the next level are shown, see Fig. 11. Here, 

we see that there are two choices, either we continue along the best path by selecting node 

6, or we can browse the tree through a node (white node 108) that has not been included in 

any path. 
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Fig. 11. Tree visualization of a plan (level 5). 

Continuing further down the tree we see in Fig. 12 that node 6 has five children. Node 8 

and 7 are colored red, since traveling to those nodes diverts too much from the optimum 

path. Nodes 10 and 5 are close to the best path, which goes through node 9. 

 

Fig. 12. Tree visualization of a plan (level 6). 

Using this type of visualization that shows the best path in a context where also other 

alternatives are expressed, gives the decision maker the ability to recognize which actions 

affect the total outcome at a certain step in the plan. This mechanism is important in order 

to show action traceability in the system. 

7.2 Visualizing Best Plan Effects Time Series 

During plan execution it is valuable to analyze whether the entire operation is approaching 

the desired end state. One way to find if this is the case is to define a set of advantageous 

key states that have to be achieved. Achieving such a state (hence moving from a present 

worse state) is called obtaining an effect. They are often stated on a high semantic level. 

An effect in the Bogaland scenario could typically be “Establish order and stability in East 

Kasuria”. 

As effects-based planning will typically involve designating a number of effects, described 

in natural language, whose fulfillment are assumed to constitute the path towards 

achieving the end state, it becomes interesting to examine what role such effects play in 

the context of a simulation that is steered in the direction of a desired end state. Since the 

end state is a point in parameter space which the simulation tries to reach, then the effects 

should be seen as partitions of the parameter space that the simulation increasingly 

occupies, and the intersection or center of gravity of these partitions should be close to the 

end state. Visualizing the fulfillment of effects along the progression of simulation for the 

best found plan (i.e., action numbers on the x-axis), should shed light on whether the best 

course of action does indeed correlate with step-wise achieving the designated effects, or 

whether success is best achieved through other paths. 
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Conversely, monitoring the degree of fulfillment of effects allows one to spot whether a 

plan that eventually leads to a desirable end-state does so by passing through unacceptable 

sub-states (as given by dips in fulfillment of critical effects). 

The total actor state is at each time defined by the matrix of 15 parameters with value 0, 1, 

2, 3 for all 40 actors, where each parameter can change value as a result of each action. 

Formally, an effect is defined as a limited volume, or a union of volumes, in the 15-

dimensional parameter space. This is equivalent with 15 sub-intervals of the allowed 

parameter values 0, 1, 2, 3 (or a union of such). The distance of the present collective 

actors’ state to an effect is the sum of the Manhattan (L1 metric) distances from all actors’ 

present parameter values to the closest points (corners, sides or hyperplane) of the effect, 

measured from each actor. 

Fig. 13 shows an example when monitoring four effects during execution of the best plan. 

In this example we observe no trends but notice that three out of four effects are mostly 

achieved. This is explained by that we are actively striving towards the end state (point) 

and not towards an effect (volume) in parameter space as effects are here only monitored 

but not actively aimed at. Hence, in this example, we are neither approaching, nor 

distancing ourselves from any of the effects in any major way. 

 

Fig. 13. Time series of supporting effects and decisive points. 

Another way to assess the probability for achievements of the effects – and finally the end 

state – is to use the CIM. In the CIM expected impacts of actions on effects, and effects on 

the end-state are stated. Depending on the observed progress of actions, together with the 

commanders own observations of the situation on any effect-level, the probability of 

achieving these higher effects can be assessed [8]. 
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7.3 Visualizing Multiple Plan End State Time Series 

During A
*
-search the simulator tries to find a way to traverse the search tree that 

minimizes f; the sum of the distance travelled so far g plus the expected distance to the end 

state h. That is to minimize the expected total effort of the operation to move the actors to 

the end state. These measures are computed and stored for every time step, i.e., after each 

execution of an action. A monotonous decrease of h means we are continuously 

approaching the end state. Function h has an analytical definition according to section 6.2; 

the sum of the Manhattan distances from all actors’ present parameter values to the end 

state (a point in parameter space). In practice we do not know exactly how to get to the 

end state, even if we can assess the distance. Function g is the length of the path travelled 

so far, i.e., the sum of the L1 parameter value changes for each actor over all actions 

executed so far. Function g will always increase, but h, the distance to the end state, might 

decrease in proportion to how successful an action is or increase for an action shifting 

these parameters away from the end state. 

We can plot the measures vs. action number for a few of the best plans to get a feeling of 

how well the simulation manages to approach the end state, see Fig. 14. In the figure, it 

seems as each plan step roughly moves us about the same distance (nearly linear 

development of f and g), but it is not reflected as well in the development of h, that is we 

are certainly not marching straight towards the end state (which should give a reduction of 

h for each step as large as the increase of g). Rather, as seen in the noisy behavior of h, 

some actions tend to take us farther from the end state, giving increases about every 

second step in h. For the example plan under investigation we start at simulation-step 0 

with a distance h = 744.0 to the end state. The situation deteriorates for all 10 best 

simulations and turns favorable after the fifth action. The quick deterioration is due to a 

change of most of the parameters directly when BFOR enters Bogaland and initiate its first 

action. After the fifth action, the general trend seen here (as well as for all 10 000 

simulations) produces a slowly decreasing h. The best result reached is h = 792.3, as seen 

in the figure. Hence, the plans currently under investigation does not take us as far towards 

the end state (formally at h = 0). From the analysis of these time series it is obvious to the 

decision maker whether any plans under investigations are successful or need more 

development work. 



FOI-R--3635--SE   

 

 32 

 

Fig. 14. Functions f, g, h plotted vs. simulation step for the 10 best plans. 

7.4 Actors Time Development 

The simulation engine gives us different paths where each one contains a solution to the 

problem, that is, a chain of actions that need to be executed in a specific order. Within 

those actions the actors’ parameters are affected based on logic developed by a Subject 

Matter Expert (SME). For an analyst it is interesting to see how the actors progress during 

the entire execution of all actions. 

There are different approaches how to visualize multiple variables at once. In our case we 

would like to visualize the following variables: 

 actors’ parameters, 

 actions, 

 actors’ relationship to the blue forces, 

 how important an actor is based on economy, stability and dominance in the 

region, 

 temporal changes. 

For this visualization we use a bubble chart combined with some of the animation effects 

demonstrated by Rosling during one of his lectures at TED [18], Fig. 15 and Fig. 16. 
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Fig. 15. Animated bubble chart visualization of the best plan (at start of operations). 

 

Fig. 16. Animated bubble chart visualization of the best plan (at end of operations). 

We group the parameters into three different groups. One group is soft factors which 

consisted of parameters related to an actor’s social status, such as his social network, 

feeling as a group, etc.; this is plotted on the y-axis. A higher value indicates a more 

socially connected actor. Another group is hard factors which consist of parameters such 

as weapon power, infrastructure, etc.; this is plotted on the x-axis. A higher value indicates 

a more military advanced actor. The third group is made of parameters such as economy, 

geographical dominance and stability. This group is represented as the size of the bubble. 

A bigger bubble represented a more important actor. 
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The bubbles also have colors which represents the relationship between the actor and the 

blue force BFOR. Green indicates a neutral actor; blue indicates an ally, red an enemy and 

yellow an unknown or suspicious actor. 

For each action a complete new set of visualized data is rendered. Putting all of those 

renderings together the summarized effect is animated bubbles representing system 

changes occurring with respect to time (i.e., execution of action). Furthermore, the 

visualization software also has different tool features such as fast-forwarding and filtering 

based on visible actors in the GUI. 

7.5 Explaining the impact of actions 

An explanation function for explaining the impact of actions is based on sensitivity 

analysis of the impact of different actions upon the success of the plan where we 

systematically vary the alternatives of each action of the plan, one action at a time, 

keeping all the other actions unchanged in a series of simulations. This sensitivity analysis 

shows the relative level of importance of making the correct selection of alternative for 

each action. Using the explanation function, a decision maker can find the most important 

actions of a plan and focus his attention on actions where successful decision making is 

crucial to the success of the entire plan. 

As we work with plans consisting of several actions Ak we like to find the impact of each 

action on the evaluation  
lkiikl lAPf ).(   of plan Pi, where i is the index of the plan, k is 

the index of the action, and l is the index of the alternative. This impact can be denoted 

fikl/Ak. Given that we have a discrete set of evaluations  
lkiikl lAPf ).(   we approximate 

the differentiation as a normalized difference between ).(max lAPf kiikll   and the average 

of all  
lkiikl lAPf ).(  . We have, 
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where  
lkiiklik lAPfn ).(   is the number of alternatives for Pi.Ak [19]. 

As the variance in this measure can be large between different plans Pi we may choose to 

study box plots for a small number of good plans for each action Ak. For example, we will 

study box plots for the five best plans over all alternatives for averages of all actions Ak, 
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In order to find the impact of the actions we need to perform additional simulations. The 

A
*
-search algorithm is intended to deliver the best plans it finds concerning the success in 

reaching the end state, as reflected in the distance f from start to end state; the lower, the 

better. Each of these plans consists of a sequence of actions where the actions have several 

alternative ways of execution, and a plan must choose one alternative from each of these 

actions. Some actions in the simulation turn out to be more important than others for plan 

success. In order to find out how much a plan relies on a selection of a certain action 

alternative for its success, one might compare a good plan Pi found by the A
*
-algorithm 

with plans that are structurally similar to it in some respect. This can be done by 

comparing Pi with neighboring plans that only differs from Pi in the selection of 

alternatives for one single multi-alternative action, see Fig. 17. Thus, we have 
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Fig. 17. Conceptually, a plan Pi is a choice of alternatives for a sequence of actions, one for each 

consecutive action to be executed, like the red colored path. Each cyan colored path in this six-action 
planning problem corresponds to one neighboring plan with Pi.A4 = {1, 2, 4, 5, 6} for action 4. 

We simulate all neighbors to each good plan Pi already found with a variation compared to 

Pi of exactly one action alternative a time. For each action Ak, we simulate Pi where the 

selected alternative for action Ak is replaced by another alternative to Ak in the additional 

simulations. This is the set Pik consisting of |Pi.Ak| – 1 neighboring plans where 
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After having worked through all actions with alternatives, changing only one action at a 

time, we get as many neighboring plans to Pi as the total number of additional alternative 

actions, excluding the alternatives that are part of Pi itself. For a set of n actions there are 

|Pi.Ak| – 1 alternatives to an action Ak in addition to the one in Pi. We have a total of 
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neighboring plans to be compared with Pi. In our analysis, we will now use g and h instead 

of f as a refined quality measure of a plan and investigate how it is affected by systematic 

variations of each action of the plan. 

We look at ∂g/∂A and ∂h/∂A when varying only a single action at a time, Fig. 18. 
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Fig. 18. The spread in sensitivity of the five best plans where each action sensitivity is computed for g 
and h similarly to (22) for f. 

The sensitivity of g does not seem to be pronounced except for action 7 and 25 where a 

selection of another alternative than the one present in the main plan seems to give a 

slightly worse (higher) value of g. For h, a larger number of the actions show a 

pronounced sensitivity, e.g., actions 7, 12 and 16. 

With this tool a decision maker can focus his attention on making the best selection of 

alternatives where it is most important. 

7.6 Regression Tree Analysis 

Regression Analysis Trees [20] can be used to hierarchically find the importance of a set 

of input variables on a dependent continuous output variable. After simulation and 

traversal of the A
*
-search tree, the 10 000 best plans have been obtained. As described 

above, each plan consists of a set of input actions where some have several discrete 

alternatives where each plan produced from A
*
-search is a certain combination of action 

alternatives, and the continuous g or h value may be chosen as the dependent output for 

each plan. The 10 000 plans make a good statistical basis for building a regression tree on 

these data to find the most important actions, see Fig. 19. It seems as the chosen 

alternative of action A25 has largest influence on h, followed by A7 in both next branches, 

etc. Note that the split can depend on a certain action more than once at different levels. 

 

Fig. 19. A regression tree of h based on 10 000 simulations. Only the 18 most important “bifurcations” 
or branches on 5 levels are shown; the full tree with the default MATLAB statistical toolbox setting gets 

nearly 1500 branching points on 22 levels. 
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When a regression tree has been built, it can be used as a rough prediction tool for the 

dependent variable, given a new plan. A condition has to be decided for when the further 

splitting into branches should stop; eventually the tree would split into 10 000 leafs, one 

per simulated plan, but its predictive power will decrease the deeper down it is traversed, 

and be more based on random noise from the Monte Carlo process than the major 

statistical tendencies that are of interest. Given a set of alternatives a planner has chosen, 

one can follow the path this plan would take in the tree and find the g and h values of the 

plan proposed by the full tree based on the 10 000 simulations. This has been done for the 

100 best plans resulting from a second set of 10000 simulations with a new seed: the paths 

of these plans are followed in the tree to find the values of g and h the tree then proposes. 

A comparison with the real values of g and h for those 100 plans can be seen in Fig. 20. 

The trackability is good for g, but worse for h. However, the variance is higher for the 

predicted g than for h. The predicted h is higher than the real value. For the 4000 plans 

with worst (highest) f, i.e., with a Plannumber > 4000 (not visible in the figure), the 

situation is actually reversed. Perhaps this is not difficult to understand; it is easier for the 

regression analysis to find the systematics in how far we have walked g than how far it is 

to the goal h since the previous lies inherently in the effect of the conducted actions, 

whereas the latter is not as easy to assess. Let be that it is possible to compute in parameter 

space as the distance from the final actor parameter state to the end state, but this is not as 

easy. 

Two figures of merit to estimate this are the resubstitution error and the cross-validation 

error of a tree. With the resubstitution error we mean the root mean square of the g and h 

values predicted by the tree, compared to the true ones when we use the plans from which 

we built the tree. The cross-validation used “splits the training data into 10 parts at 

random. It trains 10 new trees, each one on nine parts of the data. It then examines the 

predictive accuracy of each new tree on the data not included in training that tree. This 

method gives a good estimate of the predictive accuracy of the resulting tree, since it tests 

the new trees on new data” [21]. In the case of g and h for the 100 best plans shown in Fig. 

20, these errors are around 13.5 and 20.4 for g, and 1.77 and 2.6 for h, respectively. 

Of course, in a real planning situation, it is not this simple since the planning process most 

often does not start at the top of the regression tree, the importance of the actions are not 

ordered concerning their typical order of execution, but the planning procedure is often 

done in a certain order. 
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Fig. 20. Plots of real (blue) values of g and h for the best 100 plans from a simulation with a new seed 
as well as predicted (red) values of g and h from the regression tree in Fig. 19 trained with the 10 000 
plans from the first simulations. The ratio of predicted and real values is shown in the respective lower 

plot. 
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7.7 Estimating the Boundary of Potential Failure of 
an Operational Plan 

We summarize the information contained in a cluster of plans by using a hyperplane 

created by a Support Vector Machine (SVM). We are mainly interested in the distances 

from a chosen plan to its boundary with classes other than its own. Several stages are 

needed to achieve the result. First, we need to find the best way to represent the training 

data for use in the SVM, this includes normalization. Secondly, we must analyze the 

problem of finding optimal SVM-parameters and a kernel. Finally, we analyze the 

distances. An SVM analysis finds the hyperplane that is oriented so that the margin 

between the support vectors of different classes is maximized. 

The concept of treating the objects to be classified as points in a high-dimensional space 

and finding a hyperplane that separates them is not unique to the SVM. The SVM, 

however, is different from other hyperplane-based classifiers in how the hyperplane is 

chosen. If we use linear kernel and define the distance from the separating hyperplane to 

the nearest data point as the margin of the hyperplane, then the SVM selects the maximum 

margin separating hyperplane. Selecting this hyperplane maximizes the SVM’s capability 

to calculate the correct classification of up to that time unseen plan instances. When 

representing the classification boundary by the SVM optimal hyperplane, each dimension 

has a bound for the corresponding action in the plan. Using the SVM decision function, 

each action can be evaluated by its presence in the tested plans presented to the decision 

function. In this way, we can correct our bad plans to become good plans by simply 

changing the bad actions. 

The first step is to adapt the plans to the SVM machinery. SVM requires that each data 

instance is represented as a vector of real numbers. Let a plan contain R actions which can 

take any value representing a valid alternative for this action. We generate N number of R-

dimensional vectors for training. The plans are clustered into different classes to be used 

as training targets yi. Training plans are represented by vectors xi = {xi1, …, xil}. The plan 

vectors xi are all normalized. Scaling them before applying the SVM is very important. 

This is done to avoid that attributes in greater numeric ranges dominate those in smaller 

numeric ranges. 

The basic idea of SVM is to find a linear decision boundary to separate instances of two 

classes within a space. In the case of linear functions f, a separating hyperplane, written in 

terms of a weight vector w and a threshold b takes the form f(x) = (x, w) + b with w  X, b 

 R where ( , ) denotes the dot product. We want to minimize the norm ||w||
2
 = (w,w) as 

shown in Fig. 21. This can be formulated as a convex optimization problem. 
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Fig. 21. Optimal linear divider of two separate classes. 

Minimize 

 
 

 
‖ ‖   (26) 

subject to 

 yi – (xi, w) – b ≥ 1, i = 1, …, l. (27) 

The support vectors lie on the supporting hyperplanes of the two classes. The support 

vector optimal hyperplane is the hyperplane which lies in the middle of the two parallel 

supporting hyperplanes (of the two classes) with maximum distance      
 

‖ ‖
. We have 

the decision function, 

 sign(wx + b). (28) 

which defines the division of different classes and also is used to classify plans under test. 

The complexity of a function’s representation by support vectors is independent of the 

dimensionality of the input space X, and depends only on the number of support vectors. 

The accuracy of an SVM model is largely dependent on the selection of model parameters. 

Some flexibility in separating the categories is needed. SVM implementations have a cost 

parameter C, which controls the tradeoff between generalization ability and fidelity to the 

training set. This parameter gives the model a soft margin that permits some 

misclassifications [22]. Increasing C increases the cost of misclassification of plans and 
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forces a more accurate model to be created. A search is used to find the optimal value of 

C. 

Using a hyperplane we may separate the feature vectors into two classes when there are 

only two target categories [23], but how do we handle the case where we have more than 

two classes? The two most used methods are: (i) “one against many” where each category 

is split out and all the other categories are merged, and (ii) “one against one” where k(k – 

1)/2 models are constructed where k is the number of categories. In this work we use the 

second approach and we evaluate classes against each other. 

7.7.1 Implementation of SVM 

We study an experiment of 1000 evaluated plans that are clustered by Potts spin clustering 

into eleven different clusters based on their characteristics and outcomes. Each action of 

the plan holds a unique integer number representing the alternative performed for that 

action. A training matrix of the 1000 different plans of length 46 is normalized with 

respect to each action. The eleven clusters are represented as classes which in turn are 

represented by any integer between 1 and 11.  

We use the LIBSVM library [24] in this work. Important in LIBSVM is the choice of its 

parameters. Parameter optimization is done by a full search out of a pre-defined parameter 

set. Cross validation is used for selection of best parameters for this training set, meaning 

that each combination of parameter choices is checked using cross validation, and the 

parameters with best cross-validation accuracy are chosen. Using the selected parameters 

the final model is trained on the whole training set. We use the optimal hyperplane defined 

by the SVM for determining the distance from any plan to the boundary of the classes for 

the other plans. 

Since LIBSVM only delivers output for calculating the distance to the support vectors, the 

plans nearest the hyperplane of each class, we use an extra class for the plan under 

execution. This is (by definition) the only support vector of this class, and the distance 

from any specific plan of interest to the hyperplane can be calculated. Most interesting is 

how the distance for a specific plan under execution changes depending on how many of 

the actions have been performed. To be able to calculate this, the SVM needs to be re-

trained for each new number of performed actions. 

The primal variable w is not a direct output of LIBSVM. Instead we use the provided 

support vectors SVs and the coefficients for the support vectors sv_coef; 

 w = SVs * sv_coef. (29) 

The model is trained for twelve classes, eleven classes from pre-calculated Potts spin 

clustering and one class containing the plan under execution. Training is done 45 times for 

each investigation, each training with successive longer plans, from plan length of two 

actions to training on the full matrix with 43 actions (and f, g, h), see Table 4. 

Table 4. Pseudo code for the investigation. 

 

1. Select the plan to be investigated and put it in a separate class. Update input label 

vector. 

2. For length of plan = 2 to 46: 

 2.1 Select optimal parameters for training. 

 2.2 Train the model. 

 2.3 Calculate distances using (29) and (30). 

3. Plot distances. 
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Note that this process normally is very sensitive to noise and outliers in the training data. 

SVM generally have problems with unbalanced problem where one of the classes has 

much more training examples than the other. For a balanced training set, the outliers from 

class A to end up in the middle of training examples from class B, and the algorithm can 

then identify them as outliers. Here we have an extreme case with only one training 

examples in one class, and thus the algorithm has not enough information to identify 

outliers in the other class. Our data are a selection of the best plans out of a much larger set 

of plans and carefully clustered before training. The probability of noisy data and outliers 

are low and should not be a problem. 

For all points from the hyperplane HP[(xi, w) + b = 0], the distance between the plan of 

interest and the hyperplane HP is  

   
 

‖ ‖
. (30) 

This is the distance measure we use for calculating the distances from the tested plan to the 

border of another class. 

7.7.2 Using Hyperplanes as Decision Support 

Single plans are tested against all the other plans and the result is plotted in Fig. 22–Fig. 

24. The length of the plans is on the x-axis and the distances on the y-axis. The distances 

from the tested plan to the border of another class varies with the length of the plan. First, 

the best plan is chosen from all the other plans; the best plan is the one with lowest value 

of h. The distance from the best plan to nearest hyperplane of all other classes using 

successive longer plans is shown in Fig. 22. This figure shows ten curves, one for each 

class combined to the class 12 representing the single tested plan. 

 

Fig. 22. Distance of the best plan during execution towards the eleven hyperplanes. 

In Fig. 23 we show another view of the same result, by taking the minimum distance of all 

eleven classes in Fig. 22 at each length of plan. 
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Fig. 23. Minimum distance of the best plan during execution to the closest hyperplane. 

The eleven classes are designed unsupervised with respect to plans, structure and f-value 

in the preceding clustering stage. Each class is determined by its content. Since it is the 

1000 best plans that are clustered, they are all relatively good, but a little different in 

character. It could be said that each class is determined by the quality of its best plan (min 

h value). 

Since most of the plans are “good” we take a look at the ten best plans regarding h. In Fig. 

24, minimum distances are created in the same way as in Fig. 23 are plotted for the ten 

best plans regarding h. The best plan is plotted in red for comparison. We can see that the 

best plan does not always have the largest minimum distance to neighboring classes. 
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Fig. 24. Min 10 best plans, best plan in red. 

The graphs show zero distance for some lengths of plans. This is natural since the class of 

origin for the investigated plan has zero distance to this plan as it is included in this class. 

Also there are mostly very small differences between the classes and, thus, their 

boundaries can lay tangent to each other.  

By using views as in Fig. 23 we provide decision support during execution of a military 

operational plan. During the execution we observe in this figure the distance towards the 

closest (of eleven different) boarders for the plan under execution as we progress down the 

sequence of actions. The result shows that longer plans have larger margin to other classes. 

In Fig. 22 the analyst observe a more refined view and may observe which other cluster of 

plans we might be approaching. The difference in outcomes by the current plan and the 

plans in the other cluster can then be observed by comparing with the best plan of that 

other cluster. 
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8 Simulation result analysis 

8.1 Overall Description of the Bogaland Full-scale 
Simulation Experiment 

For the purpose of our experiment we consider an extensive part of the Bogaland scenario 

that covers all actions performed by our own forces (BFOR) from day -70 to day +360. 

This scenario contains three operational phases; deployment, shaping and security support. 

During the deployment phase, actions such as securing the ports of disembarkation or 

establishing a No Fly Zone (NFZ) are being deployed. Shaping phase includes actions 

which require engagement with opposing forces, such as neutralizing irregular 

organizations’ powerbases, enforcing embargo or restricting flow of irregular recruits and 

illegal arms. 

Finally, actions in the security support phase are launched to ensure support and a correct 

handover of power to the local government. These actions include providing security 

support to the election process, supporting None Government Organizations (NGOs), and 

identifying and isolating maligned actors from Bogaland population. 

These three operational phases are carried out through 43 different BFOR actions. Each 

action has between 1 to 8 alternative ways to proceed. A few of them may not be 

performed. Furthermore, some of these actions are divided into sub-actions, i.e., sub-

actions that can only be launched as a consequence of which alternative is selected for an 

earlier action. In total our scenario contained 2.164 x 10
23

 alternative plans. Table 5 below 

lists the first thirty actions modeled in our scenario. 

Table 5. Some actions in the Bogaland scenario. 
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Altogether 40 actors were modeled in this scenario. These actors are listed in Table 6. The 

colors to the left of each actor indicate the initial roles of the actors in the scenario. Blue 

color represents BFOR and its allies, whereas red color shows the enemies. Green stands 

for neutral actors and yellow actors are those whose position or relation to us is not clear 

or yet to be determined. 

Each of the 40 actors in the scenario is defined by 15 state variables, which together 

present the total ability of that actor and its internal state, as shown in Table 5. This sum-

up to 600 (= 40 x 15) variables and 1.722 x 10
361

 (= 4
600

) possible scenario states. For the 

purpose of our experiment we initialized these variables using data from SMEs. This also 

included actors’ relations to each other. We also defined the desired goal state variables 

for each actor in cooperation with SMEs. 

During the course of the scenario the actors are directly or indirectly affected by the 

actions carried out by BFOR. For each such action all involved actors are first pointed out 

and their roles in the action are defined, e.g., the actor that is enforcing the action is blue, 

the receiver of the action is red, etc. 

For these involved actors the values of state variables are altered as a result of the action. 

This is what is meant by direct effect. All the other actors are affected based on their 

relationship with the directly involved actors, e.g., if my friend is being attacked by actor 

A1 then my relationship with A1 is being negatively affected. 

Table 6. All actors in the Bogaland scenario. 

 

When executing the actions the simulation traverse through the action tree, which is our 

complete set of plans, using the A
*
-algorithm. Each action that is executed results in a set 

of reactions (i.e., actions conducted by other actors) as the actors’ state variables and 

relations to other actors are being updated. These reactions might in turn result in new 

iteration of reactions. In our experiment we limit the number of reaction iterations to two. 

As explained in section 6, we use Monte Carlo simulations to obtain a frequency function 

of the entire outcome space of our actions. The number of Monte Carlo simulations in our 

experiment was limited to 20. 
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The experiment was run on one Intel Xeon E5-2687W with 3.1 GHz and 64 GB RAM. 

The experiment terminated after the first 10 000 plans, i.e., the A
*
-algorithm terminated 

when it reached 10 000 leaves in our action tree. On average the time it took to generate, 

simulate and evaluate one plan alternative was 24 seconds. Each experiment run took 2.8 

days to execute without any parallel computing. 

8.2 The Simulation Output Data 

For our scenario the simulator produced 10 000 rows of data which is a small fraction of 

the total theoretical amount of output. When analyzing the data we find different patterns 

which are visualized. Fig. 25 shows the parameter distribution for the 1000 first evaluated 

plans. Note that the parameters are distributed in different ways due to the fact that the 

scenario affected different parts of an actor during the entire execution. 

 

Fig. 25. Histograms of the distributions of the 15 different parameters. Each histogram bar is summed 
over all actors and actions for the best plan. 

The plans that were generated were of different sizes since some of the 43 actions may not 

be performed in some plans. On average plans executed 39 actions, see Fig. 26. Note that a 

shorter plan may give a lesser g-value, but this does not guarantee that the h-value will 

also be small. 
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Fig. 26. The distribution of plan sizes for the 10 000 plans. The plan sizes differ from plan to plan 
since a varying number of actions are executed. 

In Fig. 27, Fig. 28 and Fig. 29 we see the f, g and h-values for the actual plan sizes. For the 

g-value we see that the more actions a plan has, the higher the value becomes which is 

natural because more work has been done in the operation. This in turn will affect the f-

value which will grow proportionally. What can be noted in Fig. 29 is that the h-value 

seems to drop as the plan sizes grow. However, there are some outliers with small h-values 

and fewer actions executed, e.g., one very effective plan was found with only 38 actions 

executed, Fig. 29. 
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Fig. 27. Box diagrams over average f-value for different plan sizes. 

 

Fig. 28. Box diagrams over average g-value for different plan sizes. 
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Fig. 29. Box diagrams over average h-value for different plan sizes. 

After simulating 10 000 plans we plotted the f-values in ascending order, see Fig. 30. Here 

we can see that in practice the best plans (lowest f-values) were obtained after a few 

hundred simulations. 

 

Fig. 30. The different f-values for 10 000 sorted plans. 
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9 Discussion 
It is easy to observe from the analysis that progress is made by the best plan. A 

comparison between the two bubble charts of Fig. 15 and Fig. 16 demonstrates the 

progress made. However, from the time series of h-values in Fig. 14 we see that the 

progress made is far from the progress we try to attain. This analysis alone demonstrates to 

plan developers that only a small step is being taken in the right direction, i.e., h is lowered 

by approximately 5%. They need to develop better and many more actions to approach the 

end state. One interesting observation is that while there are 1.722 x 10
361

 different states 

to the scenario there are only 2.164 x 10
23

 possible plans in the experiment. As each plan 

will end up in one scenario state it is virtually impossible to exactly reach the end state 

which is a single state in the scenario. 

From requirements of having a robust set of alternative plans it is necessary to alter the 

traditional A
*
-algorithm. First, we decide not to stop the algorithm when the first complete 

plan is evaluated, instead we continue to evaluate more plans to find a robust set of plans. 

Secondly, it is necessary to introduce a weight in the calculation of f as the plans under 

evaluation never reach the end state; we use f = g + 80h. This is domain dependent a may 

be altered. If plans evaluated are more successful the weight will be lowered. 

While it is obvious that we may achieve that which we optimize for, we are still surprised 

of the small variations on the minor effects monitored (but not strived for) in Fig. 13 when 

there is much action taking place in the scenario as demonstrated by the bubble charts. 

These effects were developed independently of the end state, i.e., not as partitions of the 

end state. Thus, they may not lie directly in the path of optimization towards the end state. 

In evaluating the impact and importance of different actions it is interesting to compare the 

sensitivity analysis box plots of Sec. 7.5 with the regression tree analysis of Sec. 7.6. We 

observe that the action A25, with most negative impact in Fig. 18 is the first action to be 

split by the regression tree in Fig. 19, and A7, with the highest 3rd quartile in the box plot 

is the second action split in the regression tree. Together these methods complement each 

other as the box plots provide the impact of all actions and the regression tree provides the 

importance of each action given the splits that are made on previous levels. On the other 

hand, the regression tree provides a partition of the alternatives for each action at each 

split. 

In addition the regression tree is highly successful in making predictions on the outcome 

of the simulation on g and h with errors of circa 1–2%. This is achieved for each plan in 

milliseconds compared to 24 seconds for simulation of the plan. Thus, once trained the 

regression tree may act as decision support when many plans need to be evaluated in a 

short time span during re-planning of a plan under execution. 

Finding the border of an operation is analyzed in Sec. 7.7. In Fig. 22 we observe the 

distance from the best plan towards the borders of other groups of plans during execution 

action-by-action of the best plan. As these borders are eleven dimensional hyperplanes in 

(ℤ+
)
11

 it is not possible to visualize them for decision makers. Instead we present time 

series of the distance from the best plan to all neighboring group of plans as actions are 

being executed step-by-step. If this type of presentation is combined with other 

information on the evaluated performance of the plans in other groups, this gives 

commander knowledge on which of the eleven borders should be monitored carefully 

during plan execution. 

We believe that the analysis of borders together with the boxplots and actual monitoring of 

the progress of an operation are the most important components during plan execution. 

During the plan development process all methods of analysis present important views on 

the plan under development. 
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One additional observation that was made during the project is the need to provide 

computer system support to SMEs in scenario and plan development. A scenario as large 

as 40 agents where each agent is modeled by 15 parameters with their internal agendas and 

external relations, as well as a plan of 43 actions with 109 alternatives is too large to 

handle manually in an efficient manner. The behavior modeling discussed in Sec. 5.2 

reduces the size of the problem by introducing an aggregated generic model. This is a step 

in the direction towards providing design support to SMEs. However, the development of 

the plan with all its alternatives was done manually by an SME. While direct design 

support was outside the scope of the project, it will be crucial to provide computer system 

support for SMEs developing plan and scenario, which prevents them from making logical 

errors in operational planning. 
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10 Conclusion 
In this report we demonstrate that it is possible to draw important conclusions about the 

adequacy of a military operational plan in its ability to achieve a predetermined end state. 

By modeling alternative plans and a scenario we are able to analyze the best possible plans 

available within the bounds put forward by military planners through an extensive set of 

data analysis procedures. We conclude that this analysis will provide decision makers with 

information on how far the best plans advance towards the stated goal, if they are 

surrounded by a robust set of alternative plans, and which actions are most important. This 

gives planners early feed-back during plan development, and commanders information on 

where to focus their attention during plan execution. 
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