
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology
development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-
sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number
of fields such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Simulation-based Decision Support
 Evaluating Operational Plans

JOHAN SCHUBERT, FARSHAD MORADI, HIRAD ASADI,
LINUS LUOTSINEN, ERIC SJÖBERG, PONTUS HÖRLING,
ANNA LINDERHED, FRIDA HINSHAW, DANIEL OSKARSSON

FOI-R--3635--SE 			
ISSN 1650-1942	 January 20122

FOI
Defence Research Agency	 Phone: +46 8 555 030 00	 www.foi.se	
SE-164 90 Stockholm	 Fax: +46 8 555 031 00
		

Final Report

Johan Schubert, Farshad Moradi, Hirad Asadi,
Linus Luotsinen, Eric Sjöberg, Pontus Hörling,
Anna Linderhed, Frida Hinshaw, Daniel
Oskarsson

Simulation-based Decision
Support Evaluating
Operational Plans

Final Report

FOI-R--3635--SE

Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk.
All form av kopiering, översättning eller bearbetning utan medgivande är förbjuden.

This work is protected under the Act on Copyright in Literary and Artistic Works (SFS 1960:729).
Any form of reproduction, translation or modification without permission is prohibited.

 Titel Simuleringsbaserat beslutsstöd för
utvärdering av operativa planer -Slutrapport

Title Simulation-based Decision Support
Evaluating Operational Plans - Final Report

Rapportnr/Report no FOI-R--3635--SE

Månad/Month Januari/January

Utgivningsår/Year 2012

Antal sidor/Pages 55 p

ISSN 1650-1942

Kund/Customer Försvarsmakten / Swedish Armed Forces

Forskningsområde 1. Beslutsstödssystem och
informationsfusion

FoT-område Modellering och simulering

Projektnr/Project no E36710

Godkänd av/Approved by Lars Höstbeck

Ansvarig avdelning Informations- och aerosystem

 FOI-R--3635--SE

 3

Sammanfattning
I denna rapport beskriver vi simuleringsbaserade beslutstödstekniker för utvärdering av

operativa planer inom effektbaserad planering. Med ett beslutsstödsverktyg kan

utvecklare av operativa planer bedöma tusentals alternativa planer mot möjliga

händelseutvecklingar och avgöra vilka av dessa planer som kan uppnå ett önskat

sluttillstånd. Syftet är att förstå konsekvenserna av olika planer genom simulering och

utvärdering. Operativa planer beskrivs enligt konceptet för en effektbaserad syn på

operationer som en uppsättning aktioner och effekter. Vi kan ha flera olika alternativa

sätt att utföra varje aktion. Tillsammans utgör de alla möjliga planer, som representeras

som ett träd av handlingsalternativ som kan genomsökas för att finna den mest

effektiva följden av alternativa för alla aktioner. Som ett testfall använder vi en

expeditionär operation med en plan omfattande 43 aktioner och totalt 109 alternativ för

dessa aktioner, samt ett scenario med 40 gruppaktörer som var och en beskrivs av 15

parametrar. Beslutsstöd till planerare ges av flera metoder för att analysera effekterna

av en plan gentemot de 40 aktörerna, exempelvis genom att visualisera flera planers

tidsserier över avståndet till sluttillståndet och visualisera tidsutvecklingen för alla

aktörers tillstånd för den bästa planen syftande till att ge planerare en översikt över

planens prestanda. Detaljerat beslutsstöd ges genom observation av de mest

inflytelserika aktionerna med hjälp av känslighetsanalys och analys av regressionsträd.

Slutligen, lära vi gränserna som en operation inte får överskrida utan risk för drastiskt

misslyckande.

Nyckelord: Datorsimulering, dataanalys, beslutsstödssystem, beslutsträd, planering.

FOI-R--3635--SE

 4

Summary
In this report we describe simulation-based decision support techniques for evaluation

of operational plans within effects-based planning. With a decision support tool

developers of operational plans are able to evaluate thousands of alternative plans

against possible courses of events and decide which of these plans are capable of

achieving a desired end state. The purpose is to understand the consequences of

different plans through simulation and evaluation. Operational plans are described in

the effects-based approach to operations concept as a set of actions and effects. For

each action we may have several different alternative ways to perform the action.

Together they make up all possible plans, which are represented as a tree of action

alternatives that may be searched for the most effective sequence of alternative actions.

As a test case we use an expeditionary operation with a plan of 43 actions and a total of

109 alternatives for these actions, and a scenario of 40 group actors each described by

15 parameters. Decision support for planners is provided by several methods analyzing

the impact of a plan on the 40 actors, e.g., by visualizing multiple plan end state time

series and visualizing actors time development for the best plan in order to give

planners a performance overview. Detailed decision support is provided by observation

of the most influential actions using sensitivity analysis and regression tree analysis.

Finally, we learn the boundaries that an operation must not move beyond without risk

of drastic failure.

Keywords: Computer simulation, data analysis, decision support systems, decision

trees, planning.

 FOI-R--3635--SE

 5

Contents

1 Introduction 7

2 Effects-based planning 9

3 The Bogaland scenario 11

2 Effects-based planning 9

3 The Bogaland scenario 11

4 Simulation control 13

5 Modeling actors and actions 15

5.1 State variables 15

5.2 Behavior Modeling 17

5.3 Action Modeling 19

6 Simulation methodology 21

6.1 A*-search 22

6.2 Distance functions in A*-search 24

7 Decision support methodology 25

7.1 Recording Decision Makers Selection of Action Alternatives 28

7.2 Visualizing Best Plan Effects Time Series 29

7.3 Visualizing Multiple Plan End State Time Series 31

7.4 Actors Time Development 32

7.5 Explaining the impact of actions 34

7.6 Regression Tree Analysis 36

7.7 Estimating the Boundary of Potential Failure of an Operational Plan 39

7.7.1 Implementation of SVM 41

7.7.2 Using Hyperplanes as Decision Support 42

8 Simulation result analysis 45

8.1 Overall Description of the Bogaland Full-scale Simulation Experiment 45

8.2 The Simulation Output Data 47

9 Discussion 51

10 Conclusion 53

References 54

FOI-R--3635--SE

 6

 FOI-R--3635--SE

 7

1 Introduction
In this report we develop simulation-based decision support through an event-based

simulation that model military operational plans according to effects-based planning

(EBP) [1]. The methods developed can be used in an incremental manner by testing the

plans as they are developed step-by-step and new activities are added. How we model a

phenomenon depends on the purpose of the model and the questions we want to answer.

Since our simulation system aims to support decision-making within an effects-based

approach to operations (EBAO) the modeling has to be based on EBAO concepts as a set

of effects and actions that together will lead to a desired military end state. Using a

decision support tool, a decision maker is able to test a number of feasible plans against

possible courses of events and decide which of those plans is capable of achieving a

desired military end state. The purpose is to evaluate plans against a large set of actors and

understand their consequences through simulating the events and producing outcomes

which result from making alternative decisions regarding actions. Each plan consists of

many actions, where several actions can be performed in a number of alternative ways. We

model the plan and evaluate alternative plan instances on how well they are able to drive

the entire state of the simulation model, simulating a large set of actors, towards a

predetermined military end state. These plan instances are evaluated as to their

performance and clustered into clusters where all plan instances have both common

characteristics and outcomes. The idea is that these clusters, whenever they contain plan

instances of good performance, are a robust set of alternative plans that can be used for

minor dynamic re-planning whenever necessary.

Actors and actions are modeled using a scenario used by the Swedish Armed Forces in

their Combined Joint Staff Exercises, and multinational “Viking” exercises. The actions of

the plan are simulated together with all actors and their reactions and possible follow-on

interactions. As the actions may have several different alternative ways they can be carried

out, together these alternatives span-up an action tree. This tree is searched where each

level in the tree corresponds to an action and each node in the tree is an alternative for that

action. As the action tree is searched, each node is evaluated by the simulator and results

are stored. By using search to guide the tasks of the simulator we let the simulator work in

a manner that achieves maximum information value gain. In an experiment we simulate 10

000 plans out of 2.164 x 10
23

 possible plans. Simulated plans that are similar in both their

structure and in their consequences are clustered together. These plans make up a robust

set of similar plans that constitute ready alternatives should dynamic re-planning be

necessary as the situation evolves.

Decision support is achieved through a series of statistical analysis, information fusion,

machine learning, and information visualization techniques. For example, we develop

methods for effects and end state times series visualization for easy overview over the time

development of several alternative plans as action-by-action is being executed.

We develop information fusion explanation functions for simulation-based decision

support for evaluation of military plans in expeditionary operations. Primarily, this

methodology highlights the dangerous options in an operational plan, leaving the decision

maker free to focus his attention on the set of remaining actions. By systematically varying

one action at a time keeping all the other actions unchanged in a series of simulations, we

are able to perform a sensitivity analysis for each action in the plan based on the change in

evaluation score of the plans. This sensitivity analysis shows the relative level of

importance of making the correct selection of alternative for each action. Using the

explanation function, a decision maker becomes informed as to which actions of the plan

are crucial to its success.

To differentiate between minor re-planning and whenever major re-planning becomes

necessary in order to avoid drastic negative consequences of plans that begin to deviate

substantially from the initial planning, we adopt indicators as warning bells. An indicator

is the boundary between two clusters beyond which drastic changes can occur. We learn

FOI-R--3635--SE

 8

boundaries from simulated data from alternative plan instances of an expeditionary

operation, beyond which drastic changes can occur. We provide decision support during

execution of a plan by calculating the distance from the plan to the closest boundary step-

by-step as action-by-action is being executed. By visualizing the change in distance during

execution a commander may observe if the operation is approaching a boundary beyond

which outcomes may be uncertain.

This report describes a five year research effort performed at the Swedish Defence

Research Agency 2008-2012 on developing simulation-based decision support for plan

evaluation of operational plans constructed experts.

In Sec. 2 we describe the effects-based planning approach. In Sec. 3 we present an

overview over the Bogaland scenario used for experimentation. In Sec. 4 we present a

simulation control approach where a decision maker can focus the attention of the

simulator. We then model actors and actions (Sec. 5) and develop a simulation

methodology (Sec. 6). In Sec. 7 we develop a decision support methodology and in Sec. 8

we analyze simulation results. Finally, in Sec. 9 we provide a discussion of the approach

and in Sec. 10 draw conclusions.

 FOI-R--3635--SE

 9

2 Effects-based planning
How we model a phenomenon depends on the purpose of the model and the questions we

want to answer. Since our simulation system aims to support decision-making within an

effects-based approach to operations (EBAO) [2][3] the modeling has to be based on

EBAO and the concepts used within it, such as plan, action, effect, end state, etc. EBAO is

a military approach to the management and implementation of efforts at the operational

level. According to the United States Joint Forces Command (USJFCOM) EBAO are

“operations that are planned, executed, assessed, and adapted based on a holistic

understanding of the operational environment in order to influence or change system

behavior or capabilities using the integrated application of selected instruments of power

to achieve directed policy aims” [4].

Within the framework of EBAO, EBP is a method for developing objectives and effects to

be achieved through a series of synchronized actions within a military operational plan,

conceptually developed starting top-down from a desired end state. The methodology in

EBP is iterative in nature where the development of the plan is made step-by-step and

tested as it is gradually emerging. To provide decision support for this planning work, we

develop methods that can be used iteratively when successively modeling different

elements of the plan and testing them by simulation and evaluation against a scenario with

operators’ models that reacts to the execution of plan elements. It is possible to measure

the change in state of all the actors in relation to the desired end state.

A control theory model of EBP [5] is shown in Fig. 1. As input we have the required

situation Rs which is compared with the current situation Cs received from assessment. The

first process is an end state analysis (ESA), followed by effects development (ED).

Initially when there is no operation the military end state defines the goal of the operation.

Later when a campaign assessment is carried out, the comparison between Rs and Cs may

require further analysis in ESA. The output from ED is the required effects Re which is

compared with the current effects Ce, also received from assessment.

Fig. 1. Effects-based planning.

In terms of this model the focus of simulation-based decision support is primarily on

effects development (ED).

In terms of the Allied Command Operations Comprehensive Operations Planning

Directive (COPD) [6] we focus the simulation-based decision support on generation and

testing of alternatives at Joint Force Command (JFC) Operational Concept Development,

Fig. 2 (JFC Phase 4a). This does not exclude the use of these methods on an earlier

strategic level.

ESA ED SPRADRM

RG

Rs Re

Cs Ce

+ +

- -

FOI-R--3635--SE

 10

Fig. 2. Operational level crisis response planning (COPD).

1 - Situation Awareness/

Knowledge development

4 - Strategic Concept

Development

5 - Strategic Plan
Development

(Force Generation)

6 - Execution

Assessment/Plan Review
7 - Transition

S
H

A
P

E
JF

C
H

Q
 N

A
T

O

NATO Crisis Response Planning

Phase 1

Indicators and Warnings
Phase 4 Planning

Phase 3

Development

of Response

Options

Phase 2
Assessment of

the Crisis

Phase 5 (see footnote)

Execution

Phase 6

Return to Stability

3 – Operational

Orientation

2 – Strategic
Appreciation

and assessment

of Options

4 – Operational

Concept

Development

1 – Situation

Awareness/Knowledge

Development

5 – Operational Plan

Development

6- Operational Direction

Campaign Plan/

Assessment/ Review

7 Transition

Information

Sharing

Force Activation
Directive

NAC Request

for Principal Military
Requirements

Strategic

 Planning
Direction

Operational
Advice

SACEUR’s
Strategic

Assessment

Strat
Plan

3 Response

Options

2 Strategic

Assessment

SACEUR’s
Military

Response

Options

Warning

Order

NAC
Decision

Sheet
Request for

Options

SACEUR’s
CONOPS

NAC ID
Execution

Directive

Request for
Advice

Information

Sharing

Operational

Concept
Joint
Oplan

C
o
m

p
o
n
e
n
ts

3 – Orientation

2 – Appreciation

and assessment

of Options

4 – Concept
Development

1 – Situation

Awareness/Knowledge

Development

5 – Plan/Order
Development

6- Execution/Assessment
Plan Review

7 Transition

Operational

Warning
Order

Operational
Planning

Direction

Component

Concepts , SORs
And Crisis

Establishments

Joint

OPLAN
Activation \Order

Strategic

Planning

Direction

Strat

Plan

Information

Sharing

 FOI-R--3635--SE

 11

3 The Bogaland scenario
We make use of the same scenario that has regularly been used by the Swedish Armed

Forces in the Combined Joint Staff and “Viking” Exercises. The scenario comprises

several fictitious countries, two of which, Xland and Bogaland, have been described in-

depth. Background histories offer explanations to why and how sentiments, stances,

identities, loyalties, economic dependencies and inequalities have evolved over time,

occasionally resulting in shifts of power. Phenomena that are commonly found in conflict

areas and post conflict areas have been embedded in scenario contexts that make the

origins of the phenomena plausible, Fig. 3.

Fig. 3. The Bogaland test scenario.

In Xland demographic change constitutes a threat to the privileged majority group, and

puts severe pressure on the government. The country has a constitution that does not give

the fast growing minority group the same rights as the dwindling majority group. Irregular

groups originating from the minority group have taken control of the rural parts of the

country.

In Bogaland, a newly industrialized country, a civil war broke out ten years ago when

discontent within the minority ethnic-religious group had reached very high levels. The

root cause was increasing social stratification caused by what members of the minority

group perceived as unjust distribution of revenues from a natural resource located in an

area populated by the minority group. The civil war put an end to the exploitation of the

resource, in this case oil, and revenues dropped to very low levels. The country was split

into two parts, roughly along ethnic lines, with each part having its own government. A

post-war economy evolved over the next decade, and several irregulars and insurgents are

now challenging the incumbent presidents.

The incumbent presidents have signed a peace-agreement, and an international force,

BFOR, is present to support the implementation of the agreement. Irregular groups in

Bogaland seek to preserve or increase their influence by undermining the efforts of BFOR,

the governments or competing irregulars. Two of the neighboring countries have much at

FOI-R--3635--SE

 12

stake in the conflict, because of economic interests and shared identities with parties

within Bogaland. Actors within these neighboring countries support irregulars in

Bogaland.

 FOI-R--3635--SE

 13

4 Simulation control
The planning process we analyze corresponds to selecting a sequence of actions from sets

of alternative actions. Most actions have between two and eight alternative ways of

execution. A chosen sequence of alternative actions constitutes a plan for trying to reach a

peaceful end-state in Bogaland. The number of possible plans can theoretically grow very

large since each combination of alternative actions for the different actions will constitute

a separate plan. In our test planning problem we have 2.164 x 10
23

 possible plans. Of

course, in practice, many of these plans can be ruled out because they start out with a

sequence of actions already evaluated that leads to early failure.

However, it is also possible to give the simulator instructions on how to select

combinations of alternatives it should prefer during simulation. In this way the simulator

can focus its attention on plans within the decision maker’s interests. Three ways to do this

is to focus the simulator’s efforts towards plans with actions:

 executed within a specified geographical area,

 executed within a specified timeframe,

 that may lie outside the area and timeframe specified, if they strongly influence

actions within the area and timeframe as described by a cross-impact matrix

(CIM) [7][8].

The CIM is a matrix, set up for all actions where it is specified how much the actions

counteract or support each other during execution due to resource conflict or one action

laying the foundation for another one, etc. CIM’s have been used for planning purposes in

industry since the 1960’s. The CIM is described more in detail in [7].

In the graphical user interface, we may accordingly make these selections as a preferred

area of interest in a map, a timeframe in a Gantt chart, and an action group in a chart with

actions grouped according to their inter-influencing in the CIM. Each of these three types

of selections gives each action a weight between 0.0 and 1.0. The spatial and temporal

weight, for each action, is calculated as the overlap between the selected focus

area/timeframe, and the corresponding for each action. The final weight for an action, to

be used for its importance in the simulation, is simply the product of these three weights.

The simulator will focus its attention in relation to these weights. Fig. 4 shows the screen

of this user interface.

FOI-R--3635--SE

 14

Fig. 4. The simulation control tab of the GUI. Upper left: Each action has an area where it is executed

in Bogaland (blue filled rectangles). Selection of geographical focus area is done with a red rectangle.
Upper right: Selection of focus timeframe (purple). Lower left: Selection of connected actions that are
closely tied in the CIM. One group can be selected (here, purple or red) Lower right: Fused (product)

weights for the actions which give their importance in the simulation.

 FOI-R--3635--SE

 15

5 Modeling actors and actions
In this work we employ an actor modeling approach targeted towards modeling aggregate

entities of human groups and organizations such as civilians, armed forces, etc., in military

conflict zones. The modeling approach uses a combination of Bayesian networks and rule-

based methods that operate on state variables that have been selected to represent the

characteristic properties of aggregate entities representing groups and organizations.

Specifically,

 state variables are used to represent the actor’s knowledge or beliefs about itself,

other actors and the environment,

 Bayesian networks are used to model the behavior and action selection

mechanism of the actor,

 rules are used to model actions and their effects on the actor’s state variables.

5.1 State variables

State variables are used here to represent the actor’s knowledge and beliefs about itself,

other actors and the environment. We have separated the state variables into sets

representing an actor’s internal state and its relationships to others. Note that in our

modeling approach all actors known to the actor, including it, are represented using

separate sets of the abovementioned state variables. The purpose of the state variables is to

provide a common knowledge representation that can be used when developing behaviors

and actions as described below. The state variables presented in this section were

identified using subject matter experts and chosen to represent a wide range of

characteristics among groups and organizations in military conflict zones.

The internal state variables, which originate from previous work [1], are represented here

by a vector I that contains 15 discrete state variables. The name, label (A−O) and a brief

(non-exhaustive) qualitative interpretation for each variable value is presented in Table 1.

The variables in the internal state vector are limited to four integer values [0, …, 3]. This

design decision was made to keep the knowledge space of the actor relatively small which

ensures that behavior and action modeling remains pragmatic and not too time-consuming.

Also, such limitation significantly reduces the complexity in terms of search space when

embedding actor models in real-time planning tools such as the one presented in this

report.

FOI-R--3635--SE

 16

Table 1. Internal state variables.

Similarly to the internal state of an actor, its relationships to others are encoded in a

relationship state vector R as illustrated in Table 2. Each row in the table represents the

relationship of this actor towards another actor. Note that, unlike I which is fixed, the

number of variables in R varies with the number of other actors N known to the actor. The

relationship variables have four integer values [0, …, 3] which are interpreted as enemy,

suspicious, neutral and friendly, respectively.

Table 2. Relationship state variables.

 FOI-R--3635--SE

 17

Given the state variables described above we introduce the notation used in the remainder

of this report. Another actor ai known to the actor is represented by ωi = {Iij, Rin} where j =

{A, B, …, O} and n = {1, 2, …, N}. That is, Iij represents actor ai’s internal state variable j,

and Rin represents actor ai’s relationship to actor an. Given that the actor knows about N

actors (including itself) its complete knowledge space is Ω = {ω1, …, ωN}.

Let’s also introduce the concept of roles that is used here to generalize action and behavior

modeling: the initiator role is assigned to the actor that initiates an action; the target role is

assigned to the actor who’s state variables are directly affected by the initiator’s action;

and the bystander role is assigned to all other actors, other than the initiator and target,
that may be affected by the action. Henceforth, when referring to the state variables of the

initiator, target and bystander actors the subscripts i, t and b are used, respectively. For

instance, ItA refers to the internal state variable A of target actor at.

5.2 Behavior Modeling

Using the state variables we introduce a behavior modeling method. The behavior of an

actor is in essence an action selection strategy implemented as a function that use as input

the actor’s state variables, Ω, and generates as output the alternative α to execute as shown

in (1).

 (1)

In this work a Bayesian network (BN) [9] approach has been adopted to model f using

either subject matter expert knowledge in cases where too little or no data is available or

using machine learning algorithms in cases where large data sets representing the historic

behavior of an actor are available. We have primarily chosen to use BNs due to their:

 capability to graphically represent actor behavior using directed acyclic graphs

(DAGs) which ultimately improves the general understanding of the model,

 capability to perform inference, or select actions, even in the presence of missing

or uncertain information,

 modularity and re-usability.

The Bayes rule defined in (2) represents the core of any Bayesian modeling approach [9].

We have,

 (2)

Using the Bayes rule a probability value, the posterior, is calculated for each action

available to the actor. Typically, the action with the maximum posterior is selected by the

actor. This is however not always the case as will be discussed below.

From the Bayes rule it is clear that the posterior p(αn| Ω) of action αn is calculated using

the prior p(αn) and likelihood p(Ω| αn) functions. The denominator, or the evidence, is a

normalizing factor that spans all actions M. That is, using the Bayesian approach it is

ultimately the prior and likelihood functions that the modeler manipulates or that the

learning algorithm estimates to represent desired actor behaviors. The problem with Bayes

rule is that one rarely can find enough data to model the likelihood function due to, in our

case, the high dimensional state variable vector Ω. This is where BNs comes to rescue by

introducing conditional independence between variables, hence, simplifying the likelihood

estimation process.

At its simplest a BN is identical to the naïve Bayes classifier in which all variables in Ω

are assumed to be conditionally independent. Using this assumption, Bayes rule can be

reduced to (3),

FOI-R--3635--SE

 18

 , (3)

where K is the dimensionality of Ω. The DAG of an example naïve Bayes classifier BN is

presented in Fig. 5.

Fig. 5. Naïve Bayes classifier.

However, clearly not all variables in Ω are conditionally independent of each other. As an

example, an actor ai’s dissatisfaction IiL to another actor at is conditionally dependent on

its perceived relationship Rit to at. A modified network incorporating this conditional

dependency is presented in Fig. 6. Links between any two variables in the DAG indicates

that there exists a conditional dependency between them. Many inference algorithms that

are capable of calculating the probabilities at arbitrary nodes in arbitrary structured BNs

have been discussed in the literature [10]. In this study we have chosen to use the

algorithm presented in [11]. It is important to know that the time required to infer

probabilities varies depending on the structure of the BN as well as the amount of

evidence (or knowledge) that are known prior to inference.

 FOI-R--3635--SE

 19

Fig. 6. BN classifier where IiL is conditionally dependent on Rit. All other state variables are assumed

to be independent of each other.

Using the probabilities inferred at the action node of the BN it is possible to select an

action in several ways. Which action selection method to use is ultimately the modeler’s

choice. This actor model supports the following action selection methods:

 maximum a posterior (MAP),

 random draw.

The MAP approach simply selects the action with the maximum posterior. The random

draw approach selects an action by randomly sampling the posterior values with respect to

their proportions.

5.3 Action Modeling

Actions are the means by which an actor may alter its state, Ω. An action is represented

here by a set of rules each consisting of a condition, the if-part, and a list of effects, the

then-part, such that if the condition is true then the list of effects will execute, ultimately

resulting in state variable changes. On the other hand, if the condition is false then none of

the effects will execute.

In this work, subject matter experts have developed hundreds of rules modeling the

following actions: attack, neutralize, negotiate, support, protect, and nothing. In addition

to the rules governing the effects of actions, subject matter experts have developed global

rules modeling phenomena such as the Stockholm syndrome and radicalization. Global

rules are also used to introduce constraints that filter out invalid or unwanted state variable

values.

The conditions (if-parts) of the rules are described using Boolean expressions. The effects

(then-parts) of the rules are described using a function notation where set, inc and dec

functions are used to set increment and decrement specific state variable values. For

instance, set(ItA, 1) assigns the value 1 to the target actor’s internal state variable A.

FOI-R--3635--SE

 20

Similarly, inc(ItA, 1) and dec(ItA, 1) increases and reduces the same value by 1 respectively.

Table 3 illustrates the notation using an example rule that partially models the effects of

the protect-action.

Table 3. Example rule partially modeling the protect action.

 FOI-R--3635--SE

 21

6 Simulation methodology
The simulation contains models of participating actors and their initial states including a

probability distribution for different actions they are capable of carrying out,

environmental data, and the plan that is to be evaluated. A plan in this context is defined as

a set of actions executed (sequentially or in parallel) by a military force intended to lead to

a desired end state. Furthermore, the simulation scenario contains an event list which

consists of actions derived from the other actors’ agendas, and spontaneous/natural events.

This list is dynamic and changes during the course of the simulation.

In order to describe the simulation process we define the system state Sn as the

combination of all actors’ state variables and all environment parameters. Now, consider

action An. It transforms system state Sn-1 according to Sn = f(Sn-1, An), in the time interval

[tn-1, tn]. The implementation of An is rarely instantaneous. Instead, it is an interaction

between our own action, other actors’ agendas and response operations, and other external

events. Hence, our function f(Sn-1, An) is designed as an event-driven simulation model in

order to manage the complex interactions in a transparent manner. The events in this case

are: launching of actions (our own or any other actors’), an actor’s observations of

initiated actions, and occurrence of an external event.

Furthermore the outcome of An can vary depending on the circumstances (e.g., the

operation may even fail), which can be addressed by making the simulation stochastic,

where the outcome of an action depends on a number of random variables drawn

according to some given distributions. The disadvantage of this is that we can obtain a per

se reasonable, but rather unlikely outcome, which would mean that we might needlessly

throw out a mostly good plan. In order to avoid this outcome we use Monte Carlo

simulations, thereby obtaining a frequency function of the entire outcome space.

A consequence of implementing the function f(Sn-1, An) as an event-driven stochastic

simulation model is that, although the state variables from the beginning are absolute

values, after a completed action they will be represented by statistical distributions. Hence,

we can choose to represent the initial states by statistical distributions as well. Similarly,

the external events can be listed with typical probabilities for the actual operational

theatre, season, etc.

We know that the goal of the simulation is to execute different plans and identify those

plans that result in system states that are closest to our end state, i.e., has the shortest

distance to it. Given the approach discussed above, the distance to the end state will be

stochastic. Hence, by calculating the distance value in each Monte Carlo loop we create

the distribution of this distance in the form of a histogram which approximates the

frequency function. This means that the A
*
- algorithm (described in the next section)

needs to evaluate not only a single distance value, but also the importance of the spread in

the given situation. A large spread around a small average value indicates that we are on

track, but that this path is unstable and could easily lead to failure.

Our Monte Carlo simulation is therefore structured as follows, Fig. 7.

FOI-R--3635--SE

 22

Fig. 7. Monte Carlo algorithm.

During the actual time interval [tn-1, tn] our action An is initiated. Probable external events

are in the same way chosen and placed in the event list according to their given

distributions. The action An is observed via an information channel by the other actors

immediately or eventually. Directly, or after a period of analysis which may be biased or

colored by the information channel, the respective actor’s state is changed, which can lead

to a new set of probabilities in the action repertoire. An action from each actor’s action

repertoire is randomly chosen and placed in the event list. As the simulation proceeds and

actions/events in the event list are executed new actions/events are added in the list (as the

result of observations and reactions) until the end of the time interval is reached. Finally, a

summary of the results for the state variables is created. These state variables are

represented by histograms and serves as an approximation for the respective output

distribution.

6.1 A*-search

The purpose of our simulation system is to search for a sequence of actions that best suits

the decision maker’s desired end state. However, we also want the simulation to be

capable of suggesting an alternative solution at any moment in time. Hence, such a

simulation system can neither be designed according to the principle of “breadth first

search” nor “depth first search”. In the former case it will take too much time before we

reach a reasonably correct prediction. In the latter case we get stuck with just one plan, and

will not have a general view when we are asked to forecast the best solution. Instead, a

suitable approach in our case is to apply an A
*
-search algorithm. Below is the classic

representation of the A
*
-search algorithm,

 f’(n) = g(n) + h’(n) (4)

where g(n) is the total distance from the starting position to the current location, and h’(n)

is the estimated remaining distance from the current position to the goal (end) state. A

heuristic function is used to create this estimate on how far it is to the goal state. The

function f’(n) is the sum of g(n) and h’(n). This is the current estimated shortest path f(n) is

the true shortest path which is not discovered until the A
*
-algorithm is finished.

 FOI-R--3635--SE

 23

It means that, on the basis of a given system state, we simulate the effect of each

alternative action in our plan, but only one step at a time. Doing so, for every alternative,

we get a new system state whose distance to the desired end state is calculated. Given the

alternative that is best, i.e., closest to our end state, we simulate the possible subsequent

alternative actions that are provided, but only one step ahead in our action/event list. One

of these alternatives leads to a condition that is closer than the others. However, it is

possible that all the alternatives actually lead away from the target as seen by Fig. 8.

S0 100

S11 84 S12 79 S13 103

A13 A12 A11

S0 100

S11 84 S12 79 S13 103

A13 A12 A11

S221 88 S222 71

A221 A222

S0 100

S11 84 S12 79 S13 103

A13 A12 A11

S221 88 S222 71

A221 A222

S3221 98 S3222 112 S3223 87

A3223 A3222 A3221

S0 100

S11 84 S12 79 S13 103

A13 A12 A11

S221 88 S222 71

A221 A222

S3221 98 S3222 112 S3223 87

A3223 A3222 A3221

S211 108 S212 59

A211
A212

Step 4: Activities following S11 are now simulated and S212 is

the “closest” and next to simulate.

Step 2: After execution of alternative activities that follow

S12, S222 is the “closest” to the target.

Step 4: From S222 all the alternative activities

that are presented are executed. S11, which was

calculated earlier appears to be “closest” now.

Step 1: From the initial state all

available alternatives are simulated. S12

appears to be “closest” to the target.

Fig. 8. An example illustrating the four first steps in a simulation of a plan starting with initial system
state S0 with the distance of 100 to the desired end state. The available action alternatives Ax are

executed successively in the currently most favorable plan option.

Therefore, we must also compare the new distance with the best of the distances that have

been simulated and recorded in the previous simulation steps, but then had opted out in

favor of a better sequence of alternative actions. The best sequence now becomes the basis

for the next simulation step. At any time the user can then ask for the sequence, which at

that time seems to be the best, i.e., the sequence of alternative actions that leads to a

simulated state, which is closest to the desired end state. Action lists in the investigated

plans are obviously not infinite, which means that they will gradually terminate.

Consequently, the simulation program continues to execute the options that follow the

second best system state. Given enough execution time all options will eventually be

investigated. For the tool to function in this way the simulation system stores a list of all

executed actions, the corresponding system state, and the distance value. Therefore, the

simulation kernel provides a service to store all this information in a dynamic list and is

also able to restart the simulation from a previously stored state.

FOI-R--3635--SE

 24

6.2 Distance functions in A*-search

A problem in applying the A
*
-search algorithm is to find a proper distance function. In our

model the states of the actors and the environment are described by a large amount of

parameters, which complicates the task of the defining a credible distance function. The

solution chosen is to define a function that calculates the distance based on the difference

between parameter values of a given state and the parameter values of the end state. The

parameters are not represented by real numbers, but rather as histograms.

A state
iyiS , is a vector of length n with different sub-states jyi i

S ,, , where jyi i
S ,, is a

distribution over {0, 1, 2, 3}, e.g., jyi i
S ,, = (0.2, 0.5, 0.2, 0.1) where the first 0.2 is the

frequency of “0”, and 0.5 the frequency of “1”, etc. We have,

iyiS , = (1,, iyiS , 2,, iyiS , …, nyi i

S ,,), (5)

where yi is the current sequence of choices made for all activities A1 to Ai. The initial state

is called S0,0, and the end state is called Se.

The distance (
iyiS , ,

1,1  iyiS) between two successive states
iyiS , and

1,1  iyiS is

calculated as

  
1,1, ,


iyiyii SS    


 


3

0

,,1,,
1

k

jyijyi kSkS
ii

. (6)

During simulation an assessment is made of how well each action is performed. This is

done by the functions g and h. Function g measures the consequence of all actions

performed as a distance from the initial state S0,0 to the current simulated state
xyxS ,

action-by-action [1]. We have,

    




 


1

0

,1, 1
,

x

i

yiyix ii
SSyg . (7)

Function h is a heuristic estimate of the remaining distance from
xyxS , to the end state Se.

The estimated distance from the current state to the end state is given by

    eyxx SSyh
x
,, . (8)

With the total distance from the initial state to the end state via the current state is

 f(yx) = g(yx) + 80h(yx). (9)

This is the distance function that is minimized by A
*
. The weight “80” was derived by

experimentation to balance the performance of minimizing g and h and is domain

dependent.

 FOI-R--3635--SE

 25

7 Decision support methodology
Decision support is given as a set of plans that are similar in structure and consequences.

We cluster the patterns of plan instances that are similar in structure and consequences.

Similar in structure means that they have more or less carried out similar alternative

actions. Similar in consequences means that they travel on average the same distance

action-by-action towards the end state.

We observe the difference in consequences between two plans. We compare the difference

in the incremental changes of g and h called G and H, respectively, for each action Ak

and both plans Pi and Pj as they progress down the sequence of additional actions Ak. We

have, for each Ak,

      kjkikjki APgAPgAPAPG ...,.  (10)

and

      kjkikjki APhAPhAPAPH ...,.  (11)

where

      1...  kikiki APgAPgAPg (12)

and

      1...  kikiki APhAPhAPh , (13)

and i is an index for different plan instances and k is the index for actions.

Thus, Pi.Ak is a variable referring to the kth action of the ith plan. It takes an integer value

that is the number of the alternative chosen for this action, e.g., P1.A3 = 41 imply that

action number 3 of plan number 1 executes alternative number 41.

In addition, we need to measure the structural distance between two plans. This is done by

the Hamming [12] distance Ha which measures the structural distance between Pi and Pj.

We have,

  









kjki

kjki

kjki APAP

APAP
APAPHa

..,1

..,0
.,. (14)

when both actions Pi.Ak and Pj.Ak exist within the simulated sequences Pi and Pj, otherwise

0 by definition.

Using this measure, we compare each action in two different plans to calculate the

structural distance between the plans. For each action we observe the alternative chosen in

both plans.

We put these three measures together into an interaction function that measures the overall

distance between plan Pi and Pj.

We have,

FOI-R--3635--SE

 26

 (15)

Here the sums of the second and third lines are normalized by the maximum difference,

and all sums in the three factors are normalized by the number of actions of the plan. Thus,

 1,0

ijJ and is “1” if one of the three measures is at maximum, and is “0” is all three

measures are at minimum.

We partition the set of all simulated plans into clusters using the Potts spin model [13] in

such a way as to minimize the overall sum of all interactions


ijJ within each cluster.

The Potts spin problem consists of minimizing an energy function

 (16)

by changing the states of the spins Wia, where Wia  {0, 1} and Wia = 1 means that plan Pi

is in cluster a. This model serves as a clustering method if


ijJ is used as a penalty factor

when plan Pi and Pj are in the same cluster.

For computational reasons we use a mean field model, where spins are deterministic with

iaia WV  , Via  [0, 1], in order to find the minimum of the energy function. The Potts

mean field equations are formulated [14] as

 (17)

where

 (18)

and T is a parameter called the temperature that is used to control the influence of the

interaction. This is a system parameter initialized to

 (19)

where K is the number of clusters, and min and max are the extreme eigenvalues of M,

where

 . (20)

Jij

-
1 1

1

Ak

-------- Ha Pi.Ak Pj.Ak()

k

––=

1
1

Ak

g Pi.Ak() g Pj.Ak()–

k



max k g Pi.Ak() g Pj.Ak()– 
---–

1
1

Ak

h Pi.Ak() h Pj.Ak()–

k



max k h Pi.Ak() h Pj.Ak()– 
---– .

E
1

2
--- Jij

-
WiaWja

a 1=

q


i j 1=

N

=

Via

e H ia– V  T

e H ib– V  T

b 1=

K



-----------------------------------=

Hia V  JijVja

j 1=

N

 Via–=

1

K
---- max min– max()

Mij Jij

-
ij–=

 FOI-R--3635--SE

 27

In order to minimize the energy function (17) and (18) are iterated until a stationary

equilibrium state has been reached for each temperature. Then, the temperature is lowered

step-by-step by a constant factor until i, a. Via = {0, 1} in the stationary equilibrium state,

Fig. 9 [15][16].

INITIALIZE

K (number of clusters); N (number of plans);

Assign jiJ ij , 
; s = 0; t = 0;  = 0.001;  = 0.9;  = 0.5;

T0 = Tc (a critical temperature) =  maxmin ,max
1


K

, where min and max are the

extreme eigenvalues of M, where ijijij JM  
;

  airand
K

Via , 1,0
10   ;

REPEAT

 REPEAT-2

i Do:

 aVVJH s

ia

ijs

ja

N

j

ij

s

ia  










ijs,

,1

1

 ;

 





K

a

THs

i

ts
iaeF

1

/
;

   arand
F

e
V

s

i

TH
s

ia

ts
ia




 1,0
/

1
;

 s = s + 1;

UNTIL-2

01.0
1

,

1  

ai

s

ia

s

ia VV
N

;


tt TT  1
;

 t = t + 1;

UNTIL

  99.0
1

,

2


ai

s

iaV
N

;

RETURN

 sib

s

iaaia VVabS  .  ;

Fig. 9. Potts spin clustering of simulated plans partition the set of simulated plans into clusters of
similar plans.

FOI-R--3635--SE

 28

To find the optimal number of clusters K we plot the energy function (16) in a graph for

different number of clusters K. We use a convex hull algorithm to calculate the lower

envelope of E. At an arbitrary abscissa, the envelope function is bisected in a left and right

part, each of which is fitted by least squares to a straight line. The acute angle between the

two lines is maximized over all bisection abscissas and the maximizing abscissa is chosen

as the number of clusters [17].

These clusters are sets of alternative plans available, should re-planning be necessary. If a

plan is in the midst of execution the decision maker can observe evaluations of alternative

continuations of the plan, and see which alternative activities to avoid and which are

preferable as they are within a robust subset of plans.

In the next few sections 7.1−7.7 we present a number of different analysis and decision

support methodologies.

7.1 Recording Decision Makers Selection of Action
Alternatives

A modified version of the A
*
-algorithm is used in the simulation engine that not only

searches for the best path, but also records all paths that have hit a leaf node in the search

tree. These recorded paths can later be visualized with our tree visualization GUI. This

means that a decision maker will be able to browse the complete tree and see which nodes

were included in the best path in addition to other nodes that almost were included as well

as those that were discarded.

In Fig. 10 we see an example of paths that were visualized with the tree visualization GUI.

Here, we see that nodes 1, 2 and 41 on the top were included in the best path (green color).

If the user clicks on node 61 which is on the next level in the tree, he will continue down

the best path, however, if he clicks on node 42 (orange color) he will select a path of lower

quality.

Fig. 10. Tree visualization of a plan (level 4).

If the user clicks on node 61, its children on the next level are shown, see Fig. 11. Here,

we see that there are two choices, either we continue along the best path by selecting node

6, or we can browse the tree through a node (white node 108) that has not been included in

any path.

 FOI-R--3635--SE

 29

Fig. 11. Tree visualization of a plan (level 5).

Continuing further down the tree we see in Fig. 12 that node 6 has five children. Node 8

and 7 are colored red, since traveling to those nodes diverts too much from the optimum

path. Nodes 10 and 5 are close to the best path, which goes through node 9.

Fig. 12. Tree visualization of a plan (level 6).

Using this type of visualization that shows the best path in a context where also other

alternatives are expressed, gives the decision maker the ability to recognize which actions

affect the total outcome at a certain step in the plan. This mechanism is important in order

to show action traceability in the system.

7.2 Visualizing Best Plan Effects Time Series

During plan execution it is valuable to analyze whether the entire operation is approaching

the desired end state. One way to find if this is the case is to define a set of advantageous

key states that have to be achieved. Achieving such a state (hence moving from a present

worse state) is called obtaining an effect. They are often stated on a high semantic level.

An effect in the Bogaland scenario could typically be “Establish order and stability in East

Kasuria”.

As effects-based planning will typically involve designating a number of effects, described

in natural language, whose fulfillment are assumed to constitute the path towards

achieving the end state, it becomes interesting to examine what role such effects play in

the context of a simulation that is steered in the direction of a desired end state. Since the

end state is a point in parameter space which the simulation tries to reach, then the effects

should be seen as partitions of the parameter space that the simulation increasingly

occupies, and the intersection or center of gravity of these partitions should be close to the

end state. Visualizing the fulfillment of effects along the progression of simulation for the

best found plan (i.e., action numbers on the x-axis), should shed light on whether the best

course of action does indeed correlate with step-wise achieving the designated effects, or

whether success is best achieved through other paths.

FOI-R--3635--SE

 30

Conversely, monitoring the degree of fulfillment of effects allows one to spot whether a

plan that eventually leads to a desirable end-state does so by passing through unacceptable

sub-states (as given by dips in fulfillment of critical effects).

The total actor state is at each time defined by the matrix of 15 parameters with value 0, 1,

2, 3 for all 40 actors, where each parameter can change value as a result of each action.

Formally, an effect is defined as a limited volume, or a union of volumes, in the 15-

dimensional parameter space. This is equivalent with 15 sub-intervals of the allowed

parameter values 0, 1, 2, 3 (or a union of such). The distance of the present collective

actors’ state to an effect is the sum of the Manhattan (L1 metric) distances from all actors’

present parameter values to the closest points (corners, sides or hyperplane) of the effect,

measured from each actor.

Fig. 13 shows an example when monitoring four effects during execution of the best plan.

In this example we observe no trends but notice that three out of four effects are mostly

achieved. This is explained by that we are actively striving towards the end state (point)

and not towards an effect (volume) in parameter space as effects are here only monitored

but not actively aimed at. Hence, in this example, we are neither approaching, nor

distancing ourselves from any of the effects in any major way.

Fig. 13. Time series of supporting effects and decisive points.

Another way to assess the probability for achievements of the effects – and finally the end

state – is to use the CIM. In the CIM expected impacts of actions on effects, and effects on

the end-state are stated. Depending on the observed progress of actions, together with the

commanders own observations of the situation on any effect-level, the probability of

achieving these higher effects can be assessed [8].

 FOI-R--3635--SE

 31

7.3 Visualizing Multiple Plan End State Time Series

During A
*
-search the simulator tries to find a way to traverse the search tree that

minimizes f; the sum of the distance travelled so far g plus the expected distance to the end

state h. That is to minimize the expected total effort of the operation to move the actors to

the end state. These measures are computed and stored for every time step, i.e., after each

execution of an action. A monotonous decrease of h means we are continuously

approaching the end state. Function h has an analytical definition according to section 6.2;

the sum of the Manhattan distances from all actors’ present parameter values to the end

state (a point in parameter space). In practice we do not know exactly how to get to the

end state, even if we can assess the distance. Function g is the length of the path travelled

so far, i.e., the sum of the L1 parameter value changes for each actor over all actions

executed so far. Function g will always increase, but h, the distance to the end state, might

decrease in proportion to how successful an action is or increase for an action shifting

these parameters away from the end state.

We can plot the measures vs. action number for a few of the best plans to get a feeling of

how well the simulation manages to approach the end state, see Fig. 14. In the figure, it

seems as each plan step roughly moves us about the same distance (nearly linear

development of f and g), but it is not reflected as well in the development of h, that is we

are certainly not marching straight towards the end state (which should give a reduction of

h for each step as large as the increase of g). Rather, as seen in the noisy behavior of h,

some actions tend to take us farther from the end state, giving increases about every

second step in h. For the example plan under investigation we start at simulation-step 0

with a distance h = 744.0 to the end state. The situation deteriorates for all 10 best

simulations and turns favorable after the fifth action. The quick deterioration is due to a

change of most of the parameters directly when BFOR enters Bogaland and initiate its first

action. After the fifth action, the general trend seen here (as well as for all 10 000

simulations) produces a slowly decreasing h. The best result reached is h = 792.3, as seen

in the figure. Hence, the plans currently under investigation does not take us as far towards

the end state (formally at h = 0). From the analysis of these time series it is obvious to the

decision maker whether any plans under investigations are successful or need more

development work.

FOI-R--3635--SE

 32

Fig. 14. Functions f, g, h plotted vs. simulation step for the 10 best plans.

7.4 Actors Time Development

The simulation engine gives us different paths where each one contains a solution to the

problem, that is, a chain of actions that need to be executed in a specific order. Within

those actions the actors’ parameters are affected based on logic developed by a Subject

Matter Expert (SME). For an analyst it is interesting to see how the actors progress during

the entire execution of all actions.

There are different approaches how to visualize multiple variables at once. In our case we

would like to visualize the following variables:

 actors’ parameters,

 actions,

 actors’ relationship to the blue forces,

 how important an actor is based on economy, stability and dominance in the

region,

 temporal changes.

For this visualization we use a bubble chart combined with some of the animation effects

demonstrated by Rosling during one of his lectures at TED [18], Fig. 15 and Fig. 16.

 FOI-R--3635--SE

 33

Fig. 15. Animated bubble chart visualization of the best plan (at start of operations).

Fig. 16. Animated bubble chart visualization of the best plan (at end of operations).

We group the parameters into three different groups. One group is soft factors which

consisted of parameters related to an actor’s social status, such as his social network,

feeling as a group, etc.; this is plotted on the y-axis. A higher value indicates a more

socially connected actor. Another group is hard factors which consist of parameters such

as weapon power, infrastructure, etc.; this is plotted on the x-axis. A higher value indicates

a more military advanced actor. The third group is made of parameters such as economy,

geographical dominance and stability. This group is represented as the size of the bubble.

A bigger bubble represented a more important actor.

FOI-R--3635--SE

 34

The bubbles also have colors which represents the relationship between the actor and the

blue force BFOR. Green indicates a neutral actor; blue indicates an ally, red an enemy and

yellow an unknown or suspicious actor.

For each action a complete new set of visualized data is rendered. Putting all of those

renderings together the summarized effect is animated bubbles representing system

changes occurring with respect to time (i.e., execution of action). Furthermore, the

visualization software also has different tool features such as fast-forwarding and filtering

based on visible actors in the GUI.

7.5 Explaining the impact of actions

An explanation function for explaining the impact of actions is based on sensitivity

analysis of the impact of different actions upon the success of the plan where we

systematically vary the alternatives of each action of the plan, one action at a time,

keeping all the other actions unchanged in a series of simulations. This sensitivity analysis

shows the relative level of importance of making the correct selection of alternative for

each action. Using the explanation function, a decision maker can find the most important

actions of a plan and focus his attention on actions where successful decision making is

crucial to the success of the entire plan.

As we work with plans consisting of several actions Ak we like to find the impact of each

action on the evaluation  
lkiikl lAPf).( of plan Pi, where i is the index of the plan, k is

the index of the action, and l is the index of the alternative. This impact can be denoted

fikl/Ak. Given that we have a discrete set of evaluations  
lkiikl lAPf).( we approximate

the differentiation as a normalized difference between).(max lAPf kiikll  and the average

of all  
lkiikl lAPf).( . We have,

 















ik

ik

n

j

ikj

ik

n

j

iklikj

ik

lk

kiikl

f
n

ff
n

A

APf

1

1

1

1

.
 (21)

where  
lkiiklik lAPfn).( is the number of alternatives for Pi.Ak [19].

As the variance in this measure can be large between different plans Pi we may choose to

study box plots for a small number of good plans for each action Ak. For example, we will

study box plots for the five best plans over all alternatives for averages of all actions Ak,

5

1

).(


















ilk

kiikl

A

APf
. (22)

In order to find the impact of the actions we need to perform additional simulations. The

A
*
-search algorithm is intended to deliver the best plans it finds concerning the success in

reaching the end state, as reflected in the distance f from start to end state; the lower, the

better. Each of these plans consists of a sequence of actions where the actions have several

alternative ways of execution, and a plan must choose one alternative from each of these

actions. Some actions in the simulation turn out to be more important than others for plan

success. In order to find out how much a plan relies on a selection of a certain action

alternative for its success, one might compare a good plan Pi found by the A
*
-algorithm

with plans that are structurally similar to it in some respect. This can be done by

comparing Pi with neighboring plans that only differs from Pi in the selection of

alternatives for one single multi-alternative action, see Fig. 17. Thus, we have

 FOI-R--3635--SE

 35

 1
..,1

..,0

1












n

k kjki

kjki

APAP

APAP
. (23)

Fig. 17. Conceptually, a plan Pi is a choice of alternatives for a sequence of actions, one for each

consecutive action to be executed, like the red colored path. Each cyan colored path in this six-action
planning problem corresponds to one neighboring plan with Pi.A4 = {1, 2, 4, 5, 6} for action 4.

We simulate all neighbors to each good plan Pi already found with a variation compared to

Pi of exactly one action alternative a time. For each action Ak, we simulate Pi where the

selected alternative for action Ak is replaced by another alternative to Ak in the additional

simulations. This is the set Pik consisting of |Pi.Ak| – 1 neighboring plans where

).,(:., kiiikkii APPPAPP

1.

1
..

,..


















ki AP

j
kikj

mjmi

j APAP

kmAPAP
P  

After having worked through all actions with alternatives, changing only one action at a

time, we get as many neighboring plans to Pi as the total number of additional alternative

actions, excluding the alternatives that are part of Pi itself. For a set of n actions there are

|Pi.Ak| – 1 alternatives to an action Ak in addition to the one in Pi. We have a total of

  



n

k

ki AP
1

1. (25)

neighboring plans to be compared with Pi. In our analysis, we will now use g and h instead

of f as a refined quality measure of a plan and investigate how it is affected by systematic

variations of each action of the plan.

We look at ∂g/∂A and ∂h/∂A when varying only a single action at a time, Fig. 18.

FOI-R--3635--SE

 36

Fig. 18. The spread in sensitivity of the five best plans where each action sensitivity is computed for g
and h similarly to (22) for f.

The sensitivity of g does not seem to be pronounced except for action 7 and 25 where a

selection of another alternative than the one present in the main plan seems to give a

slightly worse (higher) value of g. For h, a larger number of the actions show a

pronounced sensitivity, e.g., actions 7, 12 and 16.

With this tool a decision maker can focus his attention on making the best selection of

alternatives where it is most important.

7.6 Regression Tree Analysis

Regression Analysis Trees [20] can be used to hierarchically find the importance of a set

of input variables on a dependent continuous output variable. After simulation and

traversal of the A
*
-search tree, the 10 000 best plans have been obtained. As described

above, each plan consists of a set of input actions where some have several discrete

alternatives where each plan produced from A
*
-search is a certain combination of action

alternatives, and the continuous g or h value may be chosen as the dependent output for

each plan. The 10 000 plans make a good statistical basis for building a regression tree on

these data to find the most important actions, see Fig. 19. It seems as the chosen

alternative of action A25 has largest influence on h, followed by A7 in both next branches,

etc. Note that the split can depend on a certain action more than once at different levels.

Fig. 19. A regression tree of h based on 10 000 simulations. Only the 18 most important “bifurcations”
or branches on 5 levels are shown; the full tree with the default MATLAB statistical toolbox setting gets

nearly 1500 branching points on 22 levels.

 FOI-R--3635--SE

 37

When a regression tree has been built, it can be used as a rough prediction tool for the

dependent variable, given a new plan. A condition has to be decided for when the further

splitting into branches should stop; eventually the tree would split into 10 000 leafs, one

per simulated plan, but its predictive power will decrease the deeper down it is traversed,

and be more based on random noise from the Monte Carlo process than the major

statistical tendencies that are of interest. Given a set of alternatives a planner has chosen,

one can follow the path this plan would take in the tree and find the g and h values of the

plan proposed by the full tree based on the 10 000 simulations. This has been done for the

100 best plans resulting from a second set of 10000 simulations with a new seed: the paths

of these plans are followed in the tree to find the values of g and h the tree then proposes.

A comparison with the real values of g and h for those 100 plans can be seen in Fig. 20.

The trackability is good for g, but worse for h. However, the variance is higher for the

predicted g than for h. The predicted h is higher than the real value. For the 4000 plans

with worst (highest) f, i.e., with a Plannumber > 4000 (not visible in the figure), the

situation is actually reversed. Perhaps this is not difficult to understand; it is easier for the

regression analysis to find the systematics in how far we have walked g than how far it is

to the goal h since the previous lies inherently in the effect of the conducted actions,

whereas the latter is not as easy to assess. Let be that it is possible to compute in parameter

space as the distance from the final actor parameter state to the end state, but this is not as

easy.

Two figures of merit to estimate this are the resubstitution error and the cross-validation

error of a tree. With the resubstitution error we mean the root mean square of the g and h

values predicted by the tree, compared to the true ones when we use the plans from which

we built the tree. The cross-validation used “splits the training data into 10 parts at

random. It trains 10 new trees, each one on nine parts of the data. It then examines the

predictive accuracy of each new tree on the data not included in training that tree. This

method gives a good estimate of the predictive accuracy of the resulting tree, since it tests

the new trees on new data” [21]. In the case of g and h for the 100 best plans shown in Fig.

20, these errors are around 13.5 and 20.4 for g, and 1.77 and 2.6 for h, respectively.

Of course, in a real planning situation, it is not this simple since the planning process most

often does not start at the top of the regression tree, the importance of the actions are not

ordered concerning their typical order of execution, but the planning procedure is often

done in a certain order.

FOI-R--3635--SE

 38

Fig. 20. Plots of real (blue) values of g and h for the best 100 plans from a simulation with a new seed
as well as predicted (red) values of g and h from the regression tree in Fig. 19 trained with the 10 000
plans from the first simulations. The ratio of predicted and real values is shown in the respective lower

plot.

 FOI-R--3635--SE

 39

7.7 Estimating the Boundary of Potential Failure of
an Operational Plan

We summarize the information contained in a cluster of plans by using a hyperplane

created by a Support Vector Machine (SVM). We are mainly interested in the distances

from a chosen plan to its boundary with classes other than its own. Several stages are

needed to achieve the result. First, we need to find the best way to represent the training

data for use in the SVM, this includes normalization. Secondly, we must analyze the

problem of finding optimal SVM-parameters and a kernel. Finally, we analyze the

distances. An SVM analysis finds the hyperplane that is oriented so that the margin

between the support vectors of different classes is maximized.

The concept of treating the objects to be classified as points in a high-dimensional space

and finding a hyperplane that separates them is not unique to the SVM. The SVM,

however, is different from other hyperplane-based classifiers in how the hyperplane is

chosen. If we use linear kernel and define the distance from the separating hyperplane to

the nearest data point as the margin of the hyperplane, then the SVM selects the maximum

margin separating hyperplane. Selecting this hyperplane maximizes the SVM’s capability

to calculate the correct classification of up to that time unseen plan instances. When

representing the classification boundary by the SVM optimal hyperplane, each dimension

has a bound for the corresponding action in the plan. Using the SVM decision function,

each action can be evaluated by its presence in the tested plans presented to the decision

function. In this way, we can correct our bad plans to become good plans by simply

changing the bad actions.

The first step is to adapt the plans to the SVM machinery. SVM requires that each data

instance is represented as a vector of real numbers. Let a plan contain R actions which can

take any value representing a valid alternative for this action. We generate N number of R-

dimensional vectors for training. The plans are clustered into different classes to be used

as training targets yi. Training plans are represented by vectors xi = {xi1, …, xil}. The plan

vectors xi are all normalized. Scaling them before applying the SVM is very important.

This is done to avoid that attributes in greater numeric ranges dominate those in smaller

numeric ranges.

The basic idea of SVM is to find a linear decision boundary to separate instances of two

classes within a space. In the case of linear functions f, a separating hyperplane, written in

terms of a weight vector w and a threshold b takes the form f(x) = (x, w) + b with w  X, b

 R where (,) denotes the dot product. We want to minimize the norm ||w||
2
 = (w,w) as

shown in Fig. 21. This can be formulated as a convex optimization problem.

FOI-R--3635--SE

 40

Fig. 21. Optimal linear divider of two separate classes.

Minimize

‖ ‖ (26)

subject to

 yi – (xi, w) – b ≥ 1, i = 1, …, l. (27)

The support vectors lie on the supporting hyperplanes of the two classes. The support

vector optimal hyperplane is the hyperplane which lies in the middle of the two parallel

supporting hyperplanes (of the two classes) with maximum distance

‖ ‖
. We have

the decision function,

 sign(wx + b). (28)

which defines the division of different classes and also is used to classify plans under test.

The complexity of a function’s representation by support vectors is independent of the

dimensionality of the input space X, and depends only on the number of support vectors.

The accuracy of an SVM model is largely dependent on the selection of model parameters.

Some flexibility in separating the categories is needed. SVM implementations have a cost

parameter C, which controls the tradeoff between generalization ability and fidelity to the

training set. This parameter gives the model a soft margin that permits some

misclassifications [22]. Increasing C increases the cost of misclassification of plans and

 FOI-R--3635--SE

 41

forces a more accurate model to be created. A search is used to find the optimal value of

C.

Using a hyperplane we may separate the feature vectors into two classes when there are

only two target categories [23], but how do we handle the case where we have more than

two classes? The two most used methods are: (i) “one against many” where each category

is split out and all the other categories are merged, and (ii) “one against one” where k(k –

1)/2 models are constructed where k is the number of categories. In this work we use the

second approach and we evaluate classes against each other.

7.7.1 Implementation of SVM

We study an experiment of 1000 evaluated plans that are clustered by Potts spin clustering

into eleven different clusters based on their characteristics and outcomes. Each action of

the plan holds a unique integer number representing the alternative performed for that

action. A training matrix of the 1000 different plans of length 46 is normalized with

respect to each action. The eleven clusters are represented as classes which in turn are

represented by any integer between 1 and 11.

We use the LIBSVM library [24] in this work. Important in LIBSVM is the choice of its

parameters. Parameter optimization is done by a full search out of a pre-defined parameter

set. Cross validation is used for selection of best parameters for this training set, meaning

that each combination of parameter choices is checked using cross validation, and the

parameters with best cross-validation accuracy are chosen. Using the selected parameters

the final model is trained on the whole training set. We use the optimal hyperplane defined

by the SVM for determining the distance from any plan to the boundary of the classes for

the other plans.

Since LIBSVM only delivers output for calculating the distance to the support vectors, the

plans nearest the hyperplane of each class, we use an extra class for the plan under

execution. This is (by definition) the only support vector of this class, and the distance

from any specific plan of interest to the hyperplane can be calculated. Most interesting is

how the distance for a specific plan under execution changes depending on how many of

the actions have been performed. To be able to calculate this, the SVM needs to be re-

trained for each new number of performed actions.

The primal variable w is not a direct output of LIBSVM. Instead we use the provided

support vectors SVs and the coefficients for the support vectors sv_coef;

 w = SVs * sv_coef. (29)

The model is trained for twelve classes, eleven classes from pre-calculated Potts spin

clustering and one class containing the plan under execution. Training is done 45 times for

each investigation, each training with successive longer plans, from plan length of two

actions to training on the full matrix with 43 actions (and f, g, h), see Table 4.

Table 4. Pseudo code for the investigation.

1. Select the plan to be investigated and put it in a separate class. Update input label

vector.

2. For length of plan = 2 to 46:

 2.1 Select optimal parameters for training.

 2.2 Train the model.

 2.3 Calculate distances using (29) and (30).

3. Plot distances.

FOI-R--3635--SE

 42

Note that this process normally is very sensitive to noise and outliers in the training data.

SVM generally have problems with unbalanced problem where one of the classes has

much more training examples than the other. For a balanced training set, the outliers from

class A to end up in the middle of training examples from class B, and the algorithm can

then identify them as outliers. Here we have an extreme case with only one training

examples in one class, and thus the algorithm has not enough information to identify

outliers in the other class. Our data are a selection of the best plans out of a much larger set

of plans and carefully clustered before training. The probability of noisy data and outliers

are low and should not be a problem.

For all points from the hyperplane HP[(xi, w) + b = 0], the distance between the plan of

interest and the hyperplane HP is

‖ ‖
. (30)

This is the distance measure we use for calculating the distances from the tested plan to the

border of another class.

7.7.2 Using Hyperplanes as Decision Support

Single plans are tested against all the other plans and the result is plotted in Fig. 22–Fig.

24. The length of the plans is on the x-axis and the distances on the y-axis. The distances

from the tested plan to the border of another class varies with the length of the plan. First,

the best plan is chosen from all the other plans; the best plan is the one with lowest value

of h. The distance from the best plan to nearest hyperplane of all other classes using

successive longer plans is shown in Fig. 22. This figure shows ten curves, one for each

class combined to the class 12 representing the single tested plan.

Fig. 22. Distance of the best plan during execution towards the eleven hyperplanes.

In Fig. 23 we show another view of the same result, by taking the minimum distance of all

eleven classes in Fig. 22 at each length of plan.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

-3 h Distance to all classes

Length of plan (number of actions)

 FOI-R--3635--SE

 43

Fig. 23. Minimum distance of the best plan during execution to the closest hyperplane.

The eleven classes are designed unsupervised with respect to plans, structure and f-value

in the preceding clustering stage. Each class is determined by its content. Since it is the

1000 best plans that are clustered, they are all relatively good, but a little different in

character. It could be said that each class is determined by the quality of its best plan (min

h value).

Since most of the plans are “good” we take a look at the ten best plans regarding h. In Fig.

24, minimum distances are created in the same way as in Fig. 23 are plotted for the ten

best plans regarding h. The best plan is plotted in red for comparison. We can see that the

best plan does not always have the largest minimum distance to neighboring classes.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-4 h mindistance

Length of plan (number of actions)

FOI-R--3635--SE

 44

Fig. 24. Min 10 best plans, best plan in red.

The graphs show zero distance for some lengths of plans. This is natural since the class of

origin for the investigated plan has zero distance to this plan as it is included in this class.

Also there are mostly very small differences between the classes and, thus, their

boundaries can lay tangent to each other.

By using views as in Fig. 23 we provide decision support during execution of a military

operational plan. During the execution we observe in this figure the distance towards the

closest (of eleven different) boarders for the plan under execution as we progress down the

sequence of actions. The result shows that longer plans have larger margin to other classes.

In Fig. 22 the analyst observe a more refined view and may observe which other cluster of

plans we might be approaching. The difference in outcomes by the current plan and the

plans in the other cluster can then be observed by comparing with the best plan of that

other cluster.

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

-4 h

Length of plan (number of actions)

 FOI-R--3635--SE

 45

8 Simulation result analysis

8.1 Overall Description of the Bogaland Full-scale
Simulation Experiment

For the purpose of our experiment we consider an extensive part of the Bogaland scenario

that covers all actions performed by our own forces (BFOR) from day -70 to day +360.

This scenario contains three operational phases; deployment, shaping and security support.

During the deployment phase, actions such as securing the ports of disembarkation or

establishing a No Fly Zone (NFZ) are being deployed. Shaping phase includes actions

which require engagement with opposing forces, such as neutralizing irregular

organizations’ powerbases, enforcing embargo or restricting flow of irregular recruits and

illegal arms.

Finally, actions in the security support phase are launched to ensure support and a correct

handover of power to the local government. These actions include providing security

support to the election process, supporting None Government Organizations (NGOs), and

identifying and isolating maligned actors from Bogaland population.

These three operational phases are carried out through 43 different BFOR actions. Each

action has between 1 to 8 alternative ways to proceed. A few of them may not be

performed. Furthermore, some of these actions are divided into sub-actions, i.e., sub-

actions that can only be launched as a consequence of which alternative is selected for an

earlier action. In total our scenario contained 2.164 x 10
23

 alternative plans. Table 5 below

lists the first thirty actions modeled in our scenario.

Table 5. Some actions in the Bogaland scenario.

FOI-R--3635--SE

 46

Altogether 40 actors were modeled in this scenario. These actors are listed in Table 6. The

colors to the left of each actor indicate the initial roles of the actors in the scenario. Blue

color represents BFOR and its allies, whereas red color shows the enemies. Green stands

for neutral actors and yellow actors are those whose position or relation to us is not clear

or yet to be determined.

Each of the 40 actors in the scenario is defined by 15 state variables, which together

present the total ability of that actor and its internal state, as shown in Table 5. This sum-

up to 600 (= 40 x 15) variables and 1.722 x 10
361

 (= 4
600

) possible scenario states. For the

purpose of our experiment we initialized these variables using data from SMEs. This also

included actors’ relations to each other. We also defined the desired goal state variables

for each actor in cooperation with SMEs.

During the course of the scenario the actors are directly or indirectly affected by the

actions carried out by BFOR. For each such action all involved actors are first pointed out

and their roles in the action are defined, e.g., the actor that is enforcing the action is blue,

the receiver of the action is red, etc.

For these involved actors the values of state variables are altered as a result of the action.

This is what is meant by direct effect. All the other actors are affected based on their

relationship with the directly involved actors, e.g., if my friend is being attacked by actor

A1 then my relationship with A1 is being negatively affected.

Table 6. All actors in the Bogaland scenario.

When executing the actions the simulation traverse through the action tree, which is our

complete set of plans, using the A
*
-algorithm. Each action that is executed results in a set

of reactions (i.e., actions conducted by other actors) as the actors’ state variables and

relations to other actors are being updated. These reactions might in turn result in new

iteration of reactions. In our experiment we limit the number of reaction iterations to two.

As explained in section 6, we use Monte Carlo simulations to obtain a frequency function

of the entire outcome space of our actions. The number of Monte Carlo simulations in our

experiment was limited to 20.

 FOI-R--3635--SE

 47

The experiment was run on one Intel Xeon E5-2687W with 3.1 GHz and 64 GB RAM.

The experiment terminated after the first 10 000 plans, i.e., the A
*
-algorithm terminated

when it reached 10 000 leaves in our action tree. On average the time it took to generate,

simulate and evaluate one plan alternative was 24 seconds. Each experiment run took 2.8

days to execute without any parallel computing.

8.2 The Simulation Output Data

For our scenario the simulator produced 10 000 rows of data which is a small fraction of

the total theoretical amount of output. When analyzing the data we find different patterns

which are visualized. Fig. 25 shows the parameter distribution for the 1000 first evaluated

plans. Note that the parameters are distributed in different ways due to the fact that the

scenario affected different parts of an actor during the entire execution.

Fig. 25. Histograms of the distributions of the 15 different parameters. Each histogram bar is summed
over all actors and actions for the best plan.

The plans that were generated were of different sizes since some of the 43 actions may not

be performed in some plans. On average plans executed 39 actions, see Fig. 26. Note that a

shorter plan may give a lesser g-value, but this does not guarantee that the h-value will

also be small.

FOI-R--3635--SE

 48

Fig. 26. The distribution of plan sizes for the 10 000 plans. The plan sizes differ from plan to plan
since a varying number of actions are executed.

In Fig. 27, Fig. 28 and Fig. 29 we see the f, g and h-values for the actual plan sizes. For the

g-value we see that the more actions a plan has, the higher the value becomes which is

natural because more work has been done in the operation. This in turn will affect the f-

value which will grow proportionally. What can be noted in Fig. 29 is that the h-value

seems to drop as the plan sizes grow. However, there are some outliers with small h-values

and fewer actions executed, e.g., one very effective plan was found with only 38 actions

executed, Fig. 29.

 FOI-R--3635--SE

 49

Fig. 27. Box diagrams over average f-value for different plan sizes.

Fig. 28. Box diagrams over average g-value for different plan sizes.

FOI-R--3635--SE

 50

Fig. 29. Box diagrams over average h-value for different plan sizes.

After simulating 10 000 plans we plotted the f-values in ascending order, see Fig. 30. Here

we can see that in practice the best plans (lowest f-values) were obtained after a few

hundred simulations.

Fig. 30. The different f-values for 10 000 sorted plans.

 FOI-R--3635--SE

 51

9 Discussion
It is easy to observe from the analysis that progress is made by the best plan. A

comparison between the two bubble charts of Fig. 15 and Fig. 16 demonstrates the

progress made. However, from the time series of h-values in Fig. 14 we see that the

progress made is far from the progress we try to attain. This analysis alone demonstrates to

plan developers that only a small step is being taken in the right direction, i.e., h is lowered

by approximately 5%. They need to develop better and many more actions to approach the

end state. One interesting observation is that while there are 1.722 x 10
361

 different states

to the scenario there are only 2.164 x 10
23

 possible plans in the experiment. As each plan

will end up in one scenario state it is virtually impossible to exactly reach the end state

which is a single state in the scenario.

From requirements of having a robust set of alternative plans it is necessary to alter the

traditional A
*
-algorithm. First, we decide not to stop the algorithm when the first complete

plan is evaluated, instead we continue to evaluate more plans to find a robust set of plans.

Secondly, it is necessary to introduce a weight in the calculation of f as the plans under

evaluation never reach the end state; we use f = g + 80h. This is domain dependent a may

be altered. If plans evaluated are more successful the weight will be lowered.

While it is obvious that we may achieve that which we optimize for, we are still surprised

of the small variations on the minor effects monitored (but not strived for) in Fig. 13 when

there is much action taking place in the scenario as demonstrated by the bubble charts.

These effects were developed independently of the end state, i.e., not as partitions of the

end state. Thus, they may not lie directly in the path of optimization towards the end state.

In evaluating the impact and importance of different actions it is interesting to compare the

sensitivity analysis box plots of Sec. 7.5 with the regression tree analysis of Sec. 7.6. We

observe that the action A25, with most negative impact in Fig. 18 is the first action to be

split by the regression tree in Fig. 19, and A7, with the highest 3rd quartile in the box plot

is the second action split in the regression tree. Together these methods complement each

other as the box plots provide the impact of all actions and the regression tree provides the

importance of each action given the splits that are made on previous levels. On the other

hand, the regression tree provides a partition of the alternatives for each action at each

split.

In addition the regression tree is highly successful in making predictions on the outcome

of the simulation on g and h with errors of circa 1–2%. This is achieved for each plan in

milliseconds compared to 24 seconds for simulation of the plan. Thus, once trained the

regression tree may act as decision support when many plans need to be evaluated in a

short time span during re-planning of a plan under execution.

Finding the border of an operation is analyzed in Sec. 7.7. In Fig. 22 we observe the

distance from the best plan towards the borders of other groups of plans during execution

action-by-action of the best plan. As these borders are eleven dimensional hyperplanes in

(ℤ+
)
11

 it is not possible to visualize them for decision makers. Instead we present time

series of the distance from the best plan to all neighboring group of plans as actions are

being executed step-by-step. If this type of presentation is combined with other

information on the evaluated performance of the plans in other groups, this gives

commander knowledge on which of the eleven borders should be monitored carefully

during plan execution.

We believe that the analysis of borders together with the boxplots and actual monitoring of

the progress of an operation are the most important components during plan execution.

During the plan development process all methods of analysis present important views on

the plan under development.

FOI-R--3635--SE

 52

One additional observation that was made during the project is the need to provide

computer system support to SMEs in scenario and plan development. A scenario as large

as 40 agents where each agent is modeled by 15 parameters with their internal agendas and

external relations, as well as a plan of 43 actions with 109 alternatives is too large to

handle manually in an efficient manner. The behavior modeling discussed in Sec. 5.2

reduces the size of the problem by introducing an aggregated generic model. This is a step

in the direction towards providing design support to SMEs. However, the development of

the plan with all its alternatives was done manually by an SME. While direct design

support was outside the scope of the project, it will be crucial to provide computer system

support for SMEs developing plan and scenario, which prevents them from making logical

errors in operational planning.

 FOI-R--3635--SE

 53

10 Conclusion
In this report we demonstrate that it is possible to draw important conclusions about the

adequacy of a military operational plan in its ability to achieve a predetermined end state.

By modeling alternative plans and a scenario we are able to analyze the best possible plans

available within the bounds put forward by military planners through an extensive set of

data analysis procedures. We conclude that this analysis will provide decision makers with

information on how far the best plans advance towards the stated goal, if they are

surrounded by a robust set of alternative plans, and which actions are most important. This

gives planners early feed-back during plan development, and commanders information on

where to focus their attention during plan execution.

FOI-R--3635--SE

 54

References
[1] Schubert, J., Moradi, F., Asadi, H., Hörling, P. and Sjöberg, E., Simulation-based

Decision Support for Effects-based Planning, in Proceedings of the 2010 IEEE

International Conference on Systems, Man and Cybernetics, 2010, pp. 636−645.

[2] Smith, E. A., Complexity, Networking, and Effects-based Approaches to Operations.

Washington, DC: Department of Defense CCRP, 2006.

[3] Hunerwadel, J. P., The effects-based approach to operations: Questions and answers,

Air & Space Power Journal 20:53–62, Spring 2006.

[4] Effects-based Approach to multinational operations, Concept of operations

(CONOPS) with implementation procedures, Version 1.0. Suffolk, VA: Unites States

Joint Forces Command, 2006.

[5] Farrell, P. S. E., New operations decision support requirements derived from a

control theory model of effects-based thinking, in Proceedings of the 13th

International Command and Control Research and Technology Symposium, 2008,

paper 248, pp. 1−17.

[6] Allied Command Operations Comprehensive Operations Planning Directive (COPD-
Trial version). Brussels: Supreme Headquarters Allied Power Europe, NATO, 25

Feb. 2010.

[7] Schubert, J., Wallén, M. and Walter, J., Morphological refinement of effect-based

planning, in Stockholm Contributions to Military-Technology 2007, M. Norsell, Ed.

Stockholm: Swedish National Defence College, 2008, pp. 207−220.

[8] Schubert, J., Multi-level Subjective Effects-based Assessment, in Proceedings of the
13th International Conference on Information Fusion, 2010, paper We3.4.1, pp. 1−8.

[9] Duda, R. O., Hart, P. E. and Stork, D. G., Pattern Classification (2nd Edition).

Wiley-Interscience, 2000.

[10] Huang, C. and Darwiche, A., Inference in belief networks: A procedural guide,

International Journal of Approximate Reasoning 15(3):225−236, Oct. 1996.

[11] Cozman, F. G., Generalizing variable elimination in Bayesian networks, in Workshop

on Probabilistic Reasoning in Artificial Intelligence, 2000, pp. 27−32.

[12] Hamming, R. W., Error detecting and error correcting codes, The Bell Systems

Technical Journal 29(2):147−160, Apr. 1950.

[13] Wu, F. Y., The Potts model, Reviews of Modern Physics 54(1):235−268, Jan. 1982.

[14] Peterson, C. and Söderberg, B., A new method for mapping optimization problems

onto neural networks, International Journal of Neural Systems 1(1):3−22, May 1989.

[15] Bengtsson, M. and Schubert, J., Dempster-Shafer clustering using Potts spin mean

field theory, Soft Computing 5(3):215−228, Jun. 2001.

[16] Schubert, J., Clustering belief functions based on attracting and conflicting metalevel

evidence using Potts spin mean field theory, Information Fusion 5(4):309−318, Dec.

2004.

[17] Ahlberg, A., Hörling, P., Johansson, K., Jöred, K., Kjellström, H., Mårtenson, C.,

Neider, G., Schubert, J., Svenson, P., Svensson, P. and Walter, J., An information

fusion demonstrator for tactical intelligence processing in network-based defense,

Information Fusion 8(1):84−107, Jan. 2007.

[18] Rosling, H., Stats that reshape your worldview, Technology, Entertainment, Design,

2006. [Online]

 http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html

(January 2013)

http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html

 FOI-R--3635--SE

 55

[19] Schubert, J. and Hörling, P., Explaining the Impact of Actions, in Proceedings of the
15th International Conference on Information Fusion, 2012, pp. 354−360.

[20] Breiman, L., Friedman, J., Stone, C. J. and Olshen, R. A., Classification and
Regression Trees, Boca Raton: Chapman and Hall, 1984.

[21] Statistics Toolbox. Natick, MA: The MathWorks Inc., 2012.

[22] Cortes, C. and Vapnik, V., Support-vector networks, Machine Learning 20(3):273–

297, Sep. 1995.

[23] Schubert, J. and Linderhed, A., Learning boundaries on military operational plans

from simulation data, in Proceedings of the 2011 IEEE International Conference on

Systems, Man and Cybernetics, 2011, pp. 1325−1332.

[24] Chang, C.-C. and Lin, C.-J., LIBSVM: a library for support vector machines, in ACM

Transactions on Intelligent Systems and Technology 2(3), article no. 27, Apr. 2011.

[Online] http://www.csie.ntu.edu.tw/~cjlin/libsvm (January 2013)

http://www.csie.ntu.edu.tw/~cjlin/libsvm

FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology
development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-
sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number
of fields such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Simulation-based Decision Support
 Evaluating Operational Plans

JOHAN SCHUBERT, FARSHAD MORADI, HIRAD ASADI,
LINUS LUOTSINEN, ERIC SJÖBERG, PONTUS HÖRLING,
ANNA LINDERHED, FRIDA HINSHAW, DANIEL OSKARSSON

FOI-R--3635--SE 			
ISSN 1650-1942	 January 20122

FOI
Defence Research Agency	 Phone: +46 8 555 030 00	 www.foi.se	
SE-164 90 Stockholm	 Fax: +46 8 555 031 00
		

Final Report

