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Sammanfattning 
Inom MADEF projektet tillämpas automatisk differentiering (AD) för att 

komplettera utvecklingen av den adjungerade strömningsekvationslösaren i Edge, 

vilket används inom aerodynamisk design. Vi använde programmet Tapenade från 

INRIA för att utveckla ”dforce”, ett program som räknar derivator av funktionen F 

vilka beror av strömningslösningen, till exempel aerodynamiska krafter och 

moment, eller DC60 kriteriet för interna strömningar. Derivator av F, till exempel 

med avseenden på primitiva eller konservativa variabler vid noderna, är partiella 

derivator vilka används vid olika steg när man räknar derivator av F med 

avseenden på formen. I vanliga designtillämpningar, där gradient-baserad 

optimering används, skulle F kunna vara antingen målfunktionen som ska 

minimeras eller ett av bivillkoren. Efter utvecklingen av dforce har adjunktlösaren i 

Edge anpassats för att kunna använda högerled beräknade med hjälp av AD. 

Nyckelord: funktionsderivator, känsligheter, adjunkt metoden, automatisk 

differentiering, bakåt mod. 
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Summary 
In the project MADEF we apply automatic differentiation (AD) as a complement to 

the adjoint flow solver already present in the CFD code Edge, in the framework of 

aerodynamic aircraft design. We used the code Tapenade from INRIA for the 

development of a program called “dforce” that calculates derivatives of a function 

F depending on the flow solution given by the CFD solver such as aerodynamic 

forces, moment or criteria like the DC60 for internal flows. The derivatives of F, 

with respect to the nodal values of the primitive or conservative variables for 

instance, are partial derivatives used at different stages when calculating the shape 

derivative of F. Our focus is thus on applications in design carried out by gradient-

based optimization where F is either the cost function being minimized or a 

constraint. Following the development of the program dforce, the adjoint solver in 

Edge has been adapted in order to enable using right-hand sides calculated by AD. 

 

Keywords: function derivatives, sensitivities, adjoint method, automatic 

differentiation, reverse mode. 
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1 Introduction 

In introduction we describe the relation between the field of aerodynamic design 

optimization and techniques of automatic differentiation. 

Aerodynamic shape optimization for aircraft design is a challenging for all numerical 

methods involved: parameterization of shape deformations, mesh deformation, flow 

simulations and gradients computation with respect to design parameters. From the 

perspective of optimization, aerodynamic design has thus the particularity to involve 

the flow equations (CFD) as constraints, and due to the challenging physics this 

commonly involves from a couple of thousands degrees of freedom (dof) , for simple 

flow models in two dimensions, to millions of dof, in three dimension. In this class of 

problems the adjoint approach emerged as an efficient method for calculating 

derivatives of the cost function, also called objective, and constraints, with respect to 

the design parameters including the constraints of the flow equations in the so called 

reduced gradient. Without the adjoint of the flow equations design by optimization 

involving fluid mechanics is limited to using a few parameters of design or to use 

simplified flow models, eventually leading to designs that will poorly perform in 

reality. Optimization based on derivatives (gradients) and adjoint flow solvers appears 

to be the best approach for single- and multi-disciplinary industrial design involving 

many parameters and computer intensive simulations.  

Automatic differentiation (AD) appears to have a natural connection with the adjoint 

approach. AD designates various technologies aiming at calculating derivatives of 

functions computed by algorithms. Briefly described, AD tools implement the chain 

rule of differential calculus to source codes; it is not to be confused with symbolic 

differentiation or divided differences. Introductions on the subject can be found in 

references [1] and [6], a large source of references can be found on the AD community 

site [7]. AD software is most often dedicated to one or two programming languages: 

C/C++ (ADOL-C, ADIC, AMPL, OpenAD, Tapenade …), Fortran (ADIFOR, 

Tapenade, OpenAD …), Matlab (ADimat, AD, Adiff …). From the beginning, 

application of AD has covered all areas using software for computations: in product 

design, simulations or for data analysis. Classic applications are for instance error 

estimation on complicated algorithms such as solvers of differential equations [4] or in 

electrical engineering [3] where the adjoint analysis, the analogue of reverse mode in 

AD, has been early recognized for its ability to obtain accurate and cheap derivatives. 

In AD, the superiority of reverse programming was early recognized [2] but it did not 

gain a large audience of engineers and scientists until dedicated software named above 

started to be developed in the early eighties. 

Much of the research in AD concerns the performance of the produced code in reverse 

mode, the major bottle-neck, and the readability of the produced code when codes 

need be further maintained. Developers of AD, among them the INRIA team 

developing TAPENADE, indicate that important developments are needed and require 

research for problems related to the adjoint (reverse) mode: MPI, dynamic memory 

management and object-oriented languages [5]. 

In general, application of AD requires important transformation of the source program 

before and after generating the differentiated code. As Griewank summarizes it, the 

problem of general purpose differentiation is of a computer science nature, while the 

mathematics is quite straight forward [1]. The general advice in the literature being 

that the use of AD should be limited to specific situations and needs; for example 

when finite differences derivatives are inaccurate, evaluating the function N times 

(number of parameters) is too expensive, or when the adjoint equation is impossible to 



FOI-R--3689--SE   

 

 8 

obtain with reasonable efforts. Another field of research is the application of AD on 

codes with several languages. 

AD, unlike the adjoint method, intends to differentiate what is implemented; this is in 

contrast with the developer of an adjoint solver who will program what he thinks is the 

adjoint of the flow solver. The latter assumes that the code is continuously 

differentiable, assumption that must carefully be observed because programmers, by 

convenience or in order to circumvent difficulties; most CFD codes contain “if” 

statements on variables being computed in some of their numerical algorithms that 

need be differentiated (branching) or non-differentiable expressions like absolute 

value. 

While differentiation of a CFD solver can require a tremendous amount of work, and 

may be totally impossible to do on already existing codes, numerical aerodynamic 

shape optimization requires several differentiations that need not to be performed by 

the same method. The picture below (Figure 1) illustrates a typical “loop” in the 

context of computational aerodynamic shape optimization using CFD. All algorithms, 

from the parameterization of the shape to the flow solver are differentiated in some 

way to obtain accurate gradients of the drag, lift and other figures of merit. In this 

particular example (a code called AESOP [10]) we use, apart from hand-differentiated 

adjoint flow solver and pre-processor: hand-differentiated Radial Basis Function 

interpolations (RBF for parameterization or mesh deformation) and elliptic solvers 

(such as discrete Laplace for mesh deformation), complex-trick for industrial-like 

parameterizations (twist distribution for ex.), symbolic differentiation for the efficient 

assembly of the gradient of non trivial cost functions (such as polynomial or rational 

expressions, power or logarithm functions, and combination of those). However, 

typical optimizations have a number of parameters ranging from a handful up to 

hundreds for pure aerodynamic applications. As we are progressing towards 

aeroelastic optimization this number will increase, eventually ending with sizing the 

structure of a wing, which can involve finding the values of thousands of parameters. 

More advanced projects could involve topology optimization of the structure coupled 

to aerodynamic design, further increasing the number of design parameters.  

Scalability is thus an issue we consider in the development of experimental code as 

AESOP. The adjoint approach involves thus the solution of the adjoint flow equations 

in Edge, in order to reduce the computational cost of the partial derivatives of the drag 

or other performances related to the flow solution with respect to the design 

parameters.  

The AD tool Tapenade is developed by INRIA [1] and is used in this work in order to 

differentiate some routines of Edge, our objectives being: 

• Extend the use of the adjoint solver to the calculation of figures of 

performances that have not yet been “hand-differentiated” such as DC60. 

• Provide an alternative method for the derivation of components of the adjoint 

solver such as boundary conditions. 

• Identify possible applications of the technology in our activities on optimal 

design, for the development of adjoint turbulence models or as a mean of 

verification of codes under the development phase.  

It is therefore not intended to replace the adjoint approach by AD because of the low 

performance of the code produced, but more to investigate potential benefits that it 

could bring to our activities.  

The next section presents applications of automatic differentiation on some examples. 

We introduce some basic ideas about the adjoint method because it is used in the 
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derivation presented here of the reverse mode. The third section presents the program 

“dforce”. 

 

 

Figure 1 - Solution of aerodynamic optimization problems usually involves an iterative procedure as here in 

the code AESOP which integrates the flow solver EDGE, its adjoint and other algorithms. 
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2 Methods 

2.1 Sensitivities versus Adjoint 

This section exposes how in principle the adjoint method calculates the gradient of a 

function f used in an optimization: 

 

 

 

 

 

 

Computing gradients with sensitivities can be described as  

 

 

 

 

 

 

 

 

 

 

The cost of a gradient computed by sensitivities is thus proportional to the number of 

parameters (n). The adjoint approach is now introduced via this example: 
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2.2 Adjoint approach for coupled equations 

The purpose is to show that even dealing with a complex system of equations the 

adjoint approach reveals the structure of the equations that must be solved in order to 

efficiently compute gradients of a performance J. The equations in the example below 

are representative of a shape optimization problem of an aeroelastic system solved 

with Edge where the structure model is represented by modes.  

In order to optimize the shape a parameterization of the geometry is defined as 

follows: the vector of design parameters a determines displacements of the shape, 

called here the boundary, and those displacements at the boundary are propagated to 

the entire volume grid used for the flow computation (CFD): 

 

 

 

 

 

The equations are thus solved for the statically coupled fluid-structure (modal) system, 
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Finally, we evaluate the performance J (drag, lift …) of the design: 
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We can thus define as usual an adjoint system of equations: 

 

 

 

 

 

 

 

 

 

 

 

Its solution allows calculating exactly the gradient (if all derivatives are computed 

exactly and all equations are solved down to machine precision): 

 

 

 

 

The large adjoint system above can be broken down into several equations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solving (1) and (3) enables to solve the “usual” gradient expression:  
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parameters and to deform the grid when solving the coupled fluid-structure system of 

equations. 

2.3 Automatic differentiation 

AD blends rule-based differentiation, for example for intrinsic functions like sin(u), 

u**2, and derivatives accumulation following the chain rule of calculus. 

The forward mode starts with derivatives of the input variables and propagates them 

as for the calculation of the function. The backward mode starts with the derivatives of 

the output propagating them backward to the input variables.  

In order to “visualize” both approaches we propose here to symbolically apply AD on 

a routine only implementing a real vector valued function calculated by explicit 

expressions, without branching. 

2.3.1 Forward mode 

It can be described as follows: for a vector x of input parameters, having n 

components, the vector valued function f is defined by a sequence of M assignments, 

like M lines of code, each possibly using all expressions already computed by the 

routine: 
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Via those notations the vector valued function can be more general, involving for 

instance the combination of intermediate results produced in the routine. 

A straight-forward differentiation of the function assignments gives its first variation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All entries in matrices A and B in the expressions above are thus obtained using the 

rules of differentiation that all AD codes based on program transformation are 

implementing (see the routine F3_D below differentiated in forward mode with 

Tapenade). 
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The Jacobian
1
 of the function is obtained by “seeding” its forward differentiated 

version for each of the component of its entry data with a vector x* having only one 

non-zero component at the i
th
 position. The cost appears thus to be n, as expected. 

2.3.2 Backward (“adjoint”) mode 

Now, transforming the final expression in the sensitivities above yields: 

 

 

By analogy to the adjoint state equation presented in section 2.1 (Sensitivities versus 

Adjoint), we introduce here an “adjoint” vector Ỹ, the components being the results of 

code lines (assignments) that we will express further down. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The definition of the transposed matrix of A above is related to the inner product 

defined further up. It is easier to figure out when considering the simpler case where 

m=1.  

 

                                                      
1
 Each column of the Jacobian (n components) is the gradient of one component of the vectorial function f. If 
m=1 the Jacobian is called the gradient of f. 
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The structure of the backward “mode” appears examining the structure of B: lower 

triangular with 0 (block) diagonal it reflects the sequential execution of assignments in 

function f. 

 

 

 

 

 

 

 

 

 

 

 

The additional lines of code Ỹ are performed in the reverse order in comparison to the 

components of the intermediate variables Y when the function f is evaluated. This also 

shows that without further analysis of the M assignments, the storage and 

computational costs become real issues when m and M are large: 

• “store-all” approach: the non-zero entries of the Jacobian matrices A and B 

need be computed only once but storage represents up to Mmn+M(M-1)m²/2 ! 

• “recompute all” approach: the non-zero entries of A and B can be computed. 

At the beginning of the reversed routine by computing first the M assignments 

of the original routine. 

The strategy used in Tapenade blends both approaches using checkpoints. 

For comparison, hand differentiation of codes is carried out at the algorithm level, not 

based on the implementation. It is thus possible to obtain an implementation that can 

in principle be as efficient as one evaluation of the linearized (sensitivities) function 

without little additional storage. 

2.3.3 Another presentation of the reverse mode  

From a presentation given by Pironneau and Dicésaré (UPMC) we get another 

understanding of AD in backward mode than the pure algebraic (adjoint) approach 

proposed above. It starts, as it was done above, identifying the assignments as 

intermediate functions: 
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A Lagrangian is then formed where intermediate assignments are considered as 

equality constraints: 

( ) ( ) ( ) ( )( ) ( )( )uxlypulxpyxluJyxuL ,,,, 22113 −+−+−=  

Stationarity with respect to the Lagrange multiplier (p1, p2) would give back the 

program computing J(u), whereas stationarity with respect to the intermediate 

variables, x and y, give expressions for the multipliers (the adjoint variables in this 

approach), but they must be computed in the reverse order:  
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Finally, stationarity with respect to the input data (u) gives expressions that, together 

with the calculated multipliers, enable to compute the derivate of J: 
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We will use the same example (function) below in order to show how code 

differentiation of a scalar function is performed using TAPENADE. 

2.3.4 Cost of gradient calculation in AD 

In Forward mode the gradient is obtained at the cost of n (independent variables) 

function evaluations by executing the following loop: 
  ! calculates gradient of f: 

  ! using the differentiated function f2 in forward (tangent) mode: 
  ! 
  do I=1,N   
     xn=0. 
     xn(I)=1; 
     gf(I) = f3_d(x,xn,f) 
  end do 

In contrast, in backward mode (adjoint) the gradient is obtained at the cost of one 

function call: 
      ! 

  ! calculates gradient of f: 
  ! using the differentiated function f2 in reverse (adjoint) mode: 
  ! 
  gfb=0. 
  f3b  =1. 
  call f3_b(x,gf,f2b) 
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2.4 Examples 

2.4.1 Scalar case (m=1) with scalar variable (n=1) 

We use the example from section 2.3.3, showing the Fortran and how the approach 

exposed in section 2.3.1 (Forward mode) is applied: 

 

 

 

 

 

 

 

 

 

 

 

The first variation of each assignment reads: 

 

 

 

 

 

 

 

And the code generated by Tapenade in forward mode: 
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 FUNCTION F3(u) 
    IMPLICIT NONE 
! 
    INTEGER :: i 
    REAL :: f3, u, x, y 
    INTRINSIC SIN 
! 
    f3 = 0. 
    x = 2*u*(u+1) 
    y = x + SIN(u) 
    f3 = x*y 

END FUNCTION F3 
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+=

+=

+=
FUNCTION F3_D(u, ud, f3) 

    IMPLICIT NONE 
! 
    INTEGER :: i 
    REAL :: f3, u, x, y 
    REAL :: f3_d, ud, xd, yd 
    INTRINSIC SIN 
! 
    f3 = 0. 
    xd = 2*(ud*(u+1)+u*ud) 
    x = 2*u*(u+1) 
    yd = xd + ud*COS(u) 
    y = x + SIN(u) 
    f3_d = xd*y + x*yd 
    f3 = x*y 

END FUNCTION F3_D 

Figure 2 - Simple scalar function in Fortran 

Figure 3 - First variations of the three 
non-zero assignments, identified by 
variables with a suffix “d” in the forward 
differentiated routine generated with 
help of Tapenade on the right 
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Applying the reverse mode (see section 2.3.2) can create a routine calculating the 

gradient at once, here presented with the adjoint code generated by Tapenade: 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4.2 Scalar case (m=1) with vector variables (n>1): fcfoal in Edge 

We show this example because it is one of the simplest among the functions used in 

aerodynamic shape optimization; we only display the computational loop and skip all 

variables declarations. The original routine (fcfoal) in Edge calculates the integrated 
inviscid forces and moments applied on one boundary. The original code is modified in 

order to be processed through TAPENADE. All data types not standard in Fortran 90 are 
removed, tree data structures for instance, and, instead, input parameters and output of the 

routine are explicitly declared as calling variables. 
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y  SUBROUTINE F3_B(u, ub, f3b) 
    IMPLICIT NONE 
! 
    INTEGER :: i 
    REAL :: f3, u, x, y 
    REAL :: f3b, ub, xb, yb 
    INTRINSIC SIN 
! 
    x = 2*u*(u+1) 
    y = x + SIN(u) 
    yb = x*f3b 
    xb = yb + y*f3b 
    ub = (4*u+2)*xb + COS(u)*yb 

END SUBROUTINE F3_B 

Figure 4 - Backward mode differentiated example 
by Tapenade. Replace f3b by 1 to obtain the 
expression df/du. 
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Example of Edge routine, after transformations necessary for being processed by 

Tapenade: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  SUBROUTINE FCFOAL_4D(pp, xx, bcsur, xm, df, dm, pref, ndim, nb, ibcn) 

    IMPLICIT NONE 

... 

    rfdim = ndim - 2 

    df = 0. 

    dm = 0. 

!     LOOP OVER THE BOUNDARY NODES 

    DO in=1,nb 

      dx = xx(ibcn(in), 1) - xm(1) 

      dy = xx(ibcn(in), 2) - xm(2) 

      dz = (xx(ibcn(in), ndim)-xm(3))*rfdim 

      sx = bcsur(in, 1) 

      sy = bcsur(in, 2) 

      sz = bcsur(in, ndim)*rfdim 

      pf = pp(ibcn(in)) - pref 

      pm = pp(ibcn(in)) - pref 

      df(1) = df(1) + pf*sx 

      df(2) = df(2) + pf*sy 

      df(3) = df(3) + pf*sz 

      dm(1) = dm(1) + pm*(dy*sz-dz*sy) 

      dm(2) = dm(2) + pm*(dz*sx-dx*sz) 

      dm(3) = dm(3) + pm*(dx*sy-dy*sx) 

    END DO 

! 

    RETURN 

  END SUBROUTINE FCFOAL_4D 
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Forward-AD applied the routine FCFOAL: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 SUBROUTINE DFCFOAL(pp, ppd, xx, xxd, bcsur,  bcsurd, xm, df, dfd,  dm, dmd, pref, 
ndim, nb, ibcn) 

 
    IMPLICIT NONE 

…. 

        rfdim = ndim - 2 
    df = 0. 
    dm = 0. 
    dfd = 0.0 
    dmd = 0.0 
!     LOOP OVER THE BOUNDARY NODES 
    DO in=1,nb 
      dxd = xxd(ibcn(in), 1) 
      dx = xx(ibcn(in), 1) - xm(1) 
      dyd = xxd(ibcn(in), 2) 
      dy = xx(ibcn(in), 2) - xm(2) 
      dzd = rfdim*xxd(ibcn(in), ndim) 
      dz = (xx(ibcn(in), ndim)-xm(3))*rfdim 
      sxd = bcsurd(in, 1) 
      sx = bcsur(in, 1) 
      syd = bcsurd(in, 2) 
      sy = bcsur(in, 2) 
      szd = rfdim*bcsurd(in, ndim) 
      sz = bcsur(in, ndim)*rfdim 
      pfd = ppd(ibcn(in)) 
      pf = pp(ibcn(in)) - pref 
      pmd = ppd(ibcn(in)) 
      pm = pp(ibcn(in)) – pref 

  dfd(1) = dfd(1) + pfd*sx + pf*sxd 

  df(1) = df(1) + pf*sx 

  dfd(2) = dfd(2) + pfd*sy + pf*syd 

  df(2) = df(2) + pf*sy 

  dfd(3) = dfd(3) + pfd*sz + pf*szd 

  df(3) = df(3) + pf*sz 

  dmd(1) = dmd(1) + pmd*(dy*sz-dz*sy) +  pm*(dyd*sz+dy*szd-dzd*sy-dz*syd 

  dm(1) = dm(1) + pm*(dy*sz-dz*sy) 

  dmd(2) = dmd(2) + pmd*(dz*sx-dx*sz) + pm*(dzd*sx+dz*sxd-dxd*sz-dx*szd) 

  dm(2) = dm(2) + pm*(dz*sx-dx*sz) 

  dmd(3) = dmd(3) + pmd*(dx*sy-dy*sx) + pm*(dxd*sy+dx*syd-dyd*sx-dy*sxd) 

  dm(3) = dm(3) + pm*(dx*sy-dy*sx) 

END DO 

RETURN 
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Backward-AD on routine FCFOAL in Edge: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  SUBROUTINE BFCFOAL(pp, ppb, xx, xxb, bcsur, bcsurb, xm, df, dfb, & 
     dm, dmb, pref, ndim, nb, ibcn) 
    IMPLICIT NONE 
… 
    rfdim = ndim - 2 
    bcsurb = 0.0 
    xxb = 0.0 
    ppb = 0.0 
    DO in=nb,1,-1 
      pf = pp(ibcn(in)) - pref 
      sz = bcsur(in, ndim)*rfdim 
      dz = (xx(ibcn(in), ndim)-xm(3))*rfdim 
      dx = xx(ibcn(in), 1) - xm(1) 
      dy = xx(ibcn(in), 2) - xm(2) 
      pm = pp(ibcn(in)) - pref 
      sx = bcsur(in, 1) 
      sy = bcsur(in, 2) 
      tempb = pm*dmb(3) 
      pmb = (dz*sx-dx*sz)*dmb(2) + & 

            (dy*sz-dz*sy)*dmb(1) + (dx*sy-dy*sx)*& 
&        dmb(3) 
      tempb0 = pm*dmb(2) 

      dxb = sy*tempb - sz*tempb0 
      sxb = dz*tempb0 + pf*dfb(1) - dy*tempb 
      tempb1 = pm*dmb(1) 
      syb = pf*dfb(2) - dz*tempb1 + dx*tempb 
      dyb = sz*tempb1 - sx*tempb 
      dzb = sx*tempb0 - sy*tempb1 
      szb = dy*tempb1 + pf*dfb(3) - dx*tempb0 
      pfb = sy*dfb(2) + sx*dfb(1) + sz*dfb(3) 
      ppb(ibcn(in)) = ppb(ibcn(in)) + pmb 
      ppb(ibcn(in)) = ppb(ibcn(in)) + pfb 
      bcsurb(in, ndim) = bcsurb(in, ndim) + rfdim*szb 
      bcsurb(in, 2) = bcsurb(in, 2) + syb 
      bcsurb(in, 1) = bcsurb(in, 1) + sxb 
      xxb(ibcn(in), ndim) = xxb(ibcn(in), ndim) + rfdim*dzb 
      xxb(ibcn(in), 2) = xxb(ibcn(in), 2) + dyb 
      xxb(ibcn(in), 1) = xxb(ibcn(in), 1) + dxb 
    END DO 
    dfb = 0.0 
    dmb = 0.0 
  END SUBROUTINE BFCFOAL 
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3 Program dforce 

The Fortran program dforce, in the EDGE distribution, has thus been generated with 

help of Tapenade from the program force and routines that calculate the DC60 

(distortion). The program creates files that contain the Jacobians of the functions 

(drag, lift …).  

The content of the file created by dforce for an inviscid calculation is obtained using 

the help program ffalist that summarizes the type, sizes and some first numbers for 

each data in FFA-format data-structures. The CPU time to obtain the Jacobians is on 

this example 1s and there are 134258 nodes on the wall boundary (the list “b_nodes”). 

Note that inviscid forces and moments only depend on the pressures, the coordinates 

(moments) and the surface elements vectors. The corresponding components of the 

Jacobians are denoted “_dro”, “_du”, “_dp”, “_dx” and “_ds”. The data structure of 

the file corresponds to the boundary ordering in each region. If a boundary is not a 

wall, the only information stored about this boundary is its name in order to facilitate 

detection of errors when uploading data from this file in Edge.  

N 0 x 0        1/  jacobians        

 N 0 x 0        2/     region 

 N 0 x 0        7/        boundary         

 L 1 x 1         b_name= "wall" 

 IF  256 x 1         b_nodes =           61          62          63 

 DF 256 x 6         dfdm_dro          =   0.000000000000000E+000  0.000000000000000E+000  0.000000000000000E+000 

 DF  768 x 6         dfdm_du           =   0.000000000000000E+000  0.000000000000000E+000  0.000000000000000E+000 

 DF   256 x 6         dfdm_dp           =  -1.507584493083414E-004  1.172207994386554E-004  1.163068918685894E-004 

 DF  768 x 6         dfdm_dx           =   0.000000000000000E+000  0.000000000000000E+000  0.000000000000000E+000 

 DF  768 x 6         dfdm_ds           =    5008.70892556716        6373.97698499611        5933.34815166263 

 N 0 x 0        1/        boundary         

 L 1 x 1         b_name= "outer_boundary" 

In an other example the jacobians of the total forces, inviscid and viscous, are 

calculated for the RAE2822 airfoil, the CPU time on the same computer as in the 

previous case was 2,85s, for only 224 nodes on the wall boundary. This is due to the 

dependencies of the Jacobians on the boundary velocity and density, but also on flow 

and coordinates at the interior points attached to each boundary node. Those additional 

components of the Jacobians are denoted by an additional “i” and the indexes of the 

internal nodes are given under the list “bi_nodes”. 
N     0 x 0 1/  jacobians 

 N     0 x 0 3/     region    

 N     0 x 013/ boundary  

 L     1 x 1 b_name     = "wall" 

 IF  224 x 1 b_nodes    =    25   26   27 

 DF  224 x 6  dfdm_dro   =  -6.508429988710897E-004 -0.315458254324319      -0.244189479287365 

 DF  672 x 6  dfdm_du    =  -1.322096424261564E-005 -1.028600852743669E-002 -1.216133969346304E-002 

 DF  224 x 6  dfdm_dp    =  -4.014931448911176E-004  3.043218476589740E-004  3.280717477480970E-004 

 DF  672 x 6  dfdm_dx    =   -2.30277856396984  -1907.33010066122  -1354.88229166740 

 DF  672 x 6  dfdm_ds    =    2123.01237957266 2912.61265541913 3320.35891083859 

 IF  224 x 1  bi_nodes   =   273  274  275 

 DF  224 x 6  dfdm_droi  =  -6.400226009479414E-004 -0.315350707664798      -0.244378271895287 

 DF  672 x 6  dfdm_dui   =   1.322096424261564E-005  1.028600852743669E-002  1.216133969346304E-002 

 DF  224 x 6  dfdm_dpi   =   6.785307642568260E-009  3.320159667084826E-006  2.572324683330609E-006 

 DF  672 x 6  dfdm_dxi   =    2.30277856396984 1907.33010066122 1354.88229166740 
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 DF  672 x 6  dfdm_dsi   =   0.000000000000000E+000  0.000000000000000E+000  0.000000000000000E+000 

 N     0 x 0 1/  boundary  

 L     1 x 1  b_name     = "External_1" 

 N     0 x 0 1/  boundary  

 L     1 x 1  b_name     = "External_2" 

In a third example the program dforce calculates the Jacobians of the DC60, which 

took 1s CPU; the time for the program to read the mesh with 13,5M nodes and the 

flow solution being much larger. 

 
N 0 x 0        1/  jacobians        

 N 0 x 0        9/     region           

 N 0 x 0        1/        boundary         

 L 1 x 1          b_name = "body" 

 N 0 x 0        1/        boundary         

 L 1 x 1          b_name = "lip" 

 N 0 x 0        1/        boundary         

 L 1 x 1          b_name = "fairing" 

 N 0 x 0        1/        boundary         

 L 1 x 1          b_name = "outlet" 

 N 0 x 0        1/        boundary         

 L 1 x 1          b_name = "extension" 

 N 0 x 0        1/        boundary         

 L 1 x 1          b_name = "farfield" 

 N 0 x 0        1/        boundary         

 L 1 x 1          b_name = "duct" 

 N 0 x 0        1/        boundary         

 L 1 x 1          b_name = "forebody" 

 N 0 x 0        4/        aip_record       

 IF 328 x 1 aip_nodes=      5672448     5672116     5842289 

 DF 328 x 1 ddc60_dp =   0.000000000000000E+000 -4.432018250705286E-007  0.000000000000000E+000 

 DF 984 x 1 ddc60_du =   0.000000000000000E+000 -1.703101059580300E-004  0.000000000000000E+000 

 DF 328 x 1 ddc60_dro=   0.000000000000000E+000 -1.394572856681735E-002  0.000000000000000E+000 

These can thus be used in Edge by the adjoint solver in order to create right-hand-

sides to the adjoint equation, therefor enabling to calculate efficiently the gradients of 

those functions with respect to unlimited number of parameters. A limitation of the 

present version is that it is only differentiated in forward mode, only the inviscid 

forces have also been differentiated in reverse mode in order to validate the 

calculation of the Jacobians. 

3.1 Details of implementation 

The program force calls routines that calculate the inviscid and viscous forces and 

moments. These are the most common functionals used in optimization of aircraft 

external aerodynamic. Another functional is very useful for internal aerodynamic, and 

its calculation already implemented in Edge: the distorsion factor or DC60.  

The program dforce allows creating right-hand sides of the adjoint equations 

corresponding to the inviscid and viscous forces and moments, as well as to the DC60.  
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3.1.1 Dforce 

The routines present at the time of the publication of this report have been generated 

using backward difference only for the inviscid forces and moments, application of the 

backward differencing not only would involve introducing in Edge routines that are 

distributed by INRIA, but it so far failed to produce a code that could be run for the 

viscous types of functions (forces, moments and DC60). Those functions have thus 

been differentiated using forward difference only. This is a minor limitation for the 

DC60 type of function, but in case of the aerodynamic force and moments it reduces 

the use of dforce to small meshes because of the cost of FW. Similar difficulties have 

been met by others [11]. A common difficulty is the use of branch statements.  

3.1.2 Edge solver 

Modifications in Edge concern the adjoint flow solver as it it possible for a user to 

choose the origin of the right-hand side (RHS), between hand differentiated or 

generated by dforce. In the last case the program dforce will run, before running the 

adjoint solver, in order to generate an FFA-format file containing all terms of the 

Jacobians. The adjoint solver also allows general volume terms for the RHS such as in 

the case of the DC60. 
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4 Conclusions 

The application of automatic differentiation (AD) in Edge was carried out within the 

NFFP project MADEF and it allowed the development of an analogue program to 

force in order to generate right-hand-sides to the adjoint code. This is in particular 

beneficial for those functions that have not been hand-differentiated (DC60). It also 

allows generating right-hand sides for any functions composed of the forces, moments 

and the DC60. So far the simplest way is to use the Edge toolbox in Matlab for 

manipulating files and data in FFA format. 

However, application of AD requires many transformations of the source code even 

for the simplest routines; this is another important outcome of our investigations. The 

reason is that most routines in Edge make used of a data structures instead of passing 

parameters such as scalars, vectors and arrays when calling routines. This is probably 

the case for all large software developed for industrial use. An alternative approach to 

AD based on code transformation is operator overloading [8], but it seems to be 

essentially restricted to forward differencing, backward differentiation being thus 

reserved to code transformations methods. It seems that AD will never be entirely 

automatic, unless on the simplest codes, and that following an “adjoint-like” approach 

is the main guideline not only to apply AD on larger codes but also in the hope to 

circumvent the inherent complexity of backward differentiation [12]. 

The research on automatic differentiation deals with the efficiency of the transformed 

code (memory usagel), activation (templated code), analysis tools for AD application, 

reducing the complexity of the transformed code (see examples in appendix of code 

obtained with Matlab tools for AD), and the differentiation of mixed-language 

programs. Maybe one of the most needed developments of AD remains its level of 

automatism [11].  

 



  FOI-R--3689--SE 

 

 27 

References 
[1] Griewank A, On Automatic Differentiation, Technical report, Argonne National 

Laboratory, IL, November 1988 

[2] Iri M., Simultaneous Computations of Functions, Partial Derivatives and 

Estimates of Rounding Errors – Complexity and Practicality, Japan Journal of 
Applied Mathematics, Vol.1, No.2, pp.223-252, 1984. 

[3] Cacuci, Sensitivity Theory for Nonlinear systems, I&II, Journal of Mathematical 
Physics, Vol.22, No12, 1981. 

[4] Christianson B. Reverse accumulation and implicit functions, Optimization 

Methods and Software, Vol. 9 pp.307-322, 1998 

[5] Hascoet L. and Pascual V., The Tapenade Automatic Differentiation tool: 

principles, model, and specification. INRIA Research Report number 7957, May 

2012. 

[6] Griewank A. and Walther A., Evaluating Derivatives: Principle and Techniques 

of Algorithmic Differentiation. Number 105 in Other Titles in Applied 
Mathematics. SIAM, Philadelphia, PA, 2

nd
 edition, 2008  

[7] http://www.autodiff.org (list of references per application , year, codes etc …) 

[8] Yu W. and Blair M., DNAD, a simple tool for automatic differentiation of Fortran 
codes using dual numbers, Computer Physics Communications 184, pp. 1446-

1452, 2013 

[9] Jones, D.P., An AD Approach using F90 and Tapenade, Queen Mary, University 

of London, presentation November, 2009. 

[10] Amoignon O., AESOP - A numerical platform for aerodynamic shape 
optimization, Journal of Optimization and Engineering, vol 11, pp 555-581, 2010. 

[11] Siskind J.M and Pearlmutter B.A., Putting the Automatic Back into AD: Part I, 

What's Wrong, School of Electrical and Computer Engineering, Purdue 
University, Technical Report, 2008 

[12] Naumann U., Call Tree Reversal is NP-Complete, in Advances in Automatic 
Differentiation, pp13-22, Lecture Notes in Computational Science and 

Engineering, Volume 64 2008, ISBN: 978-3-540-68935-5 (Print) 978-3-540-

68942-3 (Online) 



FOI-R--3689--SE   

 

 28 

Appendix 

Below we show the codes produced by ADimat performing the differentiation of the 

Rosenbrook function in Matlab: 

 

The code result of the forward differentiation requires special routines from ADimat at 

runtime: 

 

 

After reverse differentiation the code requires, as in the forward case special routines 

from ADimat at runtime: 
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