
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology

development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-

sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number

of fi elds such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,

protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Automatic Differentiation

applied to Edge in NFFP5

project MADEF

OLIVIER AMOIGNON

FOI-R--3689--SE

ISSN 1650-1942 May 20132

FOI

Defence Research Agency Phone: +46 8 555 030 00 www.foi.se

SE-164 90 Stockholm Fax: +46 8 555 031 00

Olivier Amoignon

Automatic Differentiation

applied to Edge in NFFP5

project MADEF

FOI-R--3689--SE

Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk.
All form av kopiering, översättning eller bearbetning utan medgivande är förbjuden.

This work is protected under the Act on Copyright in Literary and Artistic Works (SFS 1960:729).
Any form of reproduction, translation or modification without permission is prohibit

Titel Automatisk Differentiering tillämpad i Edge
inom NFFP5 projektet MADEF

Title Automatic Differentiation applied to Edge in
NFFP5 project MADEF

Rapportnr/Report no FOI-R--3689--SE

Månad/Month 05

Utgivningsår/Year 2013

Antal sidor/Pages 29 p

ISSN 1650-1942

Kund/Customer VINNOVA

Forskningsområde 3. Flygteknik och luftstridssimulering

FoT-område Flygteknik

Projektnr/Project no E28174

Godkänd av/Approved by Peter E Eliasson

Ansvarig avdelning 320

 FOI-R--3689--SE

 3

Sammanfattning
Inom MADEF projektet tillämpas automatisk differentiering (AD) för att

komplettera utvecklingen av den adjungerade strömningsekvationslösaren i Edge,

vilket används inom aerodynamisk design. Vi använde programmet Tapenade från

INRIA för att utveckla ”dforce”, ett program som räknar derivator av funktionen F

vilka beror av strömningslösningen, till exempel aerodynamiska krafter och

moment, eller DC60 kriteriet för interna strömningar. Derivator av F, till exempel

med avseenden på primitiva eller konservativa variabler vid noderna, är partiella

derivator vilka används vid olika steg när man räknar derivator av F med

avseenden på formen. I vanliga designtillämpningar, där gradient-baserad

optimering används, skulle F kunna vara antingen målfunktionen som ska

minimeras eller ett av bivillkoren. Efter utvecklingen av dforce har adjunktlösaren i

Edge anpassats för att kunna använda högerled beräknade med hjälp av AD.

Nyckelord: funktionsderivator, känsligheter, adjunkt metoden, automatisk

differentiering, bakåt mod.

FOI-R--3689--SE

 4

Summary
In the project MADEF we apply automatic differentiation (AD) as a complement to

the adjoint flow solver already present in the CFD code Edge, in the framework of

aerodynamic aircraft design. We used the code Tapenade from INRIA for the

development of a program called “dforce” that calculates derivatives of a function

F depending on the flow solution given by the CFD solver such as aerodynamic

forces, moment or criteria like the DC60 for internal flows. The derivatives of F,

with respect to the nodal values of the primitive or conservative variables for

instance, are partial derivatives used at different stages when calculating the shape

derivative of F. Our focus is thus on applications in design carried out by gradient-

based optimization where F is either the cost function being minimized or a

constraint. Following the development of the program dforce, the adjoint solver in

Edge has been adapted in order to enable using right-hand sides calculated by AD.

Keywords: function derivatives, sensitivities, adjoint method, automatic

differentiation, reverse mode.

 FOI-R--3689--SE

 5

1 Introduction 7

2 Methods 10

2.1 Sensitivities versus Adjoint ... 10

2.2 Adjoint approach for coupled equations ... 11

2.3 Automatic differentiation ... 13

2.3.1 Forward mode .. 13

2.3.2 Backward (“adjoint”) mode ... 15

2.3.3 Another presentation of the reverse mode 16

2.3.4 Cost of gradient calculation in AD .. 17

2.4 Examples .. 18

2.4.1 Scalar case (m=1) with scalar variable (n=1) 18

2.4.2 Scalar case (m=1) with vector variables (n>1): fcfoal in

Edge ... 19

3 Program dforce 23

3.1 Details of implementation ... 24

3.1.1 Dforce ... 25

3.1.2 Edge solver .. 25

4 Conclusions 26

References 27

Appendix 28

FOI-R--3689--SE

 6

 FOI-R--3689--SE

 7

1 Introduction

In introduction we describe the relation between the field of aerodynamic design

optimization and techniques of automatic differentiation.

Aerodynamic shape optimization for aircraft design is a challenging for all numerical

methods involved: parameterization of shape deformations, mesh deformation, flow

simulations and gradients computation with respect to design parameters. From the

perspective of optimization, aerodynamic design has thus the particularity to involve

the flow equations (CFD) as constraints, and due to the challenging physics this

commonly involves from a couple of thousands degrees of freedom (dof) , for simple

flow models in two dimensions, to millions of dof, in three dimension. In this class of

problems the adjoint approach emerged as an efficient method for calculating

derivatives of the cost function, also called objective, and constraints, with respect to

the design parameters including the constraints of the flow equations in the so called

reduced gradient. Without the adjoint of the flow equations design by optimization

involving fluid mechanics is limited to using a few parameters of design or to use

simplified flow models, eventually leading to designs that will poorly perform in

reality. Optimization based on derivatives (gradients) and adjoint flow solvers appears

to be the best approach for single- and multi-disciplinary industrial design involving

many parameters and computer intensive simulations.

Automatic differentiation (AD) appears to have a natural connection with the adjoint

approach. AD designates various technologies aiming at calculating derivatives of

functions computed by algorithms. Briefly described, AD tools implement the chain

rule of differential calculus to source codes; it is not to be confused with symbolic

differentiation or divided differences. Introductions on the subject can be found in

references [1] and [6], a large source of references can be found on the AD community

site [7]. AD software is most often dedicated to one or two programming languages:

C/C++ (ADOL-C, ADIC, AMPL, OpenAD, Tapenade …), Fortran (ADIFOR,

Tapenade, OpenAD …), Matlab (ADimat, AD, Adiff …). From the beginning,

application of AD has covered all areas using software for computations: in product

design, simulations or for data analysis. Classic applications are for instance error

estimation on complicated algorithms such as solvers of differential equations [4] or in

electrical engineering [3] where the adjoint analysis, the analogue of reverse mode in

AD, has been early recognized for its ability to obtain accurate and cheap derivatives.

In AD, the superiority of reverse programming was early recognized [2] but it did not

gain a large audience of engineers and scientists until dedicated software named above

started to be developed in the early eighties.

Much of the research in AD concerns the performance of the produced code in reverse

mode, the major bottle-neck, and the readability of the produced code when codes

need be further maintained. Developers of AD, among them the INRIA team

developing TAPENADE, indicate that important developments are needed and require

research for problems related to the adjoint (reverse) mode: MPI, dynamic memory

management and object-oriented languages [5].

In general, application of AD requires important transformation of the source program

before and after generating the differentiated code. As Griewank summarizes it, the

problem of general purpose differentiation is of a computer science nature, while the

mathematics is quite straight forward [1]. The general advice in the literature being

that the use of AD should be limited to specific situations and needs; for example

when finite differences derivatives are inaccurate, evaluating the function N times

(number of parameters) is too expensive, or when the adjoint equation is impossible to

FOI-R--3689--SE

 8

obtain with reasonable efforts. Another field of research is the application of AD on

codes with several languages.

AD, unlike the adjoint method, intends to differentiate what is implemented; this is in

contrast with the developer of an adjoint solver who will program what he thinks is the

adjoint of the flow solver. The latter assumes that the code is continuously

differentiable, assumption that must carefully be observed because programmers, by

convenience or in order to circumvent difficulties; most CFD codes contain “if”

statements on variables being computed in some of their numerical algorithms that

need be differentiated (branching) or non-differentiable expressions like absolute

value.

While differentiation of a CFD solver can require a tremendous amount of work, and

may be totally impossible to do on already existing codes, numerical aerodynamic

shape optimization requires several differentiations that need not to be performed by

the same method. The picture below (Figure 1) illustrates a typical “loop” in the

context of computational aerodynamic shape optimization using CFD. All algorithms,

from the parameterization of the shape to the flow solver are differentiated in some

way to obtain accurate gradients of the drag, lift and other figures of merit. In this

particular example (a code called AESOP [10]) we use, apart from hand-differentiated

adjoint flow solver and pre-processor: hand-differentiated Radial Basis Function

interpolations (RBF for parameterization or mesh deformation) and elliptic solvers

(such as discrete Laplace for mesh deformation), complex-trick for industrial-like

parameterizations (twist distribution for ex.), symbolic differentiation for the efficient

assembly of the gradient of non trivial cost functions (such as polynomial or rational

expressions, power or logarithm functions, and combination of those). However,

typical optimizations have a number of parameters ranging from a handful up to

hundreds for pure aerodynamic applications. As we are progressing towards

aeroelastic optimization this number will increase, eventually ending with sizing the

structure of a wing, which can involve finding the values of thousands of parameters.

More advanced projects could involve topology optimization of the structure coupled

to aerodynamic design, further increasing the number of design parameters.

Scalability is thus an issue we consider in the development of experimental code as

AESOP. The adjoint approach involves thus the solution of the adjoint flow equations

in Edge, in order to reduce the computational cost of the partial derivatives of the drag

or other performances related to the flow solution with respect to the design

parameters.

The AD tool Tapenade is developed by INRIA [1] and is used in this work in order to

differentiate some routines of Edge, our objectives being:

• Extend the use of the adjoint solver to the calculation of figures of

performances that have not yet been “hand-differentiated” such as DC60.

• Provide an alternative method for the derivation of components of the adjoint

solver such as boundary conditions.

• Identify possible applications of the technology in our activities on optimal

design, for the development of adjoint turbulence models or as a mean of

verification of codes under the development phase.

It is therefore not intended to replace the adjoint approach by AD because of the low

performance of the code produced, but more to investigate potential benefits that it

could bring to our activities.

The next section presents applications of automatic differentiation on some examples.

We introduce some basic ideas about the adjoint method because it is used in the

 FOI-R--3689--SE

 9

derivation presented here of the reverse mode. The third section presents the program

“dforce”.

Figure 1 - Solution of aerodynamic optimization problems usually involves an iterative procedure as here in

the code AESOP which integrates the flow solver EDGE, its adjoint and other algorithms.

FOI-R--3689--SE

 10

2 Methods

2.1 Sensitivities versus Adjoint

This section exposes how in principle the adjoint method calculates the gradient of a

function f used in an optimization:

Computing gradients with sensitivities can be described as

The cost of a gradient computed by sensitivities is thus proportional to the number of

parameters (n). The adjoint approach is now introduced via this example:

It consists in identifying an equation (the adjoint of a real matrix is the transposed

matrix) which solution enables giving an expression of the gradient at once instead of

requiring n evaluations of the state equation.

()
() ()
() ()

 gives

 solving therefore

where,

*T

*T

1T

T

wN

gwA

aNgAw

aNAgw

aNwAwgwa

=∇

=

=⇔

=⇒

==∀

−

−

f

f

f

f

TT δδ

δδ

δδδδδ

() wgw

w

aNaAw

w

T

:in linear is that Assuming

equation ofsolution , offunction a is

=

ℜ∈=

f

f

f

n

()

()

[]

()
end

0...010...0,

n:1kfor

:algorithm thesuggestswhich

 :gradient theof definitionby and

 where,

T

T

kk

k
kkk

T

f

ff

f

wg

eNewA

aw

aNwAwgwa

δ

δ

δδ

δδδδδ

=∇

==

=

∇=

==∀

 FOI-R--3689--SE

 11

2.2 Adjoint approach for coupled equations

The purpose is to show that even dealing with a complex system of equations the

adjoint approach reveals the structure of the equations that must be solved in order to

efficiently compute gradients of a performance J. The equations in the example below

are representative of a shape optimization problem of an aeroelastic system solved

with Edge where the structure model is represented by modes.

In order to optimize the shape a parameterization of the geometry is defined as

follows: the vector of design parameters a determines displacements of the shape,

called here the boundary, and those displacements at the boundary are propagated to

the entire volume grid used for the flow computation (CFD):

The equations are thus solved for the statically coupled fluid-structure (modal) system,

which in Edge can be described like this

Finally, we evaluate the performance J (drag, lift …) of the design:

In order to optimize the performance J, the gradient of J with respect to the design

parameters a will be calculated. We develop here symbolically the adjoint approach

that can be used, showing which equations are involved.

We start by defining a global vector V for the various states and a global residual

vector T:

() ()

























−

−

++

−

−

=























=

Γ

ΓΓ

h
TT

f

fhh

f

hV

QUHZΩ

BHZAY

YYXUR

BYAY

CaSY

aV,T

Y

U

Y

Y

η

η

η

00

00

0

0

0

, and

()()

()

















=

=

Ω=Ω

=

=++++

Γ

Γ

n)deformatio(mesh

nt)displacemeboundary (fluid

 scoordinate modal : diagonal, :

load) ic(aerodynam

nt)displaceme initial :(

 ,,

0

0000

fsf

fs

h

T

ffhhh

f

f

BYAY

HZY

Z

QUH

Y

0YYXYYXnUR

T

η

ηη

()
fhh

J YYXU ++
00

,









=

=
Γ

Γ

n)deformatio(mesh

nt)displacemeboundary (fluid

 :boundary theofzation Parameteri

00

0

BYAY

CaSY

FOI-R--3689--SE

 12

We can thus define as usual an adjoint system of equations:

Its solution allows calculating exactly the gradient (if all derivatives are computed

exactly and all equations are solved down to machine precision):

The large adjoint system above can be broken down into several equations

Solving (1) and (3) enables to solve the “usual” gradient expression:

Note that equation (2) can be skipped only in the special case where the same mesh

deformation is used in order to deform the baseline grid due to changes in design

























−

−
∂

∂

∂

∂

∂

∂
−

=
∂
∂
























∂

∂









∂

∂









∂

∂
=








∂

∂









∂

∂
−=








∂
∂

ΩQHZ0

BHZA0
Y

R

U

R

Y

R
0

00AB

S

V

T

0
YUY

0
V

V
V

V

T

00

00

0

0

0000

 and

,,,,with

~

0

0

TT

f

h

h

hh

f

h

h

hhh

T

h

T

JJJJ

J

[]0000C
a

T
V

a

T

a
,,,, where

~ T

TT

h
h

d

dJ
J −=








∂
∂









∂
∂

==∇

(2))by computed-re benot need scoordinatemesh w.r.t.(gradients
~~

equation) structure modal(adjoint
~~

n)deformatiomesh adjoint (usual
~~

 term)source 1flowadjoint (usual ~~

)1(

~~
)2(

~~
)3(

0

0

00

0

00

0

f

f
TTTT

T

h
h

T

h
f

T

T

h

hT
h

T

h

h

T

h
h

T

hT

T

J

J

J

YY

YBHZ

Y
U

Y

R
YA

U
HZQU

U

R

Y
U

Y

R
YA

YBYS

XX

XX

XX

0

0

=⇒


















=Ω









∂

∂
−








∂

∂
−=

+








∂

∂
−=









∂

∂









∂

∂
−








∂

∂
−=

=Γ

η

η

~ Γ−==∇ 0YC

a
Th

h
d

dJ
J

 FOI-R--3689--SE

 13

parameters and to deform the grid when solving the coupled fluid-structure system of

equations.

2.3 Automatic differentiation

AD blends rule-based differentiation, for example for intrinsic functions like sin(u),

u**2, and derivatives accumulation following the chain rule of calculus.

The forward mode starts with derivatives of the input variables and propagates them

as for the calculation of the function. The backward mode starts with the derivatives of

the output propagating them backward to the input variables.

In order to “visualize” both approaches we propose here to symbolically apply AD on

a routine only implementing a real vector valued function calculated by explicit

expressions, without branching.

2.3.1 Forward mode

It can be described as follows: for a vector x of input parameters, having n

components, the vector valued function f is defined by a sequence of M assignments,

like M lines of code, each possibly using all expressions already computed by the

routine:

We introduce the following notations:

The vector valued function is expressed using the above introduced inner product

M

MMM

m
j

n

yf

)yyy(xfy

)yy(xfy

)y(xfy

RyRx(x)fy

=

=

=

=

∈∈=

−121

2133

122

11

,...,,,

,,

,

, ,

M

()

 componentswith in element an is

 and where

,in and any For

1

,,

,

1,

1

1

mM

∑
=

−

×

=

⋅=

















=



















=

M

j

ijiji

m

mj

j

j

M

M

vuw

u

u

RVUw

u

u

u

u

U

RVU

M
M



















=∈



















=

⋅=

−

M

M

m

y

y

y

Y R1

1

0

0

C

YCf

1

1

and ,with

MM

FOI-R--3689--SE

 14

Via those notations the vector valued function can be more general, involving for

instance the combination of intermediate results produced in the routine.

A straight-forward differentiation of the function assignments gives its first variation

All entries in matrices A and B in the expressions above are thus obtained using the

rules of differentiation that all AD codes based on program transformation are

implementing (see the routine F3_D below differentiated in forward mode with

Tapenade).

From those sensitivities we can “calculate” the forward mode derivatives:

() ()

() ()

() ()

() ()

()()xABICf

YCf

RBRAYBxAY

RyfRxf

y
y

yyyxf
x

x

yyyxf
y

y
y

yyxf
x

x

yyxf
y

y
y

yxf
x

x

yxf
y

x
x

xf
y

δ

δ

,,,,,,

,,,,

,,

)(

mMnmM

mm
kj

nm
j

j

M

j j

MMMM
M

j

j j

1

)()(

1

1

121121

2

1

213213
3

1

1

1212
2

1
1

or

 and with

 and where

,,

2

−

×××

××

−

=

−−

=

−⋅=

⋅=

∈∈+=

∈∂∂∈∂∂












∂

∂
+








∂

∂
=












∂

∂
+








∂

∂
=










∂

∂
+








∂

∂
=









∂

∂
=

∑

∑

δ

δδ
δδ

δδδ

δδδ

δδδ

δδ

LL

M

()

()





















=

−≤≤≤≤∈








∂

∂
=

















=

≤≤∈








∂

∂
=

−

×−

×−

0BB

0

0B

000

B

R
y

yyyxf
B

A

A

A

R
x

yyyxf
A

)M(MM

mm

k

jj

jk

M

nmjj

j

jkMj
,,,

Mj
,,,

11

21

121

1

121

11,2,
,

1,
,

L

OOM

MO

L

L

M

L

 FOI-R--3689--SE

 15

The Jacobian
1
 of the function is obtained by “seeding” its forward differentiated

version for each of the component of its entry data with a vector x* having only one

non-zero component at the i
th
 position. The cost appears thus to be n, as expected.

2.3.2 Backward (“adjoint”) mode

Now, transforming the final expression in the sensitivities above yields:

By analogy to the adjoint state equation presented in section 2.1 (Sensitivities versus

Adjoint), we introduce here an “adjoint” vector Ỹ, the components being the results of

code lines (assignments) that we will express further down.

The definition of the transposed matrix of A above is related to the inner product

defined further up. It is easier to figure out when considering the simpler case where

m=1.

1
 Each column of the Jacobian (n components) is the gradient of one component of the vectorial function f. If
m=1 the Jacobian is called the gradient of f.

()()
[]T

i
i

i

i

ni
x

00100

1

*

*1

LL=

≤≤−⋅=
∂
∂ −

x

AxBIC
f

()() ()() xACBIfxABICf δδδδ ⋅−=⇔−⋅= −− T1

()() ()
()

()

() () ()

() () ()

() ()

~

:sassignment adjoint"" of vector theA times of d transposethe

sense somein is which ~

 then, allfor

such that matrix Jacobian thedefining and

~

~

~
,

~

1

,11

1 1

,11

1

,1

1

1

YAJ

AJ

xxJf

xAf

xAf

xAYfx

CYBI

xACBIf

T

M

j

kimjimjik

k

M

k

M

j

kimjimji

M

k

kkimj

M

j

imji

T

T

y

y

y

=

=

=














=⇔

=

⋅=∀⇒

=−

⋅−=

∑

∑ ∑

∑∑

=
+−+−

= =
+−+−

=
+−

=
+−

−

δδδ

δδ

δδ

δδδ

δδ

FOI-R--3689--SE

 16

The structure of the backward “mode” appears examining the structure of B: lower

triangular with 0 (block) diagonal it reflects the sequential execution of assignments in

function f.

The additional lines of code Ỹ are performed in the reverse order in comparison to the

components of the intermediate variables Y when the function f is evaluated. This also

shows that without further analysis of the M assignments, the storage and

computational costs become real issues when m and M are large:

• “store-all” approach: the non-zero entries of the Jacobian matrices A and B

need be computed only once but storage represents up to Mmn+M(M-1)m²/2 !

• “recompute all” approach: the non-zero entries of A and B can be computed.

At the beginning of the reversed routine by computing first the M assignments

of the original routine.

The strategy used in Tapenade blends both approaches using checkpoints.

For comparison, hand differentiation of codes is carried out at the algorithm level, not

based on the implementation. It is thus possible to obtain an implementation that can

in principle be as efficient as one evaluation of the linearized (sensitivities) function

without little additional storage.

2.3.3 Another presentation of the reverse mode

From a presentation given by Pironneau and Dicésaré (UPMC) we get another

understanding of AD in backward mode than the pure algebraic (adjoint) approach

proposed above. It starts, as it was done above, identifying the assignments as

intermediate functions:

()

() ()
() ()

()
()yxlJ

yxyxl

uxuxly

uuulx

uJ

,

,

sin,

122

with

3

3

2

1

=

×≡

+≡=

+≡=

()

YAJ

yBy

yByBy

yBy

R1y

YBCYCYBI

~
finally and

~~

~~~

~~

~

:code of lines M  the toequivalent iswhich 

~~~

2

1,1

12,12,2

1,1

T

M

j

jj

MMMMMMM

MMMM

m
M

TT

=

=

+=

=

∈=

+=⇔=−

∑
=

−−−−−

−−

M

 FOI-R--3689--SE

 17

A Lagrangian is then formed where intermediate assignments are considered as

equality constraints:

() () () ()() ()()uxlypulxpyxluJyxuL ,,,, 22113 −+−+−=

Stationarity with respect to the Lagrange multiplier (p1, p2) would give back the

program computing J(u), whereas stationarity with respect to the intermediate

variables, x and y, give expressions for the multipliers (the adjoint variables in this

approach), but they must be computed in the reverse order:

()

() ()uuuyxp

xlxlppxL

uuxp

ylpyL

sin124

002)

122

001)

1

3221

2

32

++=+=⇒

=∂∂−∂∂−⇔=∂∂

+==⇒

=∂∂−⇔=∂∂

Finally, stationarity with respect to the input data (u) gives expressions that, together

with the calculated multipliers, enable to compute the derivate of J:

() () ()()() () ()
() ()() ()uxuyxuJ

uuuuuuuuJ

ulpulpdudJuL

cos24'or

cos12224sin124'

003) 2211

+++=

+++++=⇒

=∂∂−∂∂−⇔=∂∂

We will use the same example (function) below in order to show how code

differentiation of a scalar function is performed using TAPENADE.

2.3.4 Cost of gradient calculation in AD

In Forward mode the gradient is obtained at the cost of n (independent variables)

function evaluations by executing the following loop:
 ! calculates gradient of f:

 ! using the differentiated function f2 in forward (tangent) mode:
 !
 do I=1,N
 xn=0.
 xn(I)=1;
 gf(I) = f3_d(x,xn,f)
 end do

In contrast, in backward mode (adjoint) the gradient is obtained at the cost of one

function call:
 !

 ! calculates gradient of f:
 ! using the differentiated function f2 in reverse (adjoint) mode:
 !
 gfb=0.
 f3b =1.
 call f3_b(x,gf,f2b)

FOI-R--3689--SE

 18

2.4 Examples

2.4.1 Scalar case (m=1) with scalar variable (n=1)

We use the example from section 2.3.3, showing the Fortran and how the approach

exposed in section 2.3.1 (Forward mode) is applied:

The first variation of each assignment reads:

And the code generated by Tapenade in forward mode:

()
()

















==

=

==

+==

+==

=

=

3

2

1

212133

1122

11

 and]1,0,0[

sin

12

3M and

1)(n component oneonly has

y

y

y

f

yy),y,y(fy

uy),y(fy

uu)(fy

u

T

T

yc

yc

x

x

x

x

()

()

2112

2

1

213213
3

11

1

1212
2

1
1

0

1cos

24

yyyyuy
y

),y,y(f
u

u

),y,y(f
y

yuuy
y

),y(f
u

u

),y(f
y

uuu
u

)(f
y

j

j j

δδδδδδ

δδδδδ

δδδ

++=
∂

∂
+

∂
∂

=

+=
∂

∂
+

∂
∂

=

+=
∂

∂
=

∑
=

xx

xx

x

 FUNCTION F3(u)
 IMPLICIT NONE
!
 INTEGER :: i
 REAL :: f3, u, x, y
 INTRINSIC SIN
!
 f3 = 0.
 x = 2*u*(u+1)
 y = x + SIN(u)
 f3 = x*y

END FUNCTION F3

()
()

21123

12

1

1cos

24

yyyyy

yuuy

uuy

δδδ

δδδ

δδ

+=

+=

+=
FUNCTION F3_D(u, ud, f3)

 IMPLICIT NONE
!
 INTEGER :: i
 REAL :: f3, u, x, y
 REAL :: f3_d, ud, xd, yd
 INTRINSIC SIN
!
 f3 = 0.
 xd = 2*(ud*(u+1)+u*ud)
 x = 2*u*(u+1)
 yd = xd + ud*COS(u)
 y = x + SIN(u)
 f3_d = xd*y + x*yd
 f3 = x*y

END FUNCTION F3_D

Figure 2 - Simple scalar function in Fortran

Figure 3 - First variations of the three
non-zero assignments, identified by
variables with a suffix “d” in the forward
differentiated routine generated with
help of Tapenade on the right

 FOI-R--3689--SE

 19

Applying the reverse mode (see section 2.3.2) can create a routine calculating the

gradient at once, here presented with the adjoint code generated by Tapenade:

2.4.2 Scalar case (m=1) with vector variables (n>1): fcfoal in Edge

We show this example because it is one of the simplest among the functions used in

aerodynamic shape optimization; we only display the computational loop and skip all

variables declarations. The original routine (fcfoal) in Edge calculates the integrated
inviscid forces and moments applied on one boundary. The original code is modified in

order to be processed through TAPENADE. All data types not standard in Fortran 90 are
removed, tree data structures for instance, and, instead, input parameters and output of the

routine are explicitly declared as calling variables.

()

() ()()

3

121

*

1
1

23

12

*

2

1

12*

3

1

213*

1

1

*

2
12

12

1

*

3

2

213*

2

*

3
213

1

*

3

24cos

cos0

0

1)(f3b 1

g

x
gg

x,x,

x,
gg

x,

x,
g

=

+++=
∂

∂
+=

+=
∂

∂
+

∂
∂

=

+=
∂

∂
+=

=
∂

∂
=

=
∂

∂
=

==

du

df

yyuyuy
u

)(f

yyy
y

)y(f
y

y

),yy(f
y

yuy
u

)y(f

yy
y

),yy(f
y

y
u

),yy(f

y SUBROUTINE F3_B(u, ub, f3b)
 IMPLICIT NONE
!
 INTEGER :: i
 REAL :: f3, u, x, y
 REAL :: f3b, ub, xb, yb
 INTRINSIC SIN
!
 x = 2*u*(u+1)
 y = x + SIN(u)
 yb = x*f3b
 xb = yb + y*f3b
 ub = (4*u+2)*xb + COS(u)*yb

END SUBROUTINE F3_B

Figure 4 - Backward mode differentiated example
by Tapenade. Replace f3b by 1 to obtain the
expression df/du.

FOI-R--3689--SE

 20

Example of Edge routine, after transformations necessary for being processed by

Tapenade:

 SUBROUTINE FCFOAL_4D(pp, xx, bcsur, xm, df, dm, pref, ndim, nb, ibcn)

 IMPLICIT NONE

...

 rfdim = ndim - 2

 df = 0.

 dm = 0.

! LOOP OVER THE BOUNDARY NODES

 DO in=1,nb

 dx = xx(ibcn(in), 1) - xm(1)

 dy = xx(ibcn(in), 2) - xm(2)

 dz = (xx(ibcn(in), ndim)-xm(3))*rfdim

 sx = bcsur(in, 1)

 sy = bcsur(in, 2)

 sz = bcsur(in, ndim)*rfdim

 pf = pp(ibcn(in)) - pref

 pm = pp(ibcn(in)) - pref

 df(1) = df(1) + pf*sx

 df(2) = df(2) + pf*sy

 df(3) = df(3) + pf*sz

 dm(1) = dm(1) + pm*(dy*sz-dz*sy)

 dm(2) = dm(2) + pm*(dz*sx-dx*sz)

 dm(3) = dm(3) + pm*(dx*sy-dy*sx)

 END DO

!

 RETURN

 END SUBROUTINE FCFOAL_4D

 FOI-R--3689--SE

 21

Forward-AD applied the routine FCFOAL:

 SUBROUTINE DFCFOAL(pp, ppd, xx, xxd, bcsur, bcsurd, xm, df, dfd, dm, dmd, pref,
ndim, nb, ibcn)

 IMPLICIT NONE

….

 rfdim = ndim - 2
 df = 0.
 dm = 0.
 dfd = 0.0
 dmd = 0.0
! LOOP OVER THE BOUNDARY NODES
 DO in=1,nb
 dxd = xxd(ibcn(in), 1)
 dx = xx(ibcn(in), 1) - xm(1)
 dyd = xxd(ibcn(in), 2)
 dy = xx(ibcn(in), 2) - xm(2)
 dzd = rfdim*xxd(ibcn(in), ndim)
 dz = (xx(ibcn(in), ndim)-xm(3))*rfdim
 sxd = bcsurd(in, 1)
 sx = bcsur(in, 1)
 syd = bcsurd(in, 2)
 sy = bcsur(in, 2)
 szd = rfdim*bcsurd(in, ndim)
 sz = bcsur(in, ndim)*rfdim
 pfd = ppd(ibcn(in))
 pf = pp(ibcn(in)) - pref
 pmd = ppd(ibcn(in))
 pm = pp(ibcn(in)) – pref

 dfd(1) = dfd(1) + pfd*sx + pf*sxd

 df(1) = df(1) + pf*sx

 dfd(2) = dfd(2) + pfd*sy + pf*syd

 df(2) = df(2) + pf*sy

 dfd(3) = dfd(3) + pfd*sz + pf*szd

 df(3) = df(3) + pf*sz

 dmd(1) = dmd(1) + pmd*(dy*sz-dz*sy) + pm*(dyd*sz+dy*szd-dzd*sy-dz*syd

 dm(1) = dm(1) + pm*(dy*sz-dz*sy)

 dmd(2) = dmd(2) + pmd*(dz*sx-dx*sz) + pm*(dzd*sx+dz*sxd-dxd*sz-dx*szd)

 dm(2) = dm(2) + pm*(dz*sx-dx*sz)

 dmd(3) = dmd(3) + pmd*(dx*sy-dy*sx) + pm*(dxd*sy+dx*syd-dyd*sx-dy*sxd)

 dm(3) = dm(3) + pm*(dx*sy-dy*sx)

END DO

RETURN

FOI-R--3689--SE

 22

Backward-AD on routine FCFOAL in Edge:

 SUBROUTINE BFCFOAL(pp, ppb, xx, xxb, bcsur, bcsurb, xm, df, dfb, &
 dm, dmb, pref, ndim, nb, ibcn)
 IMPLICIT NONE
…
 rfdim = ndim - 2
 bcsurb = 0.0
 xxb = 0.0
 ppb = 0.0
 DO in=nb,1,-1
 pf = pp(ibcn(in)) - pref
 sz = bcsur(in, ndim)*rfdim
 dz = (xx(ibcn(in), ndim)-xm(3))*rfdim
 dx = xx(ibcn(in), 1) - xm(1)
 dy = xx(ibcn(in), 2) - xm(2)
 pm = pp(ibcn(in)) - pref
 sx = bcsur(in, 1)
 sy = bcsur(in, 2)
 tempb = pm*dmb(3)
 pmb = (dz*sx-dx*sz)*dmb(2) + &

 (dy*sz-dz*sy)*dmb(1) + (dx*sy-dy*sx)*&
& dmb(3)
 tempb0 = pm*dmb(2)

 dxb = sy*tempb - sz*tempb0
 sxb = dz*tempb0 + pf*dfb(1) - dy*tempb
 tempb1 = pm*dmb(1)
 syb = pf*dfb(2) - dz*tempb1 + dx*tempb
 dyb = sz*tempb1 - sx*tempb
 dzb = sx*tempb0 - sy*tempb1
 szb = dy*tempb1 + pf*dfb(3) - dx*tempb0
 pfb = sy*dfb(2) + sx*dfb(1) + sz*dfb(3)
 ppb(ibcn(in)) = ppb(ibcn(in)) + pmb
 ppb(ibcn(in)) = ppb(ibcn(in)) + pfb
 bcsurb(in, ndim) = bcsurb(in, ndim) + rfdim*szb
 bcsurb(in, 2) = bcsurb(in, 2) + syb
 bcsurb(in, 1) = bcsurb(in, 1) + sxb
 xxb(ibcn(in), ndim) = xxb(ibcn(in), ndim) + rfdim*dzb
 xxb(ibcn(in), 2) = xxb(ibcn(in), 2) + dyb
 xxb(ibcn(in), 1) = xxb(ibcn(in), 1) + dxb
 END DO
 dfb = 0.0
 dmb = 0.0
 END SUBROUTINE BFCFOAL

 FOI-R--3689--SE

 23

3 Program dforce

The Fortran program dforce, in the EDGE distribution, has thus been generated with

help of Tapenade from the program force and routines that calculate the DC60

(distortion). The program creates files that contain the Jacobians of the functions

(drag, lift …).

The content of the file created by dforce for an inviscid calculation is obtained using

the help program ffalist that summarizes the type, sizes and some first numbers for

each data in FFA-format data-structures. The CPU time to obtain the Jacobians is on

this example 1s and there are 134258 nodes on the wall boundary (the list “b_nodes”).

Note that inviscid forces and moments only depend on the pressures, the coordinates

(moments) and the surface elements vectors. The corresponding components of the

Jacobians are denoted “_dro”, “_du”, “_dp”, “_dx” and “_ds”. The data structure of

the file corresponds to the boundary ordering in each region. If a boundary is not a

wall, the only information stored about this boundary is its name in order to facilitate

detection of errors when uploading data from this file in Edge.

N 0 x 0 1/ jacobians

 N 0 x 0 2/ region

 N 0 x 0 7/ boundary

 L 1 x 1 b_name= "wall"

 IF 256 x 1 b_nodes = 61 62 63

 DF 256 x 6 dfdm_dro = 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

 DF 768 x 6 dfdm_du = 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

 DF 256 x 6 dfdm_dp = -1.507584493083414E-004 1.172207994386554E-004 1.163068918685894E-004

 DF 768 x 6 dfdm_dx = 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

 DF 768 x 6 dfdm_ds = 5008.70892556716 6373.97698499611 5933.34815166263

 N 0 x 0 1/ boundary

 L 1 x 1 b_name= "outer_boundary"

In an other example the jacobians of the total forces, inviscid and viscous, are

calculated for the RAE2822 airfoil, the CPU time on the same computer as in the

previous case was 2,85s, for only 224 nodes on the wall boundary. This is due to the

dependencies of the Jacobians on the boundary velocity and density, but also on flow

and coordinates at the interior points attached to each boundary node. Those additional

components of the Jacobians are denoted by an additional “i” and the indexes of the

internal nodes are given under the list “bi_nodes”.
N 0 x 0 1/ jacobians

 N 0 x 0 3/ region

 N 0 x 013/ boundary

 L 1 x 1 b_name = "wall"

 IF 224 x 1 b_nodes = 25 26 27

 DF 224 x 6 dfdm_dro = -6.508429988710897E-004 -0.315458254324319 -0.244189479287365

 DF 672 x 6 dfdm_du = -1.322096424261564E-005 -1.028600852743669E-002 -1.216133969346304E-002

 DF 224 x 6 dfdm_dp = -4.014931448911176E-004 3.043218476589740E-004 3.280717477480970E-004

 DF 672 x 6 dfdm_dx = -2.30277856396984 -1907.33010066122 -1354.88229166740

 DF 672 x 6 dfdm_ds = 2123.01237957266 2912.61265541913 3320.35891083859

 IF 224 x 1 bi_nodes = 273 274 275

 DF 224 x 6 dfdm_droi = -6.400226009479414E-004 -0.315350707664798 -0.244378271895287

 DF 672 x 6 dfdm_dui = 1.322096424261564E-005 1.028600852743669E-002 1.216133969346304E-002

 DF 224 x 6 dfdm_dpi = 6.785307642568260E-009 3.320159667084826E-006 2.572324683330609E-006

 DF 672 x 6 dfdm_dxi = 2.30277856396984 1907.33010066122 1354.88229166740

FOI-R--3689--SE

 24

 DF 672 x 6 dfdm_dsi = 0.000000000000000E+000 0.000000000000000E+000 0.000000000000000E+000

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "External_1"

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "External_2"

In a third example the program dforce calculates the Jacobians of the DC60, which

took 1s CPU; the time for the program to read the mesh with 13,5M nodes and the

flow solution being much larger.

N 0 x 0 1/ jacobians

 N 0 x 0 9/ region

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "body"

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "lip"

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "fairing"

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "outlet"

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "extension"

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "farfield"

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "duct"

 N 0 x 0 1/ boundary

 L 1 x 1 b_name = "forebody"

 N 0 x 0 4/ aip_record

 IF 328 x 1 aip_nodes= 5672448 5672116 5842289

 DF 328 x 1 ddc60_dp = 0.000000000000000E+000 -4.432018250705286E-007 0.000000000000000E+000

 DF 984 x 1 ddc60_du = 0.000000000000000E+000 -1.703101059580300E-004 0.000000000000000E+000

 DF 328 x 1 ddc60_dro= 0.000000000000000E+000 -1.394572856681735E-002 0.000000000000000E+000

These can thus be used in Edge by the adjoint solver in order to create right-hand-

sides to the adjoint equation, therefor enabling to calculate efficiently the gradients of

those functions with respect to unlimited number of parameters. A limitation of the

present version is that it is only differentiated in forward mode, only the inviscid

forces have also been differentiated in reverse mode in order to validate the

calculation of the Jacobians.

3.1 Details of implementation

The program force calls routines that calculate the inviscid and viscous forces and

moments. These are the most common functionals used in optimization of aircraft

external aerodynamic. Another functional is very useful for internal aerodynamic, and

its calculation already implemented in Edge: the distorsion factor or DC60.

The program dforce allows creating right-hand sides of the adjoint equations

corresponding to the inviscid and viscous forces and moments, as well as to the DC60.

 FOI-R--3689--SE

 25

3.1.1 Dforce

The routines present at the time of the publication of this report have been generated

using backward difference only for the inviscid forces and moments, application of the

backward differencing not only would involve introducing in Edge routines that are

distributed by INRIA, but it so far failed to produce a code that could be run for the

viscous types of functions (forces, moments and DC60). Those functions have thus

been differentiated using forward difference only. This is a minor limitation for the

DC60 type of function, but in case of the aerodynamic force and moments it reduces

the use of dforce to small meshes because of the cost of FW. Similar difficulties have

been met by others [11]. A common difficulty is the use of branch statements.

3.1.2 Edge solver

Modifications in Edge concern the adjoint flow solver as it it possible for a user to

choose the origin of the right-hand side (RHS), between hand differentiated or

generated by dforce. In the last case the program dforce will run, before running the

adjoint solver, in order to generate an FFA-format file containing all terms of the

Jacobians. The adjoint solver also allows general volume terms for the RHS such as in

the case of the DC60.

FOI-R--3689--SE

 26

4 Conclusions

The application of automatic differentiation (AD) in Edge was carried out within the

NFFP project MADEF and it allowed the development of an analogue program to

force in order to generate right-hand-sides to the adjoint code. This is in particular

beneficial for those functions that have not been hand-differentiated (DC60). It also

allows generating right-hand sides for any functions composed of the forces, moments

and the DC60. So far the simplest way is to use the Edge toolbox in Matlab for

manipulating files and data in FFA format.

However, application of AD requires many transformations of the source code even

for the simplest routines; this is another important outcome of our investigations. The

reason is that most routines in Edge make used of a data structures instead of passing

parameters such as scalars, vectors and arrays when calling routines. This is probably

the case for all large software developed for industrial use. An alternative approach to

AD based on code transformation is operator overloading [8], but it seems to be

essentially restricted to forward differencing, backward differentiation being thus

reserved to code transformations methods. It seems that AD will never be entirely

automatic, unless on the simplest codes, and that following an “adjoint-like” approach

is the main guideline not only to apply AD on larger codes but also in the hope to

circumvent the inherent complexity of backward differentiation [12].

The research on automatic differentiation deals with the efficiency of the transformed

code (memory usagel), activation (templated code), analysis tools for AD application,

reducing the complexity of the transformed code (see examples in appendix of code

obtained with Matlab tools for AD), and the differentiation of mixed-language

programs. Maybe one of the most needed developments of AD remains its level of

automatism [11].

 FOI-R--3689--SE

 27

References
[1] Griewank A, On Automatic Differentiation, Technical report, Argonne National

Laboratory, IL, November 1988

[2] Iri M., Simultaneous Computations of Functions, Partial Derivatives and

Estimates of Rounding Errors – Complexity and Practicality, Japan Journal of
Applied Mathematics, Vol.1, No.2, pp.223-252, 1984.

[3] Cacuci, Sensitivity Theory for Nonlinear systems, I&II, Journal of Mathematical
Physics, Vol.22, No12, 1981.

[4] Christianson B. Reverse accumulation and implicit functions, Optimization

Methods and Software, Vol. 9 pp.307-322, 1998

[5] Hascoet L. and Pascual V., The Tapenade Automatic Differentiation tool:

principles, model, and specification. INRIA Research Report number 7957, May

2012.

[6] Griewank A. and Walther A., Evaluating Derivatives: Principle and Techniques

of Algorithmic Differentiation. Number 105 in Other Titles in Applied
Mathematics. SIAM, Philadelphia, PA, 2

nd
 edition, 2008

[7] http://www.autodiff.org (list of references per application , year, codes etc …)

[8] Yu W. and Blair M., DNAD, a simple tool for automatic differentiation of Fortran
codes using dual numbers, Computer Physics Communications 184, pp. 1446-

1452, 2013

[9] Jones, D.P., An AD Approach using F90 and Tapenade, Queen Mary, University

of London, presentation November, 2009.

[10] Amoignon O., AESOP - A numerical platform for aerodynamic shape
optimization, Journal of Optimization and Engineering, vol 11, pp 555-581, 2010.

[11] Siskind J.M and Pearlmutter B.A., Putting the Automatic Back into AD: Part I,

What's Wrong, School of Electrical and Computer Engineering, Purdue
University, Technical Report, 2008

[12] Naumann U., Call Tree Reversal is NP-Complete, in Advances in Automatic
Differentiation, pp13-22, Lecture Notes in Computational Science and

Engineering, Volume 64 2008, ISBN: 978-3-540-68935-5 (Print) 978-3-540-

68942-3 (Online)

FOI-R--3689--SE

 28

Appendix

Below we show the codes produced by ADimat performing the differentiation of the

Rosenbrook function in Matlab:

The code result of the forward differentiation requires special routines from ADimat at

runtime:

After reverse differentiation the code requires, as in the forward case special routines

from ADimat at runtime:

 FOI-R--3689--SE

 29

FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology

development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-

sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number

of fi elds such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,

protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Automatic Differentiation

applied to Edge in NFFP5

project MADEF

OLIVIER AMOIGNON

FOI-R--3689--SE

ISSN 1650-1942 May 20132

FOI

Defence Research Agency Phone: +46 8 555 030 00 www.foi.se

SE-164 90 Stockholm Fax: +46 8 555 031 00

