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Sammanfattning 

Samhällskritiska funktioner såsom elektricitet och vattenrening är beroende av 

industriella informations- och styrsystem för att fungera. Fram tills nyligen 

bestod dessa system av specialkonstruerade isolerade komponenter. Industriella 

informations- och styrsystemhar har dock utvecklats på samma sätt som vårt 

övriga samhälle, och är nu ofta realiserade av komplexa ihopkopplade IT-system 

som på ett eller annat sätt är anslutna mot Internet. Detta medför att industriella 

informations- och styrsystem är sårbara för IT-attacker på liknande sätt som de 

flesta andra IT-system.   

De extrema tillgänglighetskraven för industriella informations- och styrsystem i 

drift gör det är svårt att utföra IT-säkerhetsexperiment på dem, till exempel att 

leta efter sårbarheter eller testa försvarsmekanismer. För att möjliggöra sådana 

experiment använder praktiker och akademiker särskilda testmiljöer som är 

skapade för att efterlikna verkliga installationer av industriella informations- och 

styrsystem. 

Denna studie undersöker vilka testmiljöer för industriella informations- och 

styrsystem som har föreslagits för vetenskaplig forskning. Särskild fokus ligger 

på fältutrustning, en särskild typ av komponent som anses vara synnerligen svår 

att integrera i testmiljöer. Studien jämför även dessa resultat med resultat från 

produktundersökningar, praktiska erfarenheter samt intervjuer med en tillverkare. 

Utfallen från dessa jämförelser är metoder och verktyg som kan användas för att 

skapa en naturtrogen testmiljö för industriella informations- och styrsystem.  

Studien utfördes i samarbete med andra aktörer, i synnerhet Idaho National 

Laboratory. 

 

Nyckelord: Industriella informations- och styrsystem, testmiljö, IT-säkerhet, 

cyber säkerhet, systematisk litteraturstudie
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Summary 

Critical societal functions such as electricity and water purification depend on 

Industrial Control Systems (ICS) to properly function. Not long ago, these ICS 

were realized by specially constructed isolated devices. Along with the rest of 

our society, ICS have evolved and are now often delivered by complex 

interconnected IT solutions including commercial-off-the-shelf technologies that 

in one way or another are connected to the Internet. As a consequence, ICS are 

vulnerable to IT attacks similarly to most other IT systems. 

Due to the extreme availability requirements on ICS in operation, it is difficult to 

perform cyber security experiments on them, such as vulnerability discovery or 

tests of defense mechanisms. To accommodate such experiments, researchers 

and practitioners turn to testbeds that mimic real ICS.  

This study first surveys ICS testbeds that have been proposed for scientific 

research. Special focus is given to field devices, a kind of ICS component that is 

considered particularly challenging to implement in testbeds. It then compares 

these results with findings from product surveys, practical experiences, and 

interviews with a manufacturer. The outcomes of this comparison are methods 

and tools for creating a high-fidelity ICS testbed.  

The study was conducted in collaboration with other actors, in particular, the 

Idaho National Laboratory. 

 

Keywords: Industrial Control Systems, testbed, IT security, cyber security, 

systematic literature review
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1 Introduction 
Our society depends on various critical services such as electricity, water 

purification and transportation to properly function. Not long ago, the Industrial 

Control Systems (ICS) that supervised and controlled most of these critical 

services were realized by specially constructed isolated devices. Along with the 

rest of our society, ICS have evolved and are now often delivered by complex 

interconnected IT solutions including commercial-off-the-shelf technologies that 

in one way or another are connected to the Internet. The main reasons behind this 

evolution are increased functionality and increased effectiveness, as well as 

reduced costs. For example, IP-based remote control of railroad signaling and 

interlocking systems has increased the level of control of the railroad system. 

The benefits of using IT for critical infrastructure applications are thus clear.  

However, the trend of interconnectivity and COTS has also brought about 

problems. Issues that are common in regular IT architectures, such as malware 

and misconfigurations, do now occur in ICS systems as well. Reduced 

availability due to such issues might be acceptable in regular IT architectures, but 

are generally completely unacceptable for IT that supports critical infrastructure 

services. For instance:  

 Computers along railway tracks in Sweden send continuous data 

regarding the state of the track to remote railway operators. If there are 

more than 15 seconds between two points of data for a device, the 

corresponding track is considered faulty and all trains designated to 

traverse it are blocked [61]. 

 In the Energy Sector, digital protective relays are used to trip circuit 

breakers when power faults are detected - an event that can cause 

significant product damage and personnel harm. This function needs to 

be executed within a few milliseconds of the power fault to be of use. 

To understand and manage the complexity of an IT architecture, e.g., to discover 

and mitigate security vulnerabilities within it, technical audits of different kinds 

are carried out. For instance, it is common practice to conduct penetration tests, 

audits that employ active network scanning and sometimes real cyber-attacks. 

These tests can however, due to their nature, decrease system availability in the 

short term. This is particularly evident for specific IT solutions used to support 

critical infrastructure services as these are often not able to withstand even the 

most basic scanning tools. For example, a study involving Programmable Logic 

Controllers (PLC, see Section 2.3) and the vulnerability scanner Nessus showed 

that the 18% of the tested PLCs crashed as a result of a scan [53]. As a 

consequence, technical audits are generally thought of as (at best) difficult for IT 

architectures that support critical infrastructure services. 
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1.1 Virtualization and testbeds 

To study the vulnerability of IT architectures that are difficult to technically audit 

in the real world, many researchers attempt to copy real IT configurations and 

place these in isolated environments, also called testbeds, where experiments can 

be safely performed. Creating a test bed however comes with various challenges, 

in particular: (1) it can be difficult to achieve a realistic test bed scale, and (2) it 

can be difficult to achieve a realistic test bed configuration. 

One way to achieve a large-scale realistic testbed is through virtualization. 

Virtualization is a technology which concerns isolating computer software in a 

means that enables layers of abstraction, both between different software and 

between software and hardware. For example, a virtual private network (VPN) 

adds a layer on top of a computer network that isolates its users from others on 

the network; the Comodo antivirus uses operating system-level virtualization to 

create a sandbox for isolated web browsing; VMware and VirtualBox use 

hardware virtualization to enable guest operating systems to interface with 

software and hardware; the Quick Emulator (QEMU) use instruction set 

virtualization to provide a complete emulation of computer hardware in software. 

Virtualizing a testbed is attractive for several reasons, for example: 

 It enables running multiple parallel systems on single computer 

hardware. 

 It enables configuration of systems and networks by the use of software 

scripts. 

 It enables saving and loading the state/configuration of the system-of-

systems. 

 It isolates the activity in the testbed from the physical systems as well as 

external systems. 

In other words, virtualization can potentially allow low-cost, replicable and safe 

security studies of IT architectures that have configurations valid to those of real 

ICSs.   

1.2 Objective and research questions   

The objective of this study is to identify how a high-fidelity Virtual Industrial 
Control System testbed can be constructed (hereafter referred to as VICS). The 

work was conducted by the Swedish Defence Research Agency (FOI) as part of a 

joint project in cooperation with the Idaho National Laboratory (INL) and is 

financed by the Swedish Civil Contingencies Agency (MSB) and the U.S. 

Department of Homeland Security (DHS). To meet this objective, the study first 

surveys existing ICS testbeds that have been proposed for scientific research and 

tries to answer the following five research questions (RQs): 
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 RQ1: Which ICS testbeds have been proposed for scientific research? 

 RQ2: Which research objectives do current ICS testbeds support? 

 RQ3: How are ICS components implemented in current ICS testbeds? 

 RQ4: How do existing ICS testbeds manage requirements?  

 RQ5: Which methods are available for virtualizing ICS field devices? 

The first four RQs are addressed to gain an understanding of how previously 

constructed ICS testbeds for scientific research were designed. RQ5 follows from 

the fact that virtualization is a convenient way to manage testbeds and the fact 

that field devices (which is a critical testbed component, see Section 2.3) often 

have specialized hardware, software and logic that are unsupported by current 

virtualization technologies (such as VirtualBox, VMware or QEMU).  

The answers to these five RQs are used to propose tentative means of 

constructing a high quality ICS testbed as well as means of measuring the fidelity 

of such a testbed.    

The outcome of VICS is planned to be implemented in an existing testbed known 

as CRATE
1
 (Cyber Range And Training Environment, see Appendix E) that is 

managed by the Swedish Defence Research Agency (FOI). CRATE has 

previously been used for a variety of cyber security experiments (see e.g. 

[40][41][85]). This is however outside the scope of this pre-study.  

1.3 Related projects 

The work was initiated at a meeting at Idaho National Laboratory involving all 

four stakeholder organizations (MSB, FOI, DHS and INL). At this meeting, the 

basic premises for the project were identified. These premises were then refined 

through a technical agreement document. The INL project that is related to VICS 

is known as Control System Automated Vulnerability Assessment (hereafter 

denoted as AVA).   

The first official project meeting between FOI and INL was conducted on the 

28
th

 of November 2014 between the INL (AVA) principal investigator Craig 

Rieger and the FOI (VICS) principal investigator Hannes Holm. At this meeting 

it was concluded that there were opportunities to collaborate in several areas, and 

that contact should be maintained on a regular basis.  

AVA underwent a feasibility pre-study during 2013 [42]. The objective of this 

pre-study was to “perform a feasibility assessment on the implementation of a 

scalable, integrated capability for replicating ICS systems for rapid automated 
vulnerability assessment (AVA)”. It was sponsored by ICS-CERT and DHS, and 

                                                        
1
 www.foi.se/crate  

http://www.foi.se/crate
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carried out by INL, Lockheed Martin Advanced Technology Laboratories (LM 

ATL) and Draper Laboratory.  

The AVA pre-study [42] focused on Supervisory Control and Data Acquisition 

(SCADA) and Distributed Control Systems (DSC) in the Energy Sector and 

other reference architectures taken from the DHS Cyber Security Evaluation 

Tool (CSET). The study explored a variety of different topics that are relevant to 

testbed creation and vulnerability assessment, including virtualization and data 

collection. It focused on providing snap-shot information on these topics and 

conclusions primarily based on expert competence.  

The AVA pre-study [42] proposes to implement virtualized ICS architectures in 

a testbed developed by LM ATL called ACORN (Automated Construction of 

Realistic Networks). Implementation of some technologies in ACORN, 

particularly SCADA server applications and workstations, are judged easy as 

they build on COTS operating systems. Implementation of ICS specific devices 

(e.g., PLCs and RTUs) are however judged more difficult as they use specific 

real-time operating systems and sometimes proprietary protocols and functions. 

The study mentions three means of managing this issue: (1) involving developers 

that have emulation software for their specific ICS devices (e.g., ABB or 

Siemens), (2) developing a novel virtualization platform based on the Low Level 

Virtual Machine (LLVM) and QEMU, and (3) using real hardware platforms.  

The AVA pre-study recommends data collection for a high-fidelity testbed to be 

performed using a combination of active (e.g., Nmap and OpenVAS) and passive 

(e.g., NetworkMiner and Wireshark) scanning combined with manual and offline 

configuration analysis. 

Vulnerability assessment is recommended to be performed using off-the-shelf 

tools such as MetaSploit in combination with scripts developed by ICS-CERT 

and INL to find known vulnerabilities, and static or runtime analysis (e.g., the 

fuzzer developed by Wurldtech) to find novel vulnerabilities (also called “zero 

days”) [42]. 

VICS builds on the results from the AVA pre-study [42] as described in the 

following bullet list: 

 It provides a systematic literature review. There are many initiatives in 

academia concerning ICS testbeds and virtualization. The present study 

complements [42] with a systematic literature review of scientific work 

done within the area. This is presented in Section 4. 

 It provides a second opinion on how to best create a high-fidelity ICS 

testbed. In addition to providing a systematic review of ICS testbeds, the 
present study also serves to provide a second opinion on how to best 

create a high-fidelity ICS testbed. This is presented in Section 5. 

 It provides a survey of existing ICS manufacturers. Products by different 

manufacturers offer different opportunities regarding testbed integration. 
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The present study provides an empirical survey of existing 

manufacturers. This is presented in Appendix A. 

 It provides a technical analysis of the Siemens S7-400 and S7-1200 

PLCs. Draper laboratories conducted physical assessments of an Allen 

Bradley ControlLogix 1756-L73 (Logix 5573) controller and paper 

studies of the Telvent Sage 303 RTU and ABB Harmony Bridge 

Controller with the purpose of gaining an initial understanding in the 

evaluation of virtualization software candidates. A researcher within the 

FOI project group has previously conducted physical assessments of the 

Siemens S7 series [99]. Experiences from these assessments 

complement those of the Draper laboratories. This is presented in 

Appendix C. 

1.4 Disposition 

This report is structured as follows. Section 2 provides an overview of ICS 

configurations and components. Section 3 provides an overview of methods that 

can be used to implement ICS components in a testbed. Section 4 describes a 

systematic literature review of existing ICS testbeds as well as means to 

virtualize, emulate and simulate embedded devices (e.g. PLCs)
2
. Section 5 

describes means to implement a testbed as well as means for evaluate its fidelity. 

Finally, Section 6 concludes the report and presents possible future research 

directions.  

There are five appendices to the report. Appendix A describes a survey of ICS 

field device manufacturers. Appendix B describes a more detailed description of 

a PLC than what is given in Section 2.3 (see footnote 2). Appendix C describes a 

technical analysis of the Siemens S7 series. Appendix D describes the 

categorization framework that was used during the systematic review. Finally, 

Appendix E describes CRATE, the testbed that is planned to facilitate the ICS 

testbed. 

  

                                                        
2
 Embedded devices are specifically addressed as these components often employ special hardware, 

software and logic that are considered very difficult to virtualize or emulate. 
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2 Industrial control systems 
ICS are systems that connect the digital world with the physical world, and are 

for this purpose often referred to as cyber-physical systems [50]. These systems 

are common in critical infrastructure sectors such as the energy sector, the 

transportation systems sector and the water and wastewater systems sector. The 

configuration of an ICS depends on what sector and what context is concerned, 

however, most ICS systems involve similar components and architectures [90]. 

ICS typically involves components that enable remote monitoring and control of 

physical processes. If this is the case, the ICS is a so called Supervisory Control 

and Data Acquisition System (SCADA) [18].  

An overview of a general SCADA system is presented in Figure 1 (taken from 

NIST 800-82 [90]). Other overviews and case studies describing SCADA 

configurations are given in e.g. [10][61][94]. According to [90], there are four 

overall areas of importance for ICS testbeds: the control center, the 

communication architecture, the field devices and the physical process itself. 

Apart from these four areas, there are also business systems that interact with ICS 

(e.g., an office network). Business systems are based on traditional IT 

components that for the most part can be incorporated into a testbed such as 

CRATE (see Appendix E) as-is. For this reason, they are left out of the scope of 

the present study.  

 

Figure 1. SCADA system general layout (taken from [90]). 

2.1 Control center 

The control center facilitates remote observation and control of physical 

processes such as voltage measurement and breaker control. This service 

includes, for example, systems that allow operators to interact with the process, 

systems that facilitate communication with field devices, systems for storing data 
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on the state of the process, and systems for designing the configuration of the 

ICS. Some important component types within the control center that are 

discussed by NIST 800-82 [90] are described below.  

 The Control Server hosts supervisory control software that 

communicates with lower-level control devices. The control server 

accesses subordinate control modules over an ICS network. 

 The SCADA Server or Master Terminal Unit (MTU) acts as the 

master in a SCADA system. RTU and PLC devices (described below) 

located at remote field sites usually act as slaves. 

 The Human-Machine Interface (HMI) is software and hardware that 

allows human operators to monitor the state of a physical process under 

control as well as modify control settings and operations.  

 The Data Historian is a centralized database for logging process 

information within an ICS. Information stored in this database can be 

accessed to support various analyses, such as statistical process control 

and enterprise level planning. 

 The Input/Output (IO) server is a control component responsible for 

collecting, buffering and providing access to process information from 

control sub-components such as PLCs, RTUs and IEDs.  

2.2 Communication architecture 

The communication architecture enables different components within an ICS to 

exchange information such as control input or information updates. For example, 

the control center generally utilizes an Ethernet network to exchange information 

between control center systems, such as between HMI and MTU; similarly, the 

control center often utilizes modems to communicate with field devices that are 

located in geographically desolate places. Some types of communication 

architecture components that are discussed by NIST 800-82 [90] are described 

below.  

 The Fieldbus Network links sensors and other devices to a PLC or 

other controller. Use of fieldbus technologies eliminates the need for 

point-to-point wiring between the controller and each device. 

 The Control Network connects the supervisory control level to lower-

level control modules. 

 Routers, switches and hubs transfer messages within and between 

networks. Common uses for these devices include connecting a LAN to 

a WAN, and connecting MTUs and RTUs to a long-distance network 
medium for SCADA communication. 

 Firewalls protect devices on a network by monitoring and controlling 

communication packets using predefined filtering policies. Firewalls are 

also useful in managing ICS network segregation strategies. 
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 Modems are used to convert between serial digital data and a signal 

suitable for transmission over a telephone line to allow devices to 

communicate.  

 Remote Access Points are distinct devices, areas and locations of a 

control network that can be used to remotely configure control systems 

and access process data. 

2.3 Field devices 

Field devices process both digital and analog information through an embedded 

system (industrial computer) that contains both sensors and actuators. They are 

designed to function in harsh environments and to have extremely long time 

between failures: Sun et al. [93] show that manufacturers prescribe an average of 

40 years, which translates to 15 years in practice according to the authors’ 

measurements. Important kinds of field devices that are discussed by NIST 800-

82 [90] are described below.  

 A Remote Terminal Unit (RTU), also called a remote telemetry unit, is 

a special purpose data acquisition and control unit designed to support 

SCADA remote stations. RTUs are often equipped with wireless radio 

interfaces to support remote situations where wire-based 

communications are unavailable.  

 A Programmable Logic Controller (PLC) is a small industrial 

computer originally designed to execute the logic of physical hardware 

(e.g., relays, switches and mechanical timers/counters). PLCs have 

evolved into controllers with the capability of controlling complex 

processes, and they are common in SCADA systems. Other controllers 

used at the field level are process controllers and RTUs; they provide the 

same control as PLCs but are designed for specific control applications. 

In SCADA environments, PLCs are often used as field devices because 

they are more economical, versatile, flexible, and configurable than 

special-purpose RTUs. 

 An Intelligent Electronic Devices (IED) is a sensor/actuator containing 

the intelligence required to acquire data, communicate with other 

devices, as well as perform local processing and control. An IED could 

combine an analog input sensor, analog output, low-level control 

capabilities, a communication system, and program memory in one 

device. The use of IEDs in SCADA and DCS systems allows for 

automatic control at the local level. 

As can be seen in the text above, RTUs, PLCs and IEDs are similar devices – 

embedded devices with long lifespan that connect the digital world to the 

physical world. The term used to describe a field device generally depends on the 

context where it is applied. For example, the Swedish railroad uses Siemens S7 
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PLCs as transmitters/receivers of information from/to switches, which contain 

the actual application logic. For this purpose, they are denoted as RTUs by the 

rail operators.  

A more detailed description of a PLC field device is given in Appendix B and a 

survey of PLCs is given in Appendix A. These are provided as field devices have 

more specialized hardware and software than what exists within the control 

center or the communication architecture (that primarily employ traditional 

COTS IT components). Furthermore, as PLCs are similar to RTUs and IEDs, this 

description also somewhat describes these types of components in further detail. 

2.4 Physical process 

There are various physical processes that are observed and controlled by ICS. A 

high-level overview can be given by studying the lists of critical infrastructure 

sectors that DHS
3
 (16 sectors) and MSB

4
 (11 sectors) provide. The lists provided 

by DHS and MSB greatly overlap and concern a wide variety of societal 

functions, from healthcare to commercial facilities. All of these sectors contain 

ICS in one way or another. However, usage of ICS is more central to the 

functionality of some sectors than others. While the present study does not limit 

itself to any single sector, its results are more valuable to these sectors. The 

sectors with the arguably most significant usage of ICS are described below 

(according to the MSB terminology): 

 Energy sector (e.g., production and distribution of energy) 

 Municipal sector (e.g., water distribution and wastewater management)   

 Transportation (e.g., railroads, roads and air transportation) 

The contents of this report are especially relevant for these sectors.  

                                                        
3
 http://www.dhs.gov/critical-infrastructure-sectors  

4
 https://www.msb.se/sv/Forebyggande/Samhallsviktig-verksamhet/Om-samhallsviktig-verksamhet/  

http://www.dhs.gov/critical-infrastructure-sectors
https://www.msb.se/sv/Forebyggande/Samhallsviktig-verksamhet/Om-samhallsviktig-verksamhet/
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3 Integrating components in testbeds 
This chapter describes three methods that can be used to implement ICS 

components in testbeds:  

 virtualization (execute an existing platform in a virtual container), 

 simulation (build a new platform that mimics the desired platform) and 

 hardware (i.e., use the physical platform suggested by a vendor).  

These methods are described in Section 3.1-3.3. A summary and a description of 

the terminology that is used in this report are given in Section 3.4. 

3.1 Virtualization 

Computer virtualization was initiated during the 1960s by IBM to provide 

concurrent, interactive access to mainframe computers in the form of Virtual 

Machines (VM) [17]. The purpose was to enable time- and resource-sharing of 

these mainframes within isolated copies of the underlying system without 

altering the end-user experience of interacting with a physical machine. Interest 

in virtualization then declined during the 1970s and 1980s when hardware got 

less expensive, but regained popularity during the 1990s along the release of a 

wide variety of hardware and operating systems – a trend that is continuing even 

now. [62]  

There are several kinds of virtualization that have very different functionality and 

are applicable in different settings. For example, the Java Runtime Environment 

and the VMware workstation are both virtualization technologies, but serve 

highly different purposes. This diversity has created considerable confusion 

within academia and industry, which sometimes view virtualization as simply 

VMware or VirtualBox without considering how it actually works.  

The purpose of this chapter is to introduce the reader to the concept of 

virtualization and describe how it is defined in the present study. The following 

overall definition of virtualization is applied in this report [62]: 

“Virtualization is a technology that combines or divides computing resources 
to present one or many operating environments using methodologies like 

hardware and software partitioning or aggregation, partial or complete 

machine simulation, emulation, time-sharing, and many others.” 
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Nanda and Chiueh [62] present a survey of virtualization methodologies
5
. These 

methods are presented and related to the scope of the present report in sections 

3.1.1-3.1.3.  

3.1.1 Emulation 

Emulation has the advantage that any kind of guest operating system with any 

kind of hardware requirements (in theory) can be executed on completely 

different physical hardware. For example, an Android-based smartphone running 

an ARM architecture could be emulated on a Windows-based PC running an x86 

architecture. Emulation however has the disadvantage that there is a need to 

construct the translation framework. This is expensive and difficult with known 

architectures (e.g., ARM), and especially so for proprietary architectures (e.g., 

what is used by the Siemens Simatic S7 PLC). For proprietary cases, the 

instruction set has to be completely reversed, which can be a very troublesome 

task (see Appendix C). Emulation can also have a significant decrease in 

performance for the guest due to costly translation operations. Common 

emulation technologies are QEMU, Boch and Crusoe. 

3.1.2 Hardware virtualization 

Hardware virtualization involves allowing the guest machine to execute some 

instructions directly on hardware, whereas other instructions are trapped, 

translated by a Virtual Machine Monitor (VMM) and then executed on hardware 

(in a similar fashion to emulation) [28][62]. A typical instruction that is 

translated by the VMM is when there is a write to the kernel space memory 

space; a typical instruction that is executed directly by hardware is a read from 

user space memory.  

Paravirtualization is a special case of hardware virtualization, where the guest 

operating system must be modified before it is able to run in the virtual machine. 

Such a VMM provides some way for the guest operating system to make special 

calls into it, asking for various tasks to be performed. 

Hardware virtualization is typically divided into hosted operating system and 

bare-metal virtualization [62]. These technologies are described in the following 

two subsections. 

                                                        
5
 There are other relevant works, such as the taxonomy by Smith and Nair [84], the survey by Gu 

and Zhao [29], and the analysis by Robin and Irvine [74]. This report focuses on [62] as it was 

judged best suited for its scope; however, it includes other relevant work where necessary. 
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3.1.2.1 Hosted operating system 

Hosted operating system virtualization concerns when the VMM runs on top of a 

host operating system (e.g. Windows 7). I/O operations that are trapped by the 

VMM are delivered to hardware through the host operating system. Examples of 

hosted operating system solutions include VMware workstation, VirtualBox and 

Microsoft Virtual PC. [62] 

3.1.2.2 Bare-metal operating system 

Bare-metal operating system virtualization involves when the VMM runs directly 

on hardware. This technology is more complicated than hosted operating systems 

as the VMM (rather than the host) has to handle all I/O instructions. It however 

in return enables a higher performance. Example bare-metal solutions include 

Xen, L4 and VMWare ESX. [62] 

3.1.3 Other virtualization approaches 

Three other forms of virtualization are discussed by Nanda and Chiueh [62]: 

operating system virtualization, programming language virtualization and library 

virtualization. These approaches are discussed next. 

3.1.3.1 Operating System virtualization 

Operating system virtualization involves creating a virtual copy of the hosting 

physical machine, but without the demand to setup a completely new machine 

(which is required for hardware virtualization). This technology can be provided 

either by the operating system itself, such as the FreeBSD Jail and Linux Kernel-

based virtualization, or by third-party software such as the Comodo Internet 

Security Sandbox (that creates a virtual machine for “safe” web browsing) or 

Ensim (that virtualizes the machine’s native operating system into isolated and 

independent computing environments). [62] 

3.1.3.2 Programming Language virtualization 

Programming language virtualization involves a virtual machine that supports a 

set of predefined instructions. The two most common forms of programming 

language virtualization are the Java virtual machine and the Microsoft .NET 

Common Language Runtime (CLR). [62] 

3.1.3.3 Library virtualization 

Most applications use application libraries with various application programming 

interfaces (API) and/or application binary interfaces (ABI). Library virtualization 

builds on this fact by providing such library functions to environments that not 

normally supports them. The most common example of library virtualization is 

Wine. Wine is an implementation of the Windows API and can be used as a 
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library to execute Windows applications in Unix environments. Other examples 

are WABI, LxRun and Visual MainWin. [62] 

3.2 Simulation 

Simulation involves creating a model of a process or system that can be used for 

experimentation and evaluation in order to understand the behavior of the system 

and/or evaluate strategies for operating the system [66][78]. 

The purpose of simulation is thus not to enable execution of an existing platform 

(as virtualization), but rather to build a platform that mimics critical aspects of 

the desired platform. Simulation is used for a plethora of purposes, for instance, 

to mimic TCP/IP communication [96], power grids [63] and manufacturing 

processes [48]. 

3.3 Hardware 

Using real hardware (i.e., the actual hardware suggested by a vendor) within a 

testbed naturally provides very high fidelity, but is in return very expensive. For 

example, reaching scale is costly, restoring configurations is difficult, and 

devices are bound to occasionally get bricked due to failed exploits.  

3.4 Summary and terminology 

Of the methods described in sections 3.1-3.3, hardware virtualization is desired 

as it enables high-performance execution of real applications in virtual 

containers. To increase the readability of this report, hardware virtualization is 
hereafter simply denoted as virtualization. Emulation also enables execution of 

real applications, but is slower than virtualization. Simulation is less desirable as 

it is expensive to develop new applications and models, and their fidelity is 

uncertain. Hardware is very expensive and cumbersome to employ and thus 

generally considered a last resort.  
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4 Systematic literature review 
A systematic review of past scientific work was conducted to enable answering 

the research questions. The review follows the guidelines of Kitchenham [47], 

which has been used for several software related reviews in recent years. 

The method of this review is described in Section 4.1; an overview of identified 

ICS testbeds (RQ1) is given in Section 4.2; testbed objectives (RQ2) are 

presented in Section 4.3; how testbeds have been implemented (RQ3) is 

described in Section 4.4; how testbed requirements are managed (RQ4) is 

presented in Section 4.5; how field devices can be virtualized (RQ5) is described 

in Section 4.6. 

4.1 Search method 

The review began with unstructured searches related to the topic with the 

purpose of identifying relevant keywords for systematic searches. As a pilot 

study, Scopus
6
 was queried for articles with the chosen keywords

7
 within their 

titles, keywords or abstracts, yielding a total of 123 matches.  

The relevance of each of these 123 articles was independently judged based on 

title and abstract by randomly chosen pairs of researchers. Redundant judgments 

were used to enable measuring the group’s internal agreement with the statistical 

metric Cohen’s Kappa [15]. The results showed strong agreement
8
, which is a 

sign that the group shares the same view on the project scope.  

Twelve of the 123 identified articles, as well as fifteen articles cited by these 

works, were deemed as relevant and read in detail. This activity amounted to a 

categorization framework that was based partly on information about ICS [90], 

partly on information about virtualization [28][29][62][74], and partly on 

information provided by the articles themselves. This activity was also conducted 

with two reviewers per article, with the purpose of measuring the agreement 

regarding the employed categorization framework. Cohens Kappa indicated 

strong agreement also for these aspects (a Kappa of 0.83). The final 

categorization framework is presented in Appendix D. 

                                                        
6
 SCOPUS is a database that aggregates articles from most conferences and journals such as IEEE, 

ACM, Springer, Elsevier and Wiley. 
7
 security AND (scada OR ics OR “smart grid” OR mtu OR plc OR rtu) AND (virtual OR simulat 

OR emulat) 
8
 A Kappa of 0.88 on a scale from 0 (no agreement) to 1 (complete agreement). 
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A second more comprehensive review was conducted using Scopus and a set of 

refined keywords
9
 that reflect the above mentioned two topics in a similar 

method to the pilot. This review identified 1335 articles. The relevance of these 

articles was judged by their abstracts and titles in the same means as during the 

pre-study, but due to the strong agreement (as shown by Cohen’s Kappa) without 

redundant judgments. Out of the 1335 articles, 63 were judged as relevant and 

read in detail
10

. Of these articles, 52 articles were judged relevant after the more 

detailed review. Data were extracted from these articles based on the 

categorization framework presented in Appendix D. Of the 52 relevant articles, 

40 concerned ICS testbeds and 12 concerned virtualization of embedded devices. 

The results from this literature review are presented in the following sections.  

4.2 Overview of current ICS testbeds 

The systematic literature review identified a total of 40 articles that concerned 30 

ICS testbeds that were planned or currently operational at the time of the present 

study. An overview of these testbeds is described in Table 1. 

As can be seen, almost half of the identified testbeds were located in the USA. 

Five testbeds were only planned ([12], [22], [27], [44] and [98]), while the 

remaining 25 were claimed to be operational to an extent that facilitated technical 

studies related to their stated purposes. It should be mentioned that there are 

various other testbeds, such as DETER [5] and the U.S. National SCADA testbed 

(that is run by the U.S. Department of Energy), that were not directly identified 

by the systematic review. There are two explanations behind this: (1) they had 

either not published their results in forums indexed by Scopus or (2) did not 

specifically concern ICS. The U.S. National SCADA testbed corresponds to the 

prior explanation; DETER is not a testbed that has been designed for the purpose 

of ICS tests and thus corresponds to the latter explanation. The testbeds that 

employ DETER, such as the testbed at the Technical Assessment Research Lab 

in China [25], view DETER as a tool that help realize an ICS testbed (similar to 

Matlab, OPNET or VirtualBox). The present report views DETER and other 

similar testbeds (e.g., Emulab, GENI and PlanetLab) in the same fashion as the 

ICS testbeds that use them.  
  

                                                        
9
 (scada OR ics OR mtu OR plc OR rtu OR IO OR “embedded device” OR “embedded system”) 

AND ((virtuali OR simulat OR emulat OR hypervi OR VMM OR “virtual machine” OR ”dynamic 

recompilation”) OR (testbed OR “test bed” OR “cyber range”)) 
10

 Most of the articles judged as irrelevant concerned implementing the Java Virtual Machine on 

embedded systems or Power Line Communication.  
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Table 1. Overview of ICS testbeds. 

ID University/Organization Country References 

1 American University of Sharjah Abu Dhabi [19] 

2 Queensland University of Technology Australia [49] 

3 RMIT University Australia [2],[70] 

4 
Research Institute of Information 

Technology and Communication 
China [98] 

5 Technical Assessment Research Lab China [25] 

6 Tsinghua University of Beijing China [14] 

7 University of Zagreb Croatia [44] 

8 Queen’s University Belfast Ireland [102] 

9 University College Dublin Ireland [88] 

10 
European Commission Joint Research 

Centre 
Italy [30],[83] 

11 
European Commission Joint Research 

Centre 
Italy [23] 

12 Ricerca sul Sistema Energetico Italy [21] 

13 American University of Beirut Lebanon [76] 

14 University Kuala Lumpur Malaysia [80],[81] 

15 TNO Netherlands [12] 

16 ITER Korea South Korea [91]  

17 Case Western Reserve University USA [58] 

18 Iowa State University USA [33],[34] 

19 ITESM Campus Monterrey USA [75] 

20 Lewis Research Center USA [4] 

21 Mississippi State University USA 
[59],[60],[71], 

[72],[97] 

22 Ohio State University USA [31] 

23 Pacific Northwest National Laboratory USA [22] 

24 Sandia National Laboratories USA [95] 

25 Tennessee Technological University USA [89] 

26 The University of Tulsa USA [35] 

27 UC Berkeley USA [27] 

28 University of Arizona USA [55] 

29 University of Illinois at Urbana-Champaign USA [6],[7],[20] 

30 University of Louisville USA [37] 

4.3 Objectives of ICS testbeds 

An overview of the objectives that the creators of the testbeds present is given in 

Table 2. The most commonly mentioned objective is to use a testbed for 
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vulnerability analysis, with education and tests of defense mechanisms on a split 

second place. These objectives highlight the fact that most testbeds focus on 

cyber security rather than, for instance, performance issues due to UDP packet 

loss. 

Table 2. Objectives of testbeds. 

Objective Testbeds 

Vulnerability analysis 16 

Education 9 

Tests of defense mechanisms 9 

Power system control tests 4 

Performance analysis 1 

Creation of standards 1 

Honeynet 1 

Impact analysis 1 

Test robustness 1 

Tests in general 1 

Threat analysis 1 

These objectives are in general described on a very superficial level. For 

example, the type of vulnerability analysis that is proposed is typically described 

with generic statements such as “It is imperative to analyze the risk to SCADA 

systems in terms of vulnerabilities, threats and potential impact” [12] and “An 

evaluation of the security of SCADA systems is important” [2]. However, as 

stated by Davis et al. [20], vulnerability analysis is not a simple matter: 

“Determining the vulnerabilities of systems using these devices is a 
complicated process because of the complex hardware and software 

interactions that must be considered” 

As vulnerability analysis is a broad and difficult topic, there is a need to break it 

down into more tangible topics in order to yield useful testbed requirements. The 

same reasoning applies for other objectives, such as education and tests of 

defense mechanisms. This is discussed in Section 6.3. 

4.4 Implementation of ICS testbed components 

This section describes how the control center, communication architecture, field 
devices and observed/controlled process are implemented in the 30 surveyed 

testbeds. An overview of the results is described by Table 3. More detailed 

descriptions are provided in sections 4.4.1-4.4.4. 
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Table 3. Number of articles assessing different areas and methods of implementation 
(virtualization, emulation, simulation and hardware). 

Area Covered Virtualization Simulation Emulation Hardware 

Control center 20 4 9 1 11 

Communication 

architecture 22 6 10 3 11 

Fields devices 23 0 14 0 14 

Physical process 12 0 12 0 0 

An overview of the product types that are described in articles concerning the 30 

analyzed testbeds is given in Table 4. As can be seen, various abstraction levels 

and components are mentioned. The most commonly mentioned types of 

components are RTU, MTU, PLC, HMI and IED. These are all mentioned for 

more than one testbed. It is worth mentioning that these definitions are rather 

vague, especially to practitioners. For example, the Swedish railroad has Siemens 

S7 PLCs that are connected to switchgear. The purpose of these PLCs is to 

package/unpackage the proprietary data that the switchgear sends and receives by 

the MTU. For this reason, the Siemens S7 PLCs are denoted as RTUs by 

operators of the Swedish railroad (as they have a specific purpose).  

Table 4. Overview of product types in testbeds. 

Products Testbeds 

RTU 12 

MTU 8 

PLC 8 

HMI 7 

IED 4 

DAQ 1 

Data aggregator 1 

HDBMS 1 

OPC server/client 2 

PDC 1 

PMU 1 

Relay 1 

SCADA server/client 1 

Not covered 13 

There are several components in NIST 800-82 [90] that are not explicitly 

mentioned for any testbed. In particular, the data historian, IO server and control 
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server are not mentioned. The articles do not describe why this is the case. An 

explanation could however be that these components are thought of as integrated 

with the MTU.  

An overview of the communication protocols that are used by the testbeds is 

given in Table 5. Modbus (Modbus ASCII, Modbus TCP or Modbus RTU) and 

DNP3 are by far the most commonly mentioned. OPC, IEC 60870 (including e.g. 

IEC 104), IEC 61850 (including e.g. GOOSE) and Profibus are also mentioned 

for more than one testbed. According to the American Gas Association's AGA-

12 standard [1], there are between 150 and 200 SCADA protocols. There are thus 

a plethora of protocols that are not covered by current testbeds. How common 

these protocols are in practice is however unknown to the authors of this report.  

Table 5. Overview of protocols in testbeds. 

Protocol Testbeds 

Modbus 13 

DNP3 12 

OPC 5 

IEC 60870 4 

IEC 61850 3 

Profibus  2 

Fieldbus 1 

FINS 1 

GOOSE 1 

ICCP 1 

IEEE C37.118 1 

CIP 1 

RJ45 1 

DeviceNet 1 

Genius 1 

Not covered 9 

4.4.1 Control center 

The control center concerns the servers and operator stations that are used to 

remotely observe and control field devices, such as MTU and data historian (see 

Section 2.1). An overview of how control center components are incorporated in 

testbeds can be seen in Table 3. Approximately two thirds of all testbeds contain 

descriptions regarding how their control center components are incorporated. Of 
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these, most utilize simulations (30%) and/or hardware (37%). It is interesting that 

so few (13%) testbeds choose to virtualize the control system components, 

something which to a large extent is possible as they typically involve COTS OS 

such as Windows and Linux (see Section 5.1). 

The virtualization solutions that are mentioned concern DETER, Emulab, GENI, 

PlanetLab and VirtualBox. Simulation-based approaches concern LabVIEW, 

Mathworks Simulink, HoneyD in combination with IMUNES (FreeBSD jails), 

the RINSE network simulator and custom Python scripts. The emulation 

approach involves RINSE (it combines emulation and simulation). Hardware 

concerns standard x86-based computers such as CitectSCADA 6.1 on Windows 

XP (used as OPC server and HMI).    

4.4.2 Communication architecture 

The communication architecture involves components that realize 

communication within ICS, for instance, routers, switches and modems (see 

Section 2.2). 73% of all testbeds contain descriptions regarding how their 

communication architecture is incorporated. Of these, most utilize simulations 

(33%) and/or hardware (37%). As for control systems, many kinds of 

communication architectures are possible to easily virtualize. For example, 

Ethernet is commonly used within ICS and is easily virtualized through e.g. 

VirtualBox (see Section 5.2). Thus, it is interesting that few testbeds (20%) 

choose to do so. 

Virtualization is proposed using DETER, GENI, Emulab or Virtualbox. 

Simulation is proposed using OPNET, SITL communication network simulator, 

Iperf (for background traffic), RINSE, OMNET++, PowerWorld simulator, 

Mathworks Simulink, the Inet framework, NS-2, Networksim, the c2windtunnel 

framework, IMUNES, and custom Python scripts. Emulation is proposed using 

CORE (in combination with OpenVZ) and RINSE. Hardware generally involves 

Ethernet devices such as routers and switches. 

4.4.3 Field devices 

Field devices concern the components that link the physical world to the digital 

world, for instance, a PLC or an RTU (see Section 2.3). 77% of the testbeds 

contain descriptions on how field devices are incorporated – a higher number 

than for control system, communication architecture or process. None of the 

testbeds contain virtualized or emulated
11

 field devices. An explanation for this 

                                                        
11

 One testbed claims to utilize PLC emulation software (the RSEmulate from Allen-Bradley). 

Based on our paper studies, this software however simulates rather than emulates a PLC.   
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result is that ICS field devices generally are based on specialized, sometimes 

proprietary, hardware and software that are unsupported by common 

virtualization and emulation tools. Simulation (47% of all testbeds) and hardware 

(47% of all testbeds) are used instead.   

Used simulation tools include STEP7 (of Siemens S7 PLCs), RSEmulate (by 

Allen-Bradley), LabVIEW, Scadapack LP PLC, Modbus Rsim, Soft-PLC, 

Python scripts with CORE, OpenVZ, PowerWorld server, and HoneyD in 

combination with IMUNES (FreeBSD jails). Hardware includes, for example, 

Allen Bradley Control Logix PLC, National Instruments NI-PXI, Omron PLC 

CJ1M-CPU11-ETN, CompactRIO from National Instruments, ABB 800F, 

Siemens OpenPMC, Siemens S7 PLC, Emerson Ctrl MD, and GE FANUC Rx3i.  

4.4.4 Physical process 

The physical process concerns the physical reality that the ICS observe and 

control (see Section 2.4). Less than half of the testbeds describe how the process 

is implemented. In all cases, implementation builds on simulation models (rather 

than actual physical processes).  

The simulation approaches build on Matlab, Mathworks Simulink, Power 

Hardware-in-the-Loop (OPAL-RT), LabVIEW, PowerWorld, AnyLogic and 

EZJCOM, ANSYS, real time digital simulators, an Abacus solar array simulator, 

a library file (.dll) for EPANET, OMNET, and a custom application written in 

Java.  

4.5 Managing testbed requirements 

Siaterlis et al. [82] describe four overall requirements that cyber security testbeds 

should fulfill:  

 Fidelity: Reproduce as accurately as possible the real system under 

study. 

 Repeatability: Repeating tests produces the same or statistically 

consistent results. 

 Measurement accuracy: Observing tests should not interfere with their 

outcome. 

 Safe execution of tests: Cyber security tests often involve adversaries 

that exploit systems using malicious software. As it can be difficult to 

know the outcome of these activities beforehand, tests must ensure that 

the activity within the testbed is isolated. 

Of these requirements, repeatability and measurement accuracy generally depend 

on activities outside of the technical scope of a testbed. For example, it is 

difficult to ensure that adversaries act in the same way during consecutive tests. 
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For this reason, repeatability and measurement accuracy are excluded from the 

scope of the present pre-study
12

. Safe execution of tests was a key topic during 

the development of CRATE (the testbed that is planned to host VICS, see 

Appendix E), and is thus already rather mature. For this reason, it is also 

excluded from the scope of the pre-study.  

Ensuring testbed fidelity, i.e., that a testbed accurately reflects the desired real 

environment(s), is a critical task as the quality of any data produced from 

interaction with the testbed otherwise is uncertain. More than half (63%) of the 

testbeds are not discussed at all regarding fidelity (see Table 6). The remaining 

testbeds are analyzed in respect to fidelity in two different means: practical 

experiences and/or standards. The fidelity of 23% of the testbeds is argued based 

on real data gathered by the authors: either from quantitative data gathered from 

ICS systems in operation and/or from qualitative personal experiences or 

discussions with ICS manufacturers, providers and operators. For instance, 

"Based on discussions with some industry partners and on our own experience" 

[2] and “In order to capture real image of the power network, a small part of 

power network was taken” [19]. The remaining 13% that discuss fidelity base 

their testbed designs on standards developed by NIST (e.g., the NIST 800-82), 

ISA (e.g., the ISA-99) or IEC (e.g., the IEC Smart Grid Standardization 

Roadmap). 

Table 6. Analysis of testbed fidelity. 

Fidelity Testbeds 

Not covered 19 

Study of real systems 7 

Based on standards 4 

Of the testbeds that are discussed in terms of fidelity, two provide specific 

metrics that can be used to replicate their results with some degree of accuracy. 

The first is Reaves and Morris [71] (a testbed at the Mississippi State 

University), who describe 11 metrics involving Modbus traffic (e.g., byte 

throughput, master-to-slave inter-arrival time, error count and packet size) in 

addition to comparing the result from attacks against testbed components (which 

in this case are simulated) compared to real components. These metrics were 

chosen based on the rule sets of model-based intrusion detection systems. The 

second is Siaterlis and Genge [83], who compare the execution time of their 

testbed to the required execution time of seven physical processes. Their results 

show that they fulfill the execution time for everything but the IEEE 118 bus 

model (the testbed has an execution time of 155ms and the IEEE bus system has 
a requirement of 24ms). 

                                                        
12

 They will however be studied in further detail in future work. 
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An important aspect of testbed fidelity concerns what data should be collected in 

order to recreate a valid testbed design. For example, how a network topology or 

machine configuration best should be captured. Of all testbeds, the Iowa State 

University testbed is the only one that discusses this topic [33]. Hahn and 

Govindarasu [33] discuss how different data collection tools are able to fulfill the 

NIST 800-115 [77] methodology and the NERC critical infrastructure protection 

requirements. They used Wireshark to analyze network traffic, The Open 

Vulnerability Assessment Language (OVAL) Interpreter for analyzing machine 

configurations, Nmap and Sandia’s Antfarm for network and service discovery, 

Firewalk and the access policy tool (APT) for firewall rule set discovery, and 

Nessus for vulnerability scanning. The results showed that these tools overall had 

excellent support for regular IT solutions such as Windows operating systems, 

but poor support for ICS specific components such as PLCs. For instance, “there 

appeared to be numerous communications employing proprietary protocols 
which Wireshark was unable to identify” and “Nmap was not able to identify 53 

out of 157 the open ports utilized in the network. This occurrence is a result of 

the heavy utilization of proprietary and SCADA specific protocols which are not 
recognized by Nmap”. The analysis by Hahn and Govindarasu [33] is also 

limited as it does not study the potential to collect configuration data through 

agent based software, which is a common ICS industry practice (see Section 5.1). 

4.6 Virtualization of embedded devices 

The systematic literature review identified 12 articles that describe methods for 

virtualizing or simulating embedded devices. Of these articles, three present 

surveys (Section 4.6.1) and nine present implementations (Section 4.6.2).  

4.6.1 Surveys of embedded device virtualization 

Heiser [36] provides a number of examples of use cases of virtualization in 

embedded systems, and explain the motivation and benefits, as well as some of 

the differences to virtualization of non-embedded systems. For example, it is 

explained how virtualization enables data privacy layers in modern smartphones. 

However, the author does not discuss ICS field devices. 

Gaska et al. [26] describe a survey of technologies and methods that can enable 

virtualization of avionics applications requiring multiple guest OS environments. 

The results show that there are many questions regarding embedded system 

virtualization that still are unanswered, for example, “How will IT virtualization, 

ARINC 653 virtualization, and MILS/MLS accommodate multicore with 32 
processor devices on chip?”. 

Gu and Zhao [29] present a survey of existing virtualization technologies for 

real-time embedded systems. For example, one section presents Xen-based 
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solutions and another presents KVM-based solutions. The author does however 

not provide any in-depth discussion of any of the surveyed solutions. The most 

relevant part of [29] for the present study is a survey of virtualization 

technologies for “safety-critical systems”. Whether or not these surveyed 

virtualization technologies support field devices is however unknown.  

4.6.2 Virtualization implementations 

Zamorano and Puente [105] describe ASSERT, a virtualization methodology and 

platform that can be used to develop and implement real-time embedded systems. 

It however only supports the LEON processor family. It is also unclear how 

much effort it would require to build software for it, or how valid a developed 

embedded system would be.  

Xu et al. [101] propose handling binary translation requests based on the page 

fault mechanism in the Linux kernel. The authors test their approach using the 

ARM platform and evaluate its performance in relation to emulating ARM using 

the Boch emulator. The results show that the authors approach is more efficient 

than the Boch emulator.  

Yoo et al. [104] argue that the I/O model of current virtual machine monitors 

(e.g., Xen) is not suitable for real-time applications as it lacks predictability and 

does not guarantee deterministic I/O processing. The authors then propose a 

method for VMM resource scheduling given the presence of several VM guest 

OSs. Measurements by the authors show that their approach is promising yet 

requires work. 

Sisu et al. [100] introduce a real-time multicore VM scheduling framework for 

the Xen VMM. Their approach primarily addresses the Xen scheduling issues in 

a similar fashion to Yoo et al. [104]. It does not address the problem that few 

operational field devices are possible to virtualize in Xen. The authors estimate 

the effectiveness of this approach through a resource scheduling experiment and 

find, similarly to Yoo et al. [104], that their approach is promising yet requires 

more work.  

Similarly to Yoo et al. [104] and Sisu et al. [100], Åsberg et al. [3] address the 

timing issues of embedded virtualization. The authors approach does not require 

any kernel modifications, something which is accomplished by a scheduling 

framework called RESCH in combination with a type-2 hypervizor such as 

VirtualBox or VMware. Their approach does however not support embedded 

systems with special hardware and software not covered by common type-2 

hypervizors.  

Chunjie and Hui [13] address the heterogeneity of manufacture-dependent PLC 

programming languages by implementing the IEC 61131-3 standard in a virtual 

machine. This enables porting of IEC 61131-3 compatible applications to other 
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hardware platforms. Consequently, it is a means to standardize PLC 

programming rather than virtualize existing PLCs. The authors implement their 

approach on a C51 based embedded PLC platform and measure the execution 

time of different PLC instructions. A similar approach is presented by Zhang et 

al. [106], who also propose implementing IEC 61131-3 in a virtual machine 

(based on uCLinux). The authors do not attempt to estimate the effectiveness of 

this approach.    

Zhang et al. [107] propose a virtualization approach for cyber-physical systems 

that build on QEMU and the source code of a controller to emulate a PLC and 

Matlab/Simulink to simulate a physical process. Thus, it is a kind of simulation 

rather than a means to virtualize or emulate existing field devices. QEMU and 

Matlab/Simulink are designed to communicate through a socket. They implement 

their approach for two real cyber-physical systems and find that their simulation 

is close to the real systems.  

Son and Lee [86] has built a cross-platform virtualization software for embedded 

devices that is able to run code that has been compiled for its instruction set (a 

kind of programming language virtualization, see Section 3.1.3.2). The authors 

have created a compiler that can manage source code written in C, C++, Java or 

Objective-C. The effectiveness of this approach is however not examined.   

4.6.3 Summary 

As is presented in Section 4.6.1 and Section 4.6.2, there are a number of 

implemented virtualization technologies for embedded systems. However, none 

enables executing a real field device (such as a Siemens S7-1200) within a 

virtual or emulated container. Together with the fact that not a single of the 

identified testbeds virtualize or emulate field devices (see Section 4.4.3) this is a 

clear indication of the difficulty associated with virtualization and emulation of 

field devices. 
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5 Creation of an ICS testbed 
This chapter describes how the control center, communication architecture, field 

devices and the physical process itself might be incorporated into an ICS testbed 

(sections 5.1-5.4).  

The systematic review of existing testbeds identified very few tangible measures 

for fulfilling testbed fidelity (see Section 4.5). As a consequence, this chapter 

builds on additional literature reviews as well as practical experiences of ICS 

components and configurations in the project group in order to identify tentative 

means of creating a high-fidelity testbed: 

 Literature reviews: The results from the systematic review (see Section 

4) in combination with additional searches for specific works not 

covered by it (e.g., regarding network fidelity metrics, see 5.2.2). 

 Interviews with an ICS manufacturer: Interviews with personnel at 

ABB Ventyx in Västerås (a product manager, an IT security architect 

and a lead developer) were conducted to assess the possibility to include 

ABBs SCADA system components in an ICS testbed, as well as 

improve the understanding of ABBs components and configurations.  

 First hand experiences with ICS components and configurations: 

FOI has experience from testing, reversing, implementing and 

developing various ICS components and configurations (see e.g., 

Appendix C or [61]).  

On an overall level, the amount of fidelity that is necessary depends on the 

objectives of the testbed. The systematic review suggests that the possible 

objectives are vulnerability analysis, education and tests of defense mechanisms 

(see Section 4.3). 

All three objectives put one overall requirement on testbed fidelity: The testbed 

should appear realistic when observed and interacted with. This includes both 

the ability to appear realistic during normal usage and the ability to appear 

realistic given the presence of cyber attacks. Here, cyber attacks are defined 

according to [43], [57] and [79]: as a combination of asset discovery (e.g., 

mapping network topology and fingerprinting systems and services), exploits 

(e.g., an attack code that provides administrator privileges of a system through a 

buffer overflow vulnerability) and activity as a result of system compromise 

(e.g., downloading additional files or manipulation of data). In summary, this 

means that an ICS testbed should fulfill the following four general requirements: 

1. The testbed should facilitate interaction between control center, field 
devices and the physical process using the same protocols and with the 

same outcome as a real ICS in operation.  
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2. An automated network scan should provide the same results (topology, 

systems, software and vulnerabilities) as if it was performed on the real 

ICS. 

3. Sniffing network traffic should provide the same results as if it was done 

on the real ICS. 

4. Exploits should provide the same results as if run on the real ICS. 

A possible fifth requirement is that an ICS user (e.g., an operator) should not be 

able to tell the difference between testbed interfaces and real interfaces (e.g., the 

graphical user interface [GUI] of an HMI). However, none of the reviewed 

testbeds (including those addressing education) focuses on high-fidelity GUIs. 

Thus, it is not judged as necessary (although preferable) for an ICS testbed. 

5.1 Integrating the control center 

This section describes how control center components can be implemented in an 

ICS testbed (Section 5.1.1) and how the fidelity of these components can be 

managed (Section 5.1.2).   

5.1.1 Method of implementation 

Hardware and software within the control center generally build on “traditional” 

IT components such as Windows and Linux. For example, older variants of 

ABBs SCADA system Network Manager are run on physical Windows and 

Linux machines (e.g., Windows XP); newer Network Manager systems are run 

on virtualized Windows and Linux machines (e.g., Windows 7). Next to all 

control center hardware and software are thus supported by common 

virtualization technologies such as VirtualBox and thus possible to integrate in a 

testbed as-is. It is thus curious to why current testbeds choose to simulate control 

center components rather virtualize them. One explanation could be that it is 

difficult to obtain real control center components. 

5.1.2 Managing fidelity 

To yield a high-fidelity testbed in respect to the control center, it is necessary to 

be able to replicate ICS control centers in operation. This replication should 

concern three areas:  

1. machine configurations (which operating systems that exist and what 

applications that are installed on them), 

2. application configurations (how installed applications are configured), 

and 

3. application interactions (how installed applications are used and 

communicate with other connected systems and software). 
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Machine configurations can be obtained by cloning hard drives, through 

automated network scanners such as Nessus or Nmap, or by feeding network 

traffic into special parsers such as NetworkMiner. A study by Holm et al. [39] of 

automated network scanners indicate that their accuracy greatly depends on 

whether or not they are allowed to login to the probed systems: their accuracy 

given login was 100% for operating systems (e.g. Windows 7), 92% for 

application servers (e.g. Apache Webserver) and 100% for application clients 

(e.g. Adobe Reader); the accuracy without login was 62.5% for operating 

systems, 67.3% for application servers and 0% for application clients. In another 

study, Holm et al. [41] focus on the ability of network scanners to correctly 

identify software vulnerabilities. The results show that a mean of 41% (given 

login) and 17% (without login) of all existing vulnerabilities are correctly 

identified by the tested scanners, and that 6% (given login) and 7% (without 

login) of all reported vulnerabilities actually are false alarms (i.e., do not exist in 

reality). The results described in [39] and [41] however concern “traditional” IT 

systems such as Linux and Windows OSs and Apache webservers. As reported 

by Hahn and Govindarasu [33], the accuracy would likely be significantly lower 

when probing ICS-specific software or sniffing ICS-specific protocols.    

Application configurations can be obtained by cloning hard drives or by software 

agents that execute client-side code. For example, ABB has specially constructed 

scripts that allow replicating control centers. Services that extract application 

configurations can be agent-based (run locally on machines) or interact with 

machines through remote access services such as telnet, SSH, VNC or RDP.  

Application interactions are more difficult to assess than machine and application 

configurations. This is the case as state transitions typically are not stored per 

default (e.g., the sequence of steps used by an individual when responding to an 

email). Some application usage can be captured with network sniffers (e.g., how 

individuals interact with shared folders); other application usage requires live 

observation of systems in operation using e.g. screen capturing software or 

memory dumps.  

All of these aspects (application configurations, machine configurations and 

application interaction) are necessary to enable high fidelity in respect to 

“regular” control center operations (without considering any adversary). 

It should be easy to provide an attacker with a realistic experience when 

attacking virtual control center components (such as probing or exploiting a 

Windows machine) as automated scanners (e.g., Nmap or Nessus) provide the 

same result as if scanning a physical system and exploits generally works the 

same on a virtual system as if run against a physical system. For example, 

application modules are loaded on the same logical address spaces no matter if 

the underlying OS is virtualized or not.  
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If the objective of the testbed is to function as a honeypot (deceive real 

attackers), virtualization is arguably only applicable given an attacker profile of a 

novice. Experienced attackers can typically easily fingerprint the usage of 

virtualization technologies such as VirtualBox as the guest OS requires special 

drivers, e.g., to interact with the virtual devices exposed by the virtual machine 

manager or to enable the VMM to impose special instructions on the guest OS 

(e.g., a shared clipboard between host and guest). 

Apart from the issues concerning virtual machine fingerprinting, a control center 

contains various kinds of IT applications and protocols that trigger 

communication messages based on different activities. For example, SMB 

triggers based on access of (network) shared folders or printers, ARP requests 

and responses are used to map MAC addresses to IP addresses, and DHCP 

requests and responses are triggered when new system is connected to a LAN 

and when its IP lease timer has expired. A testbed should well reflect such traffic 

to be considered of sufficient fidelity [8]. High-fidelity network traffic is 

arguably of greater importance than high-fidelity local machine usage (e.g., 

writing a document in Microsoft Word) for three overall reasons: 

 Adversaries often depend on network traffic to gain an understanding of 

a network and its systems and software. 

 Some cyber attacks, such as sniffing and pass-the-hash
13

 attacks, require 

operational network traffic to be successful. 

 False alarms given by non-malicious activity is a significant issue for 

network intrusion detection systems (NIDS) such as Snort [38]. To study 

the effectiveness of a NIDS, there is a need to utilize realistic network 

traffic and system interaction. The fact that the criticized [54] DARPA 

1998/1999 intrusion detection datasets [51][52] are still used (see e.g. 

[9][87]) is an indicator that this is a significant issue for the cyber 

security domain as a whole. 

5.2 Integrating the communication architecture  

This section describes how communication architecture components can be 

implemented in an ICS testbed (Section 5.2.1) and how the fidelity of these 

components can be managed (Section 5.2.2).   

5.2.1 Method of implementation 

The identified testbeds use simulations or real hardware rather than virtualization 

or emulation opportunities to implement communication architecture 
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 To bypass a Windows authentication function using an observed password hash sent over the 

SMB protocol. 
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components. This is odd considering that virtualization of the network and 

communication hardware of a SCADA system can most likely be done using the 

standard components of any competent virtualization software. They provide 

virtual switches and hubs as-is. A router can be created by installing an existing 

Linux router distribution; it only needs to be properly configured. Modems can 

be either simulated using a telnet or VPN type of connection, or using a 

hardware-in-the-loop model. The latter alternative is feasible since there is often 

only one modem connected to a system, used as a backup if the ordinary internet 

connection is down. 

Regarding simulation and emulation: the main difference between network 

simulation and emulation is that the first does not run in physical time, which the 

latter does. In network simulation situations the simulated time used is often 

slowed down relative to the physical time. 

There are also specialized virtual network components that can be used. For 

example, there are more than 60 WiFi software routers for Windows and *nix 

available
14,15

. There are also at least 10 network simulators or emulators 

available
16

. 

5.2.2 Managing fidelity 

To yield a high-fidelity testbed in respect to its communication architecture, it is 

necessary to be able to replicate the components and network topologies of ICS 

communication architectures in operation. Similarly to the control center (see 

Section 4.4.1), this can be (somewhat) accomplished through network sniffing 

(e.g., Wireshark) and scripts that consult firewall rulesets (e.g., Firewalk or the 

access policy tool (APT)). The accuracy of such activities has not been 

quantified through scientific research [33]. However, as the communication 

architecture on overall concerns “traditional” components, it is likely similar to 

the statistics presented in Section 4.4.1.  

To be of high fidelity in respect to regular usage (without an adversary), the 

virtual network should handle events such as (random) hardware failures and 

degrading performance due to ageing cables and components, i.e. intermittent 

failures. By measuring the performance of a real network and then creating a 

virtual network with the same performance signature, a high-fidelity copy of the 

real network can been constructed. 

Ricciulli [73] suggests that the overall throughput and its standard deviation is to 

be used to measure the fidelity of a simulated network, together with the 

slowdown needed to accommodate for the heavier load put on the system when 
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simulating. The slowdown is implemented using a synchronizing clock keeping 

track of the simulated time, which runs in a different pace than the physical time. 

The same problem and solution is discussed by Perumalla et al. [67]. 

Poylisher et al. [69] present a rather detailed description of how a virtual network 

can be built. They explain the difference between a simulated network and an 

emulated one, where the first can reach a higher fidelity. The main difference 

between the two types is that network emulators run in real time while simulated 

networks run in simulated time. The authors use SNMP to control their network 

simulator, which is implemented by splitting the network stack in half. The upper 

half (closer to the applications) is executed by the operating systems that host the 

different applications. The lower half (closer to the physical layer) is simulated. 

Poylisher et al. have evaluated their virtual network simulator by measuring the 

latency introduced in the system at different traffic loads. The highest latency 

value is 0.51 seconds at 120Mbps. They do not mention any other network 

fidelity metric in their paper. 

Yoginath et al. [103] addresses the problem with network fidelity where 

simulators run on physical multi-core machines. To properly mimic a real 

network the timing of all the virtual machines and their communication must be 

taken into account. They write that such simulators must address the “concept of 

a intra-node simulation timeline and also ensure the simulation time-order of 

VM execution within each multi-core host node.” 

Covington and Hanson [16] used link throughput, application throughput (sent 

and received), application response time, VTC (Video Teleconferencing) end-to-

end delay, and VoIP jitter to measure the performance of their simulated 

network. 

Sultan et al. [92] present a solution called TimeSync to the timing and 

synchronization problem in virtualized networks. They have concentrated on the 

situation where the simulated time is running slower than the real time. To 

evaluate their solution they use the measured end-to-end packet latency through 

their emulated network. They have also evaluated their solution by looking at the 

latency distortion induced by the size of the simulated network. 

Chertov et al. [11] have compared the use of emulated and simulated networks 

when performing DoS attack experiments. They conclude that there is a large 

difference between the two types of network virtualization methods. The metrics 

they use are: 

1. average goodput
17

 in Kbps (Kbits per second) or Mbps; 

2. average congestion window size in packets, computed for testbed 

experiments by taking an average of the congestion window values; 
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time 
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3. CPU percentage utilization; and 

4. packets per second received and sent on the test network interfaces. 

Pediaditakis et al. [65] have created SELENA, a Xen-based network emulation 

framework, which can be used for general testing of network-based systems and 

actions. They have identified fidelity, scalability and reproducibility as the three 

main properties that have to be considered when designing high fidelity network 

simulators and experiments [65]: 

 The fidelity metric characterizes the precision and accuracy of the 

experiments ability to replicate a real system. Using network 

experimentation fidelity as an example the precision can be measured by 

the differences of the timing properties between the real and the 

experimental system, the degree of reuse of traffic models and 

applications from the real system and how well the experimental 

topology mimics the real system. 

 The scalability of an experimentation platform is also important for its 

usefulness as a substitute for real world networks and systems. There are 

three functional aspects to consider with regard to the scalability of an 

experimental platform: execution time scalability, resource scalability 

and fidelity at scale. These three aspects exhibit Pareto efficiency, that 

is, if one is improved the others are negatively affected. Execution time 

scalability is the physical time needed to replicate an experiment. The 

shorter the time, the more experiments per hour can be run. The resource 

scalability metric measures the experimental platform’s ability to be 

efficient and minimize hardware requirements. The last aspect, fidelity 

at scale, measures how the fidelity of the experimental platform varies 

when the size of the experiment increases. 

 The reproducibility of a network experimentation platform is the third 

key property, according to [65]. The property describes the fidelity of 

experiments over heterogeneous hardware platforms, and the platform’s 

ability to reproduce earlier experiments and their results. Regarding the 

use of heterogeneous hardware platforms the goal should be the same 

perceived processing capacity of the experimental system regardless of 

the actual hardware used. At least the impact of the host’s actual 

processing power should be controllable. 

The most important things to consider when planning experiments in 

experimental network environments are the following questions: “which are 

the metrics that better characterize the system’s resulting behavior” and 

“what is the desired degree of similarity with a reference system” [65]. For 

the platform to be of high fidelity the statistical properties of the answer to 

the first question should closely mimic those of a real system. The similarity 

test used could for example be the Kolmogorov-Smirnov test that compares 
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an empirical cumulative distribution function with a reference cumulative 

distribution function [65]. 

5.3 Integrating field devices 

This section describes how field devices can be implemented in an ICS testbed 

(Section 5.3.1) and how the fidelity of these components can be managed 

(Section 5.3.2).   

5.3.1 Method of implementation 

The use of virtualization requires that the architecture of the guest machine is the 

same as the architecture of the host machine, or in some cases a subset of it. Most 

importantly, the range of possible machine code sets and CPU registers is 

impacted by this demand. I/O devices may differ between the guest machine and 

the host machine since they are more or less emulated by virtualization software 

anyway. Because of these similarity requirements, virtualization of field devices 

on regular computers is only feasible for devices built with the Intel IA32 or 

IA64 architectures. This is for example the case for the ABB RTU560. In all 

other cases we must either use emulation or simulation. 

As long as timing requirements are not critical, emulation is almost always at 

least a theoretical option. The main drawback of emulation is that it is slower 

than virtualization. Emulation, as well as virtualization, also requires a detailed 

knowledge about the architecture of the device to be emulated. Perhaps the 

largest practical barrier to overcome is that the architecture may need exhaustive 

reverse engineering before it is sufficiently well documented. Such reverse 

engineering may be extremely time-consuming, bordering impossible, to 

accomplish. 

Another decision to be made is at which abstraction level to perform the 

emulation. For example, a Siemens SIMATIC S7-400 PLC implements a kind of 

virtual machine itself. In this case the virtualization is more similar to a Java 

virtual machine than to a hardware virtualization product like Oracle VirtualBox. 

Thus, the S7-400 has two different architecture levels. The hardware one is based 

upon Infineon TriCore CPUs, while the virtual architecture runs a Siemens 

proprietary machine code called MC7. Emulation can be performed either at the 

hardware level or at the MC7 level. 

Emulation at the hardware level of a field device assumes that the architecture of 

the true hardware is documented in detail. In the case of the Siemens S7-400 it 

also requires the reverse engineering and emulation of field programmable gate 

arrays (FPGAs) present at the circuit boards. This presents a problem of its very 
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own nature. The general field of FPGA reversing still seems to be in its 

infancy
18

. The next problem after FPGA reversing is that the emulation of the 

FPGAs runs the risk of being so slow as to be completely useless. However, it is 

also conceivable that the FPGA parts of the device can be safely ignored in the 

emulation, as long as the emulated device have no connection to an actual 

physical process. 

The benefit of emulation at the hardware level is that it would enable the 

utilization of the original device firmware. This in turn may lead to a heavily 

reduced emulator size, as well as magnitudes higher emulation accuracy. On the 

other hand there may be intellectual property rights complications when original 

firmware is to be run in an emulated environment. Hopefully such problems can 

be sorted out in cooperation with each device manufacturer. 

In any case, emulation requires a detailed understanding of at least some level of 

architecture, which may not be feasible in practice. The fact that not a single one 

of the surveyed 30 ICS testbeds attempt to virtualize or emulate field devices 

(see Section 4.4.3), in addition to the lack of research on this topic (see Section 

4.6), are proof of these problems. 

If emulation and virtualization are not feasible, simulation is the only option left 

in terms of yielding testbed scale without involving actual hardware. However, 

since simulation only is accurate on the surface it cannot be used for all low level 

security testing. It may be useful for other purposes though, such as education 

and testing at a higher abstraction level than attacks on software (e.g., 

configurations and functions). 

The level of ambition when doing simulation can lead to very different amounts 

of complexity. For example, it may be desirable to fully implement real world 

communications protocols. This would enable communication between the 

simulator and completely external systems. In a fully simulated environment 

there may be no such needs, and then even the communication between different 

parts may be simulated. Another possibility is to implement known 

vulnerabilities into the network stack of the simulator, so various security testing 

tools and exploits can be run against it. The network stack can also be made 

sufficiently similar to the real device so that it looks the same when OS 

fingerprinting is performed against it. 

5.3.2 Managing fidelity 

Field devices are the most difficult type of ICS component to replicate due to 

their special software, hardware and logic. Running a local software agent to 

gather a field device’s configuration is generally not feasible and replicating their 
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disks and memory is not only very difficult, but also generally impractical as 

their special hardware still is required to execute the copied configuration. While 

they have network interfaces that can be probed, doing so can cause them to 

crash [53]. Network sniffers can be used, but have little support for ICS-specific 

protocols [33]. Thus, there is a need to develop novel mechanisms for 

fingerprinting and recreating field devices. This is further discussed in Section 

6.4. 

We did not identify any metrics specifically developed for the fidelity of 

virtualized field devices. The explanation could be that there are no fully 

virtualized field device products on the market, or in academia. Exactly what to 

measure depends on the intended use of the field device. For example, the 

demands on a PLC used for the discovery of novel vulnerabilities are different 

from the demands on a PLC used to test the effects of a specific vulnerability on 

a whole plant. Yet another example is the testing of the effects of malware 

directed at devices, which places special demands on its own. 

At the highest fidelity level, when the virtualized field device is used for 

discovery of novel attacks it should be possible to connect the device to a real 

system and it should work. Another metric can be formulated in the following 

way: the virtual device should not be possible for a skilled attacker to 

differentiate from a real one. At the other end of the fidelity scale it might be 

enough to get the correct response to standard interactions from a system or 

operator. 

The main properties of field device fidelity metrics are functionality and correct 

timing (which is a key focus area for works that attempt to virtualize other kinds 

of embedded systems, see Section 4.6). Hence, a proper handling of latency is 

vital for any high-fidelity virtual application. The latency and its statistical 

properties should be controlled, for example its mean, median, variance and 

distribution. Also the changes over time of these metrics should be taken care of, 

for example the device’s behavior under different load conditions. 

Regarding the behavioral aspect, the fidelity of the virtual field device is related 

to its ability to mimic the physical device in all aspects, for normal input, as well 

as when its stimulus is faulty or missing. A list of tentative example metric 

components for a PLC follows: 

 Are the formats of code, data and other blocks exactly similar or just 

functionally similar to the ones in a real PLC? The difference may be 

important for some vulnerability testing and complete accuracy may be 

crucial for malware testing. 

 Can it handle PLC machine code fully, so any code developed for a real 

PLC can run on it? This is not the case for some PLC emulators that 

currently are available on the market. 
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 Can it handle undocumented aspects of PLC machine code? This may be 

important when testing malware, since malware may insert 

undocumented instructions to throw emulators, disassemblers or 

debuggers off. 

 Does it execute faulty machine code in a similar way to a real PLC? This 

may also be important when testing malware, which may use such 

constructs to throw emulators, disassemblers or debuggers off. A real 

PLC might try to fix the problem and run the faulty machine code in the 

way it assumes the code was expected to run. Or simply do something 

other than crash - a behavior which must be replicated exactly in some 

cases. 

 The four above aspects can be extended to include communication 

protocols. For example, undocumented and faulty protocol options. 

 Are there any undocumented system areas with information that low 

level code can access, and are they similar to the ones in a real PLC? 

This may be very important in malware testing. 

 Can the original PLC firmware be used? This most likely leads to 

significantly higher fidelity than other kinds of implementation. 

 Does the PLC respond as its real counterpart when subjected to overload 

attacks? For example in regard to CPU and memory capacity. 

5.4 Integrating the process  

This section describes how physical processes be implemented in an ICS testbed 

(Section 5.4.1) and how the fidelity of such processes can be managed (Section 

5.4.2).   

5.4.1 Method of implementation 

Leaving aside the fact that a testbed can be connected to a real physical process, 

there is a need to incorporate simulators. The systematic review identified a 

variety of simulators that can be used for this purpose, such as Matlab/Simulink 

models, OPAL-RT’s Power Hardware-in-the-Loop, PowerWorld, and custom 

written applications.  

The interviews with ABB Ventyx showed that they had several process 

simulators; for instance, a power system operator training simulator
19

. The 

respondents perceived it as non-trivial to alter these simulators as this would 

require not only altering the simulator itself, but all related testbed components 

as well (the configuration of field devices, the communication architecture and 
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 http://www.abb.com/industries/ap/db0003db004333/c125739a0067cb49c1257026003d4a31.aspx  

http://www.abb.com/industries/ap/db0003db004333/c125739a0067cb49c1257026003d4a31.aspx
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the control center). Other ICS manufacturers are bound to have similar process 

simulators. 

5.4.2 Managing fidelity 

The difficulty involved with replicating the aspects of a physical process depends 

on the process in question. For example, a water storage tank is simple to 

simulate with high fidelity [60], whereas a power grid requires knowledge 

regarding a plethora of parameters to be simulated with high fidelity [68]. For 

more complex processes such as power grids, it is desirable to automatically 

assess configurations as high fidelity otherwise is difficult to achieve. It is not yet 

clear how this information can be automatically obtained from a general ICS in 

operation. However, it is clear that some ICS store relevant process information 

in control center components. For instance, the components of a power system at 

an electrical level and the relationships between each component are sometimes 

stored as an XML according to the Common Information Model (CIM, see the 

IEC 61970-301) [56] in control center components. This information can be 

extracted to enable modeling an electrical power grid in a simulator.  

Similarly to replicating a physical process, how to study its fidelity also depends 

on the process that is concerned – a high voltage grid has different fidality 

requirements than a water distribution network. For example, how fidelity is 

managed in the power system domain is described by Pourbeik [68] and in a 

white paper by the North American Electric Reliability Corporation (NERC) 

[64]. The white paper by NERC provides a method and metrics for validating 

power system models and emphasizes that the system powerflow model should 

match the real world system. Pourbeik provide a survey of different means of 

measuring the fidelity of different power system models, such as transmission 

line models and power generator models. Fidelity is studied by first subjecting a 

simulation and a real world system to a series of stimuli that are thought to be 

representative of the use of the real world system (e.g., opening a breaker or 

injecting a power fault). The resulting data (e.g., power output response, voltage, 

field current or Watt) is then compared for the simulation and the real world 

system through graphical plots and statistical distribution fitting metrics.  

An additional fidelity problem not considered by [64] or [68] concerns the fact 

that running process simulations in real-time is generally extremely CPU-

intensive [83]. To manage this problem, experiments using process simulators 

(e.g., Matlab/Simulink models) often slow down the execution time of the 

simulation, thus decreasing the CPU load without reducing the validity of the 

experiment. This is unfortunately difficult to accomplish for ICS security 
testbeds as they often involve humans (such as adversaries) and real hardware 

devices, which both require the testbed to perform in real-time. Siaterlis and 

Genge [83] study this problem for the testbed at the European Commission Joint 

Research Centre in Italy by comparing the execution time of their Simulink 
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process models (in milliseconds) to the requirements of different physical 

processes such as power plants, railway systems and IEEE bus grid (see Section 

4.5).   
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6 Conclusions and future work 
The present study was conducted in cooperation with project AVA that is 

managed by INL and DHS. Overall, the findings and suggestions for future work 

match to those described in the AVA pre-study [42], and continued collaboration 

with INL and DHS is deemed as critical for the success of VICS. This is further 

discussed in Section 6.1. Apart from collaboration with AVA, other actors have 

been involved in VICS. For example, there have been meetings with ABB 

Ventyx in Västerås, a visit from David Bakken from the Washington State 

University, a presentation of DETER by Terry Benzel from the University of 

Southern California, and a master thesis is currently being conducted in 

cooperation with the Royal Institute of Technology (KTH) in Stockholm (see 

Section 6.5).  

This study first examined what ICS testbeds currently exist (RQ1), what ICS 

objectives these propose (RQ2), how ICS components are implemented within 

them (RQ3), how they manage testbed requirements (RQ4), and what methods 

are available for the virtualization of ICS field devices (RQ5).  

A total of 30 ICS testbeds were identified. The most common overall objectives 

of these testbeds are to facilitate vulnerability analysis, education and tests of 

defense mechanisms. ICS components are typically simulated, even in cases 

where virtualization is judged as feasible. The fidelity of these testbeds is seldom 

discussed (63%), and when it is discussed, there are only two articles (for two 

testbeds) that quantify fidelity. No existing methods for virtualizing operational 

field devices were identified.  

This study then suggested means of creating an ICS testbed as well as means to 

examine the fidelity of such a testbed. Based on NIST 800-82 [90], an ICS 

testbed should consider four general areas: the control center, the communication 

architecture, field devices and the physical process itself (see Section 2). Based 

on the results from the literature review and experiences within the research 

group, the overall objectives for an ICS (security) testbed are facilitation of 

vulnerability analyses, education and tests of defense mechanisms (see Section 

4.3). The discussion presented in this section builds on these areas and 

objectives.  

Implementation opportunities based on four methodologies were considered: 

virtualization, emulation, simulation or hardware (see Section 3).  An overview 

of suggested implementation methods and possible technical fidelity issues with 

these methods is described in Table 7. 

The results show that control center and communication architecture 

components are possible to virtualize without too many technical issues. It is 

however not a straightforward task to simulate application interaction, such as 

interaction that leads to network traffic between different machines (see sections 
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5.1-5.2). The physical process is deemed best implemented as a simulation 

model, e.g. using Matlab/Simulink (see Section 5.4). While physical process 

simulators are key elements in most existing ICS testbeds (see Section 4.4.4), it 

is unknown to the authors of this report how much value they actually provide – 

discovery and exploitation of software and hardware vulnerabilities is not 

contingent on the availability of a physical process simulator. Future work should 

examine this property in-depth. 

Table 7. Suggested implementation methods and perceived technical fidelity issues. 

Area Implementation Technical fidelity issues 

Control center Virtualization Application interaction 

Communication architecture Virtualization Application interaction 

Field devices Virtualization, 

emulation, 

simulation or 

hardware 

Development of simulator 

Physical process Simulation Development of simulator 

Implementation of field devices (e.g., a PLC or an RTU) depends on the kind of 

device that is considered. Modern field devices are often based on architectures 

and firmware that have current virtualization and/or emulation support
20

. The 

same applies for field devices that manufacturers have created emulation 

software for (it is however not certain that manufacturers would want to share 

such technology). Older or proprietary field devices (such as the Siemens S7 

series) are however not supported by any current virtualization or emulation 

approaches. As a field device can be used for up to 40 years [93], there is bound 

to be a plethora of such devices in operation. For this reason, the AVA study [42] 

proposes using the emulator QEMU in combination with the compiler LLVM to 

emulate field devices. The study [42] recognizes that more research is required to 

validate the applicability of this approach. For this purpose, the present study 

conducted technical assessments of two models in the Siemens S7-400 and 

Siemens S7-1200 series (see Appendix C). The results from this analysis show 

that the S7-400 and S7-1200 build on proprietary and completely different 

machine code and that both are judged extremely difficult to emulate with a high 

degree of accuracy. In other words, the QEMU/LLVM approach would be very 

expensive to implement for the Siemens S7 PLC series. As this cost is directly 

influenced by the diversity of operational field devices, we conducted a survey of 
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 For example, the Schneider Electric Modicon Quantum PLC uses an x86 processor, whereas its 

Ethernet module uses vxWorks 5.4 and a PowerPC processor (MPC870): 

http://www.digitalbond.com/tools/basecamp/schneider-modicon-quantum/.  

http://www.digitalbond.com/tools/basecamp/schneider-modicon-quantum/
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PLC manufacturers (see Appendix A). A total of 341 manufacturers with an 

unknown number of product families and models were identified. It is very likely 

that many of the field devices that the 341 identified manufacturers have 

developed are as difficult to emulate as the Siemens S7 series. Consequently, the 

present study argues that PLCs which are unsupported by current virtualization 

and emulation technologies should be simulated or implemented as hardware. Of 

these two approaches, simulators are judged as sufficient for all testbed purposes 

except software and hardware vulnerability discovery (see Section 6.5).  

Based on the results gathered from the present study, six suggestions for future 

work are identified for the next phase of VICS (to be conducted during 2015 and 

2016). These suggestions are described in Section 6.1 – 6.6. Finally, Section 6.7 

reflects on the overall project goal – creating an ICS testbed – and discusses 

limitations of this study with respect to it.   

6.1 Cooperation with INL and DHS 

There is much to be gained if DHS, MSB, INL and FOI cooperate in the design 

and construction of an ICS testbed. Pooling resources such as personnel, data 

collection scripts, manufacturer and operator contacts enable better results at a 

lower cost. Furthermore, the testbeds that AVA and VICS plan to base the ICS 

testbeds on (ACORN and CRATE) both build on standard virtualization 

technologies. This enables porting entire machines and perhaps even complete 

testbed configurations.  

The present report illustrates the value of this collaboration: it builds on and 

complements the pre-study of AVA [42]. It would not have been possible to 

achieve the results described in the present report without the collaboration with 

AVA. Overall, the results from the present study support the current and planned 

activities within AVA.   

Future work should continue the collaboration that has been utilized so far 

between DHS, MSB, INL and FOI, as well as examine how to further improve it. 

6.2 Involve ICS manufacturers and operators 

Implementing ICS components that build on software and hardware which can 

be virtualized, such as ABBs Network Manager, are judged to require little effort 

and provide high fidelity, while development of novel (simulated) components of 

the same sort is believed to be expensive and provide uncertain (likely low) 

fidelity. For components that are difficult to virtualize, ICS manufacturers 

sometimes have emulators and simulators. Furthermore, to analyze (or replicate) 

their systems in operation, manufacturers have various tools and methods that 

facilitate high-fidelity data collection at a low cost without disrupting the studied 
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system. This, in addition to all the experience that manufacturers possess 

regarding ICS in general and ICS testbeds in particular, suggest that involving 

them is imperative for the success of VICS. 

ICS manufacturers would obtain several advantages from participating in VICS, 

in particular: 

 Vulnerability analysis of their components and configurations under 

controlled conditions. Discovery of novel vulnerabilities is coordinated 

with the manufacturer. 

 The many individuals who participate in the education and awareness 

activities that are organized by FOI get to interact with the components 

and configurations provided by the manufacturer. 

 FOI develops and tests novel defense mechanisms such as network 

intrusion detection systems. Participating manufacturers directly benefit 

from these mechanisms as they per default are customized for their 

solutions.      

Similarly to ICS manufacturers, ICS operators have valuable deep knowledge on 

ICS components and configurations. The key difference is that ICS operators 

have specialized knowledge about their specific installations, whereas ICS 

manufacturers have more general knowledge of their developed systems. A high-

fidelity testbed thus require involvement also of ICS operators. Operators would 

benefit from the participation in several ways, in particular: 

 Vulnerability analysis of systems in operation under controlled 

conditions, as well as suggestions for how to mitigate discovered flaws.  

 Participating operators directly benefit from defense mechanisms 

developed and tested by FOI as they per default are customized for their 

systems.      

The Swedish national center for security in industrial control systems and critical 

infrastructures (NCS3) is managed by FOI and funded by MSB. NCS3 has 

connections with various operators and manufacturers. Thus, VICS would 

benefit from coordinating these activities with NCS3. 

6.3 Identify tangible testbed objectives 

The three identified testbed objectives (vulnerability analysis, education and tests 

of defense mechanisms) are described on a very superficial level for all existing 

testbeds (see Section 4.3). To be able to relate these objectives to actual testbed 

design decisions, there is a need to break them down and make them more 

tangible.  
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One means to make them more tangible is to employ taxonomies, e.g., the 

taxonomy for ICS vulnerability assessment which is presented by NIST 800-82 

[90]: 

 Policy and Procedure Vulnerabilities are vulnerabilities due to 

incomplete, inappropriate or nonexistent security documentation, 

including policy and implementation guides (procedures).  

 Platform Vulnerabilities are vulnerabilities due to flaws, 

misconfigurations, or poor maintenance of their platforms, including 

hardware, operating systems, and ICS applications. 

 Network Vulnerabilities are vulnerabilities due to flaws, 

misconfigurations, or poor administration of ICS networks and their 

connections with other networks. 

These three topics contain a total of 71 more concrete types of vulnerability 

assessments that can be used to create better requirements for ICS testbeds. For 

instance, if one wishes to analyze the presence of the platform vulnerability 

buffer overflow, there is a need for real software to be in place. This would 

preferably involve hardware, and at worst virtualization or emulation: simulation 

simply would not be sufficient (as the software code-base would differ). 

The above reasoning applies also to the other objectives such as education and 

tests of defense mechanisms. For example, an ICS security novice would not 

notice if an ICS environment is incomplete or if a PLC communicates a bit 

differently than what it typically does in the real system, whereas an ICS expert 

would call for a higher fidelity regarding both of these aspects to perceive a 

testbed as realistic.  

Another means to make the objectives more tangible is to relate them to the 

activities at FOI. Within vulnerability analysis, FOI conducts both system-level 

(e.g. [61]) and component-level (e.g. [99]) vulnerability discovery. For the prior, 

simulated field devices are likely sufficient as the primary attack vector generally 

concerns the control center (which is judged possible to virtualize). For the latter, 

real software (and preferably hardware) is required. Within education, FOI 

provides courses and cyber defense exercises (CDX) that are aimed both at 

beginners, intermediate and advanced ICS and IT users. None of these 

educations are judged to require real field devices as they do not focus on 

vulnerability discovery on that level of abstraction. When it comes to tests of 

defense mechanisms, FOI has previously used CRATE to test a variety of cyber 

security mechanisms, such as NIDS [85], automated network scanners [41], and 

the accuracy of system-level vulnerability metrics [40]. Whether or not simulated 

field devices are adequate depend on what defense mechanism is concerned.  

A third means to make the objectives more tangible is to survey the opinion of 

ICS manufacturers and operators. This is a necessity for several reasons, in 

particular: (1) these actors have significant practical experience on the matter and 
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(2) it facilitates increased involvement with them, which is imperative for the 

success of VICS (see Section 6.2). 

6.4 Develop tools for fingerprinting and 
recreating ICS configurations 

There is a need to develop a methodology for recreating ICS in operation. One 

important aspect within this methodology is to collect data on ICS configurations 

in a resource-effective, accurate and non-disruptive manner.  

One important aspect within data collection concerns automatization using 

methods such as network scanning (e.g., Nmap or Nessus) and sniffing (e.g., 

Wireshark or NetworkMiner). Automated tools enable recreating operational ICS 

configurations for a lower cost and with higher fidelity than what is possible to 

achieve from interview-based methods. These methods might have sufficient 

accuracy for general IT applications [39][41], but lack the ability to accurately 

identify ICS specific components such as field devices [33]. Consequently, there 

is a need to develop ICS-specific tools that can be used to capture data in a 

means that a testbed can parse configurations from. A potential bonus result from 

this work could be novel intrusion detection systems, algorithms and rulesets, 

such as described by Hadžiosmanović et al. [32] and Fovino et al. [24].  

Apart from data collection, there is a need to generate valid application 

interaction within the ICS testbed (see Section 5.1). CRATE, the testbed that 

VICS is planned to be based on (see Appendix E),  currently has user agents 

(bots) that are able to access shared folders, read email, execute files and browse 

the web. These bots should be extended with the capability to interact in a means 

that is representative for ICS.  

When data on application configurations and interactions have been collected, 

there is a need to project this as ICS testbed configurations. To fulfill this 

activity, there is a need to extend CRATE with such functionality. 

Finally, there is a need to develop methodology and tools for ensuring that a 

testbed configuration is valid. Some preliminary metrics and thoughts on this 

subject are presented in sections 5.1-5.4.   

6.5 Develop simulated field devices 

Our results indicate that virtualizing or emulating field devices rarely is a feasible 

solution. An alternative means to reach testbed scale is to implement simulation 
models of field devices. Simulation is adequate when it doesn’t compromise the 

fidelity of a testbed with respect to the objectives of an experiment. In practice, 
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we believe that simulation is acceptable for most objectives except software and 

hardware vulnerability discovery. 

An acceptable simulated field device should be able to function as a real field 

device both under normal (non-malicious) usage and under the presence of an 

adversary (see Section 5): 

1. Replacing a real field device with the simulated field device should 
not impact the ICS. The simulated device should not impact the state of 

the process (e.g., be able to react to a power fault in the same way as a 

real PLC) or the state of the control center (e.g., act on commands from 

SCADA [for instance, open a breaker] and send measurements to 

SCADA [such as voltage]). What applications, protocols, and logic 

(according to IEC 61131-3) that should be supported depend on the 

desired ICS configuration. One approach could be to incorporate 

existing simulators such as the Modbus Rsim or the Siemens SIMATIC 

PLCSIM simulator. Ideas for other approaches are given by the testbeds 

that have chosen to simulate field devices (see Section 4.4.3, e.g., [2], 

[70], [35] and [49]) as well as Chunjie and Hui [13] and Zhang et al. 

[106], who propose means of implementing IEC 61131-3 in virtual 

machine containers. Discussions with operators and manufacturers 

would also be beneficial to conduct.  

2. An adversary scanning a simulated field device should not be able to 

tell the difference between it and its portrayed real field device. 

Adversaries use both active (e.g., Nmap or Nessus) and passive (e.g., 

Wireshark) data collection methods to scan IT components such as field 

devices. To be of high fidelity in regard to active scanning, the field 

device should respond in the same way as its portrayed real device when 

subjected to network traffic. One means of accomplishing this task is to 

use Honeyd
21

, a software that can be used to simulate everything from 

an entire operating system to the network stack. For example, Honeyd 

can be used to simulate network service responses of a Siemens S7-

1200. FOI has previously both been a user and a developer of Honeyd. 

To be of high fidelity in regard to passive scanning, a field device should 

employ the same network stack as its portrayed real device. This is the 

case as adversaries profile applications based on protocol 

implementation (i.e., actual network traffic) rather than protocol 

specification. Thus a field device should not only fulfill the first 

requirement described above, but its protocol should be (at best) 

identical to the desired implementation. Fidelity in respect to passive 

scanning is thus more difficult to achieve than for active scanning, but 

arguably also less important as active scanning is more accurate and thus 

more frequently used by adversaries. 
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 http://www.honeyd.org/  
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3. An adversary exploiting a simulated field device should not be able 
to tell the difference between it and its portrayed real field device. 

As of March 2015, the Open Source Vulnerability Database
22

 contains 

1030 vulnerabilities that contain the word “SCADA” in their 

descriptions. Of the vulnerabilities that concern field devices, some 

enable attackers to disrupt a device (such as bricking it or blocking 

network communications); others’ enable attackers to install new 

instructions on it. For instance, CVE 2014-5074 enables an attacker to 

remotely shut down a Siemens S7-1500 PLC, and the malware Stuxnet 

infects memory block DB890 of the Siemens S7-300 PLC
23

 (to 

periodically adjust motor rotation speed). A simulated Siemens S7-1500 

or S7-300 in a Linux kernel would per definition not allow these attacks 

to succeed as its codebase would differ from the real devices. For this 

reason, it can be very difficult to enable many exploits to work on a 

simulation in a way that an attacker expects. One means of 

accomplishing this task could be to create a ruleset corresponding to 

known exploits and implement this ruleset in the simulated field device. 

Incoming packets are matched against the ruleset and if an exploit is 

deemed successful, an appropriate outcome is triggered. For instance, an 

exploit corresponding to CVE 2014-5074 would serve to shut down the 

simulator. An example ruleset and pattern matching system that could be 

used for this purpose is the NIDS Snort. 

VICS is currently co-supervising a master thesis with Professor Lars Nordström 

from the department of Industrial Information and Control Systems at KTH that 

concerns creating simulated field devices. This master thesis is planned to be 

completed by July 2015. 

6.6 Automated vulnerability discovery 

The AVA study [42] suggests that automated discovery of vulnerabilities within 

ICS configurations as a key ICS testbed component. The present study left out 

this aspect due to the time and resource constraints that are involved. We agree 

with [42] that it is a key activity and thus aim to involve it in future work. This 

component should involve both identifying publicly known vulnerabilities and 

novel vulnerabilities (“zero days”), as well as suggesting mitigations for such 

flaws. 
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 http://osvdb.org  
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 http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process  

http://osvdb.org/
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process
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6.7 Develop a functional testbed  

The final envisioned result of VICS is a framework including methods and tools 

for replicating ICS in operation within an isolated virtual environment building 

on CRATE. Extensive work is required to accomplish this task and the activities 

described in sections 6.1-6.6 denote the first steps to realize it. A comprehensive 

implementation plan relating these activities to the larger goal should be created. 

This plan should be iteratively updated with technical specifications and design 

documents. 

Furthermore, this report has focused on the various technical issues related to 

implementing an ICS testbed. However, there are many other issues that were not 

considered, in particular: 

 It is uncertain how an ICS testbed best should be administrated and 

managed when it is operational (and in the long run).  

 If no manufacturers or operators want to participate with their 

components and configurations, there is a need to implement SCADA 

simulators. It is uncertain how such an activity best should be 

addressed
24

.  

 When extracting ICS data, there is a need to anonymize gathered data 

without compromising its validity. There are to the authors’ knowledge 

no standard methods that can be used for this purpose.  

Issues such as these need be addressed by future work. 
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 That said, the value of a testbed without any interest from manufacturers or operators is 

questionable. 
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Appendix A. Survey of field devices 
To create a testbed that is representative of the real world, there is a need to 

understand it. For this purpose, we surveyed the market of field devices (PLCs, 

RTUs and IEDs). We focused on field devices rather than control center and 

communication architecture components as the latter both can be virtualized 

through VirtualBox (and thus are possible to implement in CRATE as-is), while 

the prior often have specialized hardware, software and logic that are 

unsupported by current virtualization technologies (and thus require extending 

the functionality of CRATE).  

The survey was carried out by extracting a list of field device manufacturers 

from three web sites
25,26,27

 that contained information regarding ICS hardware 

and software suppliers
28

. All hits containing the string “manufacture” were 

chosen and the lists were parsed into a simple database format with one hit per 

row. We manually deleted rows with obvious duplicates.  

The resulting list contains 341 unique company names, of which the ten largest 

manufacturers of ICS equipment world-wide
29

 are ABB, Alstom, Emerson 

Electric, General Electrics, Honeywell, Omron, Rockwell Automation, Schneider 

Electrics, Siemens and Yokogawa. The product ranges of these companies were 

not studied in depth. However, it is safe to say that there is a large variety of 

PLCs around. For example, there are five different Siemens S7 PLC product 

series alone (with an unknown number of submodels, see Appendix C). As field 

devices have extremely long lifespans (manufacturers claim up to 40 years [93]), 

there is bound to be products from different developers, series and generations in 

real-world operation. For example, the Swedish railroad system has operational 

switchgear that was developed between the 1960s (without embedded computers 

altogether) to the 2010s (that consist of a collection of servers, including 

common IT protocols such as DHCP and SMB) [61].  

Consequently, if the market shares are fairly evenly distributed among the ICS 

manufacturers, virtualization, emulation or simulation should be used as a 

general, possibly modularized, platform instead of product specific platforms. 

                                                        
25

 http://www.plcs.net/chapters/links.htm,  
26

 http://www.thomasnet.com/products/controllers-programmable-logic-plc-18190900-1.html 
27

 http://www.automation.com/suppliers/automation-product-manufacturers/product-

category/programmable-logic-controllers-plcs  
28

A future project will survey the Swedish ICS market, perhaps through a questionnaire in 

conjunction with an FOI course that is attended by personnel from the major ICS operators in 

Sweden. 
29

According to http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-

Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-

Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-

and-Geography-Analysis-Forecast-to.html  

http://www.plcs.net/chapters/links.htm
http://www.thomasnet.com/products/controllers-programmable-logic-plc-18190900-1.html
http://www.automation.com/suppliers/automation-product-manufacturers/product-category/programmable-logic-controllers-plcs
http://www.automation.com/suppliers/automation-product-manufacturers/product-category/programmable-logic-controllers-plcs
http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-and-Geography-Analysis-Forecast-to.html
http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-and-Geography-Analysis-Forecast-to.html
http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-and-Geography-Analysis-Forecast-to.html
http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-and-Geography-Analysis-Forecast-to.html
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Appendix B. Overview of a PLC 
A PLC (Programmable Logical Controller) is a small industrial computer that is 

designed to operate in harsh environments (e.g., cold, hot or moist), where it 

performs logical simple instructions and is connected to real physical hardware 

like water dams or oil platforms.  

PLCs have analog and/or digital inputs and outputs. They can also have relay 

outputs, serial communication, and motion and process control. Modern PLCs 

often have a LAN port to support IP based traffic (TCP/IP). PLCs can have 

different extension modules like additional physical outputs or extended 

communication capabilities (e.g., an additional Ethernet port).  

The internal properties of a PLC include timers, hardware and software 

interrupts, ladder logic programming capabilities, different functional blocks 

(e.g., organization blocks (OB), see the next section), counters and real-time 

characteristics. 

There are a plethora of PLC manufacturers and most of them have many 

different PLCs for different working environments. As it is a computer it 

contains a CPU, firmware, memory modules and a hard drive function (typically 

a flash chip). Commonly used CPUs are Motorola 68000, Motorola 68020, 

Motorola 68030, Motorola 68040, Intel 80C186, Intel 80C386 and Intel 80C486. 

FPGAs and ASICS are also used.  

The tasks that are to be conducted by a PLC are determined during its scan 

cycles, where the PLC reads inputs, writes outputs, executes user program 

instructions and performs system maintenance and background processing. A 

scan cycle is triggered by a timer, hardware interrupt or software interrupt 

(specific condition). A PLC typically has real-time requirements regarding when 

tasks must be completed. Thus, it is not enough to complete a task - it has to be 

done in a specified time frame.  

A scan cycle is carried out in the following manner: First the PLC reads the 

physical inputs and stores them in the process image input area memory (in 

RAM). It is important to write the inputs into the process memory so they do not 

change during the execution phase. If different calculations use the same input 

data it needs to stay the same. It then executes the user program instructions and 

calculations. It starts with the lowest number OB block and steps through them in 

numerical order. An OB cannot call another OB to perform an operation. That 

rule ensures that all OBs will be executed in sequential order. Then, the output 

values are updated in the process image area. Finally, the resulting outputs are 
written to the physical outputs. 
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There is a diversity of automation (industrial) protocols used by PLCs [45], [46]. 

Some are standardized
30

 (e.g., Modbus and DNP3); some are proprietary and 

undocumented (see e.g. Appendix D). Commonly used wired protocols include 

CIP (Common Industrial Protocol), Modbus (RTU, ASCII or TCP), DNP3, IEC 

60870-5, IEC 61850, IEC 62351 (a security layer added to other protocols such 

as GOOSE), OPC, Profinet IO and CAN. Commonly used wireless protocols 

include ZigBee and HART. 

The protocols have a diversity of functionality. Important ones are querying a 

state for a field device, query if a switch is on or off. Other uses are to set a 

switch to either on or off or to collect measurement data, for example 

temperature readings or a water level. The main functions are either collecting 

data or setting data on the device.   

The protocols support a variety of other functionalities that are rarely used under 

regular run operation. Two examples are to update the PLC firmware or to 

change the ladder logic in the PLC.  

 

                                                        
30

 The actual implementation of a standardized protocol can however be proprietary. 
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Appendix C. Siemens S7 technical 

analysis 
Siemens SIMATIC S7 is the sixth and current generation of Siemens control 

systems, with its oldest predecessor SIMATIC G launched in 1959
31

. The S7 

generation in turn consists of a number of product lines: S7-200, S7-300, S7-400, 

S7-1200 and S7-1500. The S7-200 is an obsolete product line which has already 

been superseded by the S7-1200. These two represent the low end of S7 PLCs. 

The S7-300 contains the middle range PLCs and the S7-400 the high end. The 

most recent product line is the S7-1500, launched in 2013. Until 2020 it will only 

complement the S7-300 and S7-400 product lines but then finally succeed 

them
32

. 

The following description is based upon FOI studies of the S7-400 and the S7-

1200 PLCs. Parts of the results have previously been documented in an FOI 

report [99]. 

The S7-400 and the S7-1200 are very different when compared at a low level. 

They use different machine languages and different communication protocols for 

the configuration of the PLCs. 

The S7-400 protocol stack consists of several layers. Ethernet is at the lowest 

level, followed in turn by IP, TCP, ISO-TSAP (ISO Transport Services Access 

Protocol) and ISO 8073, also known as COTP (Connection Oriented Transport 

Protocol). The role of the last two protocols is more or less to enable the use of 

ISO-style connection oriented protocols on top of TCP. Finally, above COTP, we 

find the proprietary Siemens S7 protocol. The S7 protocol is somewhat 

extensive, but large parts of it have been reverse engineered by researchers 

outside of Siemens. 

The S7-1200 protocol stack also consists of several layers, with Ethernet at the 

lowest level followed by IP, TCP, ISO-TSAP and COTP. The protocol on top of 

COTP is however completely different from the old S7 protocol used by the S7-

400. A small part of the protocol has been reverse engineered for internal use at 

FOI. This resulted in the discovery of two novel denial of service vulnerabilities 

in the S7-1200 PLCs. It also made it possible to create a handful of 

demonstration tools for control systems security courses held at FOI. The S7-

1200 protocol was partly reversed in both its second and third versions. The third 

version has some, although lacking, protection against replay attacks. This 

protection was also circumvented through the FOI research. 
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http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2005/history_

of_industrial_automation.htm  
32

 https://support.industry.siemens.com/cs/#document/67856446?lc=de-WW  

http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2005/history_of_industrial_automation.htm
http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2005/history_of_industrial_automation.htm
https://support.industry.siemens.com/cs/#document/67856446?lc=de-WW
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The S7-400 PLCs implement a kind of virtual machine on top of the hardware 

CPU. For example, inside each of the S7-400 CPU units available at FOI are two 

Infineon TriCore processors. While a long unconditional jump in this 

architecture begins with the machine code byte 0x1d, a similar unconditional 

jump inside the PLC virtual machine begins with the machine code bytes 0x70 

0x0b. The machine code inside the virtual machine is called MC7 (Machine 

Code 7) in the S7-400 architecture. The corresponding assembler language is 

called STL (STatement List). The STL language is entirely documented by 

Siemens, while the MC7 machine code is undocumented. However, independent 

researchers have been able to reverse engineer large parts of MC7. Further, some 

of the blank spaces have been reverse engineered at FOI for internal use. 

The S7-1200 PLCs utilize a completely different kind of machine code compared 

to the S7-400 PLCs. At this point we have not been able to identify the exact 

architecture of the hardware CPUs used in the S7-1200 series. Neither do we 

have any information about the PLC machine code other than that it is dissimilar 

to MC7. The two machine codes may even be the same in this architecture, with 

no virtual machine layer present. Reversing the machine code for S7-1200 is 

harder than reversing MC7 because there is no STL for the S7-1200 product line. 

It follows that one cannot easily insert known instructions and then investigate 

the corresponding machine code. Instead, an unknown number of unknown 

instructions are generated from each atomic higher level construct with the 

available development tools. 

We have also studied various block headers and footers internal to the S7-400 

system. These are undocumented by Siemens as well, and they also vary in exact 

layout depending on where in the system they are found. We have been able to 

reverse a few of these in quite good detail, enabling us to decode some further 

information from the Stuxnet worm than previously published. 

Too much of the S7-400 MC7 level architecture is still completely 

undocumented to realistically start the design of a high accuracy emulator at the 

MC7 level. The S7-1200 is still mostly a large unknown, which may finally turn 

out to be either easier or harder to emulate with high accuracy. Another 

possibility is to emulate at the hardware level instead of the MC7 level, which is 

something we have only recently started to investigate. 

Finally, it might be possible to build something based upon the Siemens 

SIMATIC PLCSIM simulator. The feasibility of this solution depends both on 

the low level accuracy of PLCSIM and on the cooperation of Siemens. At present 

we however have very limited low level knowledge regarding the PLCSIM. 
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Appendix D. Categorization framework 

 

  

# Variabel level 1 Variabel level 2 Description Example

1
Type of 

contribution
Testbed/Other If the paper discusses a testbed Testbed

2 Objectives - What testbed objectives that are given
Vulnerability analysis, 

security forensics

Discussion If fidelity is discussed in the paper Is discussed

Data collection
Suggestions for data collection (to yield 

realistic testbeds)

Portscanning with 

Nmap

Metrics
Specific metrics for measuring fidelity that 

are mentioned

Packet arrival rate for 

Modbus TCP

4 Implemented - If the testbed has been implemented Yes

5 Protocols - ICS-specific protocols that are mentioned OPC, Modbus

6 Devices -
ICS-specific product types that are 

mentioned

MTU, Database 

Historian

Virtualization Virtualization solutions that are employed VMware, VirtualBox

Simulation Simulation slutions that are employed Matlab, Opnet

Emulation Emulation solutions that are employed QEMU

Hardware Employed hardware ABB WS500

Virtualization Virtualization solutions that are employed VMware, VirtualBox

Simulation Simulation slutions that are employed Matlab, Opnet

Emulation Emulation solutions that are employed QEMU

Hardware Employed hardware Siemens S7 PLC

Simulation Simulation slutions that are employed Matlab, Opnet

Hardware Employed hardware Power system

Virtualization Virtualization solutions that are employed VMware, VirtualBox

Simulation Simulation slutions that are employed Matlab, Opnet

Emulation Emulation solutions that are employed QEMU

Hardware Employed hardware Cisco router 

11 Other -
Information that do not fit any other 

category
-

Fidelity3

10 Communication

Control System7

8 Field devices

Process9
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Appendix E. Cyber Range And Training 

Environment (CRATE) 
A cyber range makes it possible to design and deploy IT environments of 

considerable size and complexity, and expose them to cyber security threats 

under realistic conditions without putting operational systems at risk. The 

Swedish Defence Research Agency (FOI) develops and maintains a cyber range 

named Cyber Range And Training Environment (CRATE)
33

, which is used by 

FOI for cyber security research and training.  

In terms of hardware, the infrastructure consists of a server room, some 350 

servers, network switches, network cables and auxiliary equipment (e.g., 

specially designed portable devices that allow secure remote access). However, 

the main component and the more costly and complicated part of CRATE is the 

software framework necessary to enable the use of the hardware for cyber 

security research and training. The framework consists of a set of tools, which 

include for example: 

 A web-based interface (CrateWeb) to specify desired computer networks  

 Software packages and desktop software applications of various types 

and versions.  

 A library of virtual machines (VMs) with different operating systems 

and installed applications. 

 Scripts to automatically deploy virtual machines and networks. 

 A scripting infrastructure to configure individual virtual computers (e.g., 

network interfaces, hostnames, users and passwords). 

 Tools to monitor and log events taking place in the infrastructure. 

 Tools supporting the analysis and synchronous replay of data streams. 

CRATE is also equipped with prototypic software-based user agents that can 

generate user activities in the environment (e.g., sending emails or surf the web) 

and prototypic systems for producing and observing typical cyber-attacks (e.g., 

computer viruses).  

CrateWeb, the web-based configuration tool (see Figure 2) can be used to design 

computer networks consisting of any combination of virtual machines deployed 

on the 350 servers. It can also be used to deploy a wide range of operating 

systems and applications with different vulnerabilities, and specify the users of 

each system. Some manual configurations and tuning of scripts may still be 

required to deploy uncommon configurations, operating systems and applications 

that currently are not covered by CRATE’s application library. The goal is that 

                                                        
33

 www.foi.se/crate  

http://www.foi.se/crate
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every configuration activity performed regularly should be handled through the 

management interface. 

 

Figure 2. Screenshot of the web-based configuration tool of CRATE (CrateWeb), 

illustrating the virtual machines and network topology of a computer network. 

An overview of CRATE’s technical architecture can be seen in Figure 3. 

Networks with virtual machines, configured using CrateWeb, are deployed by a 

command and control server through a separate administration network to any of 

the 350 existing servers. The specific configuration of coexisting virtual 

machines then operate in an Internet-wise isolated environment denoted as the 

game network. Systems within the game network can then be accessed by 

infrastructure administrators through the application programming interface 

provided by the hypervisor VirtualBox
34

  (e.g., to set up computer networks). 

The operations performed include (but are not limited to): 

 Import and export of virtual machines. 

 Manipulation of a virtual machine’s virtual hardware. 

 Execution of programs inside virtual machines. 

 File operations, for example copying files and folders to and from virtual 

machines. 

 Access to the virtual machines’ native graphical user interfaces (through 

a remote desktop protocol server built into VirtualBox). 

                                                        
34 VirtualBox is the virtualization technology that is used for hosts in CRATE. See 

https://www.virtualbox.org/.  

https://www.virtualbox.org/
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Actors (scripted and human) in the exercise or experiment interface the 

infrastructure through the standard interfaces of a computer under the restrictions 

(e.g., firewall rules) defined in the infrastructure. Consequently, activity within 

the game network can be observed from either the infrastructure administrators’ 

point of view (with no restrictions) or from the perspective of normal users’ or 

attackers’ point of view (under the restrictions given by the infrastructure 

administrator). 

Since the game network is an isolated environment, Internet backbone 

technologies that are taken for granted, such as DNS Root name servers
35

 and a 

router infrastructure, have been implemented in CRATE.  

 

Figure 3. An overview of CRATE’s technical architecture. 

In its current state, CRATE makes it possible to virtualize large computer 

networks, and efficiently deploy and configure a large number of virtual 

machines to create sizeable computer networks of various types. For instance, in 

an experiment performed in 2012, more than one thousand virtual machines were 

deployed in over eighty different computer networks. The computer networks 

can be designed from scratch to fit some particular need or be generated based on 

templates of standardized environments (e.g. representing cyber environments of 

industrial production facilities, schools, hospitals or newspapers). CRATE has 

been designed with cyber security testing in mind (for instance with respect to 

software tools and machine templates). Thus, while other domains may also 

benefit from the emulation of large computer networks, CRATE is primarily 

constructed to meet the needs associated with research and education related to 
cyber security.  

                                                        
35 http://www.internetsociety.org/internet-domain-name-system-explained-non-experts-daniel-

karrenberg  

http://www.internetsociety.org/internet-domain-name-system-explained-non-experts-daniel-karrenberg
http://www.internetsociety.org/internet-domain-name-system-explained-non-experts-daniel-karrenberg
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Critical societal functions such as electricity and water purifi cation depend on 
Industrial Control Systems (ICS) to properly function. Not long ago, these ICS 
were realized by specially constructed isolated devices. Along with the rest of 
our society, ICS have evolved and are now often delivered by complex intercon-
nected IT solutions including commercial-off-the-shelf technologies that in one 
way or another are connected to the Internet. As a consequence, ICS are vulnera-
ble to IT attacks similarly to most other IT systems.

Due to the extreme availability requirements on ICS in operation, it is diffi cult 
to perform cyber security experiments on them, such as vulnerability discovery 
or tests of defense mechanisms. To accommodate such experiments, researchers 
and practitioners turn to testbeds that mimic real ICS. 

This study fi rst surveys ICS testbeds that have been proposed for scientifi c re-
search. Special focus is given to fi eld devices, a kind of ICS component that is 
considered particularly challenging to implement in testbeds. It then compares 
these results with fi ndings from product surveys, practical experiences, and in-
terviews with a manufacturer. The outcomes of this comparison are methods and 
tools for creating a high-fi delity ICS testbed. 

The study was conducted in collaboration with other actors, in particular, the 
Idaho National Laboratory.


