
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are

research, method and technology development, as well as studies conducted in the interests of Swedish defence and the safety and

security of society. The organisation employs approximately 1000 personnel of whom about 800 are scientists. This makes FOI Sweden’s

largest research institute. FOI gives its customers access to leading-edge expertise in a large number of fi elds such as security policy

studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,

protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Virtual Industrial Control
System Testbed

HANNES HOLM, MARTIN KARRESAND,

ARNE VIDSTRÖM, ERIK WESTRING

FOI-R--4073--SE

ISSN 1650-1942 March 2015

FOI

Swedish Defence Research Agency Phone: +46 8 555 030 00 www.foi.se

SE-164 90 Stockholm Fax: +46 8 555 031 00

Critical societal functions such as electricity and water purifi cation depend on
Industrial Control Systems (ICS) to properly function. Not long ago, these ICS
were realized by specially constructed isolated devices. Along with the rest of
our society, ICS have evolved and are now often delivered by complex intercon-
nected IT solutions including commercial-off-the-shelf technologies that in one
way or another are connected to the Internet. As a consequence, ICS are vulnera-
ble to IT attacks similarly to most other IT systems.

Due to the extreme availability requirements on ICS in operation, it is diffi cult
to perform cyber security experiments on them, such as vulnerability discovery
or tests of defense mechanisms. To accommodate such experiments, researchers
and practitioners turn to testbeds that mimic real ICS.

This study fi rst surveys ICS testbeds that have been proposed for scientifi c re-
search. Special focus is given to fi eld devices, a kind of ICS component that is
considered particularly challenging to implement in testbeds. It then compares
these results with fi ndings from product surveys, practical experiences, and in-
terviews with a manufacturer. The outcomes of this comparison are methods and
tools for creating a high-fi delity ICS testbed.

The study was conducted in collaboration with other actors, in particular, the
Idaho National Laboratory.

Hannes Holm, Martin Karresand, Arne Vidström,
Erik Westring

Virtual Industrial Control

System Testbed

Bild/Cover: Martin Karresand

FOI-R--4073--SE

Detta verk är skyddat enligt lagen (1960:729) om upphovsrätt till litterära och konstnärliga verk.
All form av kopiering, översättning eller bearbetning utan medgivande är förbjuden

This work is protected under the Act on Copyright in Literary and Artistic Works (SFS 1960:729).
Any form of reproduction, translation or modification without permission is prohibited.

 Titel En testmiljö för ett virtuellt industriellt
informations- och styrsystem

Title Virtual Industrial Control System Testbed

Rapportnr/Report no FOI-R--4073--SE

Månad/Month March

Utgivningsår/Year 2015

Antal sidor/Pages 81

ISSN 1650-1942

Kund/Customer Myndigheten för samhällsskydd och
beredskap (MSB)

Forskningsområde 4. Informationssäkerhet och kommunikation

FoT-område

Projektnr/Project no B341010

Godkänd av/Approved by Christian Jönsson

Ansvarig avdelning Informations- och aerosystem

 FOI-R--4073--SE

3

Sammanfattning

Samhällskritiska funktioner såsom elektricitet och vattenrening är beroende av

industriella informations- och styrsystem för att fungera. Fram tills nyligen

bestod dessa system av specialkonstruerade isolerade komponenter. Industriella

informations- och styrsystemhar har dock utvecklats på samma sätt som vårt

övriga samhälle, och är nu ofta realiserade av komplexa ihopkopplade IT-system

som på ett eller annat sätt är anslutna mot Internet. Detta medför att industriella

informations- och styrsystem är sårbara för IT-attacker på liknande sätt som de

flesta andra IT-system.

De extrema tillgänglighetskraven för industriella informations- och styrsystem i

drift gör det är svårt att utföra IT-säkerhetsexperiment på dem, till exempel att

leta efter sårbarheter eller testa försvarsmekanismer. För att möjliggöra sådana

experiment använder praktiker och akademiker särskilda testmiljöer som är

skapade för att efterlikna verkliga installationer av industriella informations- och

styrsystem.

Denna studie undersöker vilka testmiljöer för industriella informations- och

styrsystem som har föreslagits för vetenskaplig forskning. Särskild fokus ligger

på fältutrustning, en särskild typ av komponent som anses vara synnerligen svår

att integrera i testmiljöer. Studien jämför även dessa resultat med resultat från

produktundersökningar, praktiska erfarenheter samt intervjuer med en tillverkare.

Utfallen från dessa jämförelser är metoder och verktyg som kan användas för att

skapa en naturtrogen testmiljö för industriella informations- och styrsystem.

Studien utfördes i samarbete med andra aktörer, i synnerhet Idaho National

Laboratory.

Nyckelord: Industriella informations- och styrsystem, testmiljö, IT-säkerhet,

cyber säkerhet, systematisk litteraturstudie

FOI-R--4073--SE

4

Summary

Critical societal functions such as electricity and water purification depend on

Industrial Control Systems (ICS) to properly function. Not long ago, these ICS

were realized by specially constructed isolated devices. Along with the rest of

our society, ICS have evolved and are now often delivered by complex

interconnected IT solutions including commercial-off-the-shelf technologies that

in one way or another are connected to the Internet. As a consequence, ICS are

vulnerable to IT attacks similarly to most other IT systems.

Due to the extreme availability requirements on ICS in operation, it is difficult to

perform cyber security experiments on them, such as vulnerability discovery or

tests of defense mechanisms. To accommodate such experiments, researchers

and practitioners turn to testbeds that mimic real ICS.

This study first surveys ICS testbeds that have been proposed for scientific

research. Special focus is given to field devices, a kind of ICS component that is

considered particularly challenging to implement in testbeds. It then compares

these results with findings from product surveys, practical experiences, and

interviews with a manufacturer. The outcomes of this comparison are methods

and tools for creating a high-fidelity ICS testbed.

The study was conducted in collaboration with other actors, in particular, the

Idaho National Laboratory.

Keywords: Industrial Control Systems, testbed, IT security, cyber security,

systematic literature review

 FOI-R--4073--SE

5

Table of contents
Acronyms and abbreviations 7
1 Introduction 11
1.1 Virtualization and testbeds .. 12
1.2 Objective and research questions ... 12
1.3 Related projects .. 13
1.4 Disposition ... 15
2 Industrial control systems 17
2.1 Control center .. 17
2.2 Communication architecture.. 18
2.3 Field devices ... 19
2.4 Physical process ... 20
3 Integrating components in testbeds 21
3.1 Virtualization .. 21
3.2 Simulation .. 24
3.3 Hardware ... 24
3.4 Summary and terminology .. 24
4 Systematic literature review 25
4.1 Search method .. 25
4.2 Overview of current ICS testbeds ... 26
4.3 Objectives of ICS testbeds .. 27
4.4 Implementation of ICS testbed components 28
4.5 Managing testbed requirements .. 32
4.6 Virtualization of embedded devices .. 34
5 Creation of an ICS testbed 37
5.1 Integrating the control center .. 38
5.2 Integrating the communication architecture 40
5.3 Integrating field devices... 44
5.4 Integrating the process .. 47
6 Conclusions and future work 51
6.1 Cooperation with INL and DHS ... 53
6.2 Involve ICS manufacturers and operators 53
6.3 Identify tangible testbed objectives ... 54
6.4 Develop tools for fingerprinting and recreating ICS

configurations .. 56
6.5 Develop simulated field devices .. 56
6.6 Automated vulnerability discovery ... 58
6.7 Develop a functional testbed ... 59

FOI-R--4073--SE

6

7 References 61

Appendix A. Survey of field devices 71
Appendix B. Overview of a PLC 73
Appendix C. Siemens S7 technical analysis 75
Appendix D. Categorization framework 77
Appendix E. Cyber Range And Training Environment (CRATE) 78

 FOI-R--4073--SE

7

Acronyms and abbreviations

ABI Application Binary Interface

ACM Association for Computing Machinery

ACORN Automated Construction of Realistic Networks

AGA American Gas Association

API Application Programming Interface

APT Access Policy Tool

ARINC Avionics Application Standard Software Interface

ARM Advanced RISC Machine

ASCII American Standard Code for Information Interchange

ASIC Application-Specific Integrated Circuit

ASSERT Advanced System Security Education, Research, and Training

AVA Control System Automated Vulnerability Assessment

CAN Controller Area Network

CIM Common Information Model

CIP Common Industrial Protocol

CLR Common Language Runtime

CORE Common Open Research Emulator

COTP Connection Oriented Transport Protocol

COTS Commercial-Off-The-Shelf

CPU Central Processing Unit

CSET Cyber Security Evaluation Tool

CRATE Cyber Range And Training Environment

DAQ Data Acquisition

DCS Distributed Control System

DETER Cyber Defense Technology Experimental Research

DHS US Department of Homeland Security

DNP3 Distributed Network Protocol

DNS Domain Name System

FOI Swedish Defense Research Agency

FPGA Field-Programmable Gate Array

GUI Graphical User Interface

HMI Human-Machine Interface

ICCP Inter-Control Center Communications Protocol

ICS Industrial Control System

ICS-CERT Industrial Control System Computer Emergency Response Team

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

IEEE Institute of Electrical and Electronics Engineers

IMUNES Integrated Multiprotocol Network Emulator/Simulator

INL Idaho National Laboratory

FOI-R--4073--SE

8

IP Internet Protocol

ISA International Society for Automation

ISO International Organization for Standardization

IT Information Technology

KVM Kernel-based Virtual Machine

LAN Local Area Network

LLVM Low Level Virtual Machine

LM ATL Lockheed Martin Advanced Technology Laboratories

MSB Swedish Civil Contingencies Agency

MTU Master Terminal Unit

NERC North American Electric Reliability Corporation

NIST National Institute of Standards and Technology

OB Organization Block

OPC Object Linking and Embedding for Process Control

OS Operating System

OVAL Open Vulnerability Assessment Language

PDC Power distribution center

PLC Programmable Logic Controller

PMU Phasor Measurement Unit

QEMU Quick Emulator

RDP Remote Desktop Protocol

RESCH REal-time SCHeduler framework

RINSE Real-Time Immersive Network Simulation Environment

RISC Reduced instruction set computing

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Aquisition

SELENA Scalable Emulation of LargE Network Architectures

SITL System-in-the-loop

SMB Server Message Block

SNMP Simple Network Management Protocol

SSH Secure Shell

STL STatement List

TCP Transmission Control Protocol

TSAP Transport Services Access Protocol

UDP User Datagram Protocol

VICS Virtual Industrial Control System

VM Virtual Machine

VMM Virtual Machine Monitor

VNC Virtual Network Computing

VPN Virtual Private Network

VTC Video Teleconferencing

WAN Wide Area Network

 FOI-R--4073--SE

9

XML Extensible Markup Language

FOI-R--4073--SE

10

 FOI-R--4073--SE

11

1 Introduction
Our society depends on various critical services such as electricity, water

purification and transportation to properly function. Not long ago, the Industrial

Control Systems (ICS) that supervised and controlled most of these critical

services were realized by specially constructed isolated devices. Along with the

rest of our society, ICS have evolved and are now often delivered by complex

interconnected IT solutions including commercial-off-the-shelf technologies that

in one way or another are connected to the Internet. The main reasons behind this

evolution are increased functionality and increased effectiveness, as well as

reduced costs. For example, IP-based remote control of railroad signaling and

interlocking systems has increased the level of control of the railroad system.

The benefits of using IT for critical infrastructure applications are thus clear.

However, the trend of interconnectivity and COTS has also brought about

problems. Issues that are common in regular IT architectures, such as malware

and misconfigurations, do now occur in ICS systems as well. Reduced

availability due to such issues might be acceptable in regular IT architectures, but

are generally completely unacceptable for IT that supports critical infrastructure

services. For instance:

 Computers along railway tracks in Sweden send continuous data

regarding the state of the track to remote railway operators. If there are

more than 15 seconds between two points of data for a device, the

corresponding track is considered faulty and all trains designated to

traverse it are blocked [61].

 In the Energy Sector, digital protective relays are used to trip circuit

breakers when power faults are detected - an event that can cause

significant product damage and personnel harm. This function needs to

be executed within a few milliseconds of the power fault to be of use.

To understand and manage the complexity of an IT architecture, e.g., to discover

and mitigate security vulnerabilities within it, technical audits of different kinds

are carried out. For instance, it is common practice to conduct penetration tests,

audits that employ active network scanning and sometimes real cyber-attacks.

These tests can however, due to their nature, decrease system availability in the

short term. This is particularly evident for specific IT solutions used to support

critical infrastructure services as these are often not able to withstand even the

most basic scanning tools. For example, a study involving Programmable Logic

Controllers (PLC, see Section 2.3) and the vulnerability scanner Nessus showed

that the 18% of the tested PLCs crashed as a result of a scan [53]. As a

consequence, technical audits are generally thought of as (at best) difficult for IT

architectures that support critical infrastructure services.

FOI-R--4073--SE

12

1.1 Virtualization and testbeds

To study the vulnerability of IT architectures that are difficult to technically audit

in the real world, many researchers attempt to copy real IT configurations and

place these in isolated environments, also called testbeds, where experiments can

be safely performed. Creating a test bed however comes with various challenges,

in particular: (1) it can be difficult to achieve a realistic test bed scale, and (2) it

can be difficult to achieve a realistic test bed configuration.

One way to achieve a large-scale realistic testbed is through virtualization.

Virtualization is a technology which concerns isolating computer software in a

means that enables layers of abstraction, both between different software and

between software and hardware. For example, a virtual private network (VPN)

adds a layer on top of a computer network that isolates its users from others on

the network; the Comodo antivirus uses operating system-level virtualization to

create a sandbox for isolated web browsing; VMware and VirtualBox use

hardware virtualization to enable guest operating systems to interface with

software and hardware; the Quick Emulator (QEMU) use instruction set

virtualization to provide a complete emulation of computer hardware in software.

Virtualizing a testbed is attractive for several reasons, for example:

 It enables running multiple parallel systems on single computer

hardware.

 It enables configuration of systems and networks by the use of software

scripts.

 It enables saving and loading the state/configuration of the system-of-

systems.

 It isolates the activity in the testbed from the physical systems as well as

external systems.

In other words, virtualization can potentially allow low-cost, replicable and safe

security studies of IT architectures that have configurations valid to those of real

ICSs.

1.2 Objective and research questions

The objective of this study is to identify how a high-fidelity Virtual Industrial
Control System testbed can be constructed (hereafter referred to as VICS). The

work was conducted by the Swedish Defence Research Agency (FOI) as part of a

joint project in cooperation with the Idaho National Laboratory (INL) and is

financed by the Swedish Civil Contingencies Agency (MSB) and the U.S.

Department of Homeland Security (DHS). To meet this objective, the study first

surveys existing ICS testbeds that have been proposed for scientific research and

tries to answer the following five research questions (RQs):

 FOI-R--4073--SE

13

 RQ1: Which ICS testbeds have been proposed for scientific research?

 RQ2: Which research objectives do current ICS testbeds support?

 RQ3: How are ICS components implemented in current ICS testbeds?

 RQ4: How do existing ICS testbeds manage requirements?

 RQ5: Which methods are available for virtualizing ICS field devices?

The first four RQs are addressed to gain an understanding of how previously

constructed ICS testbeds for scientific research were designed. RQ5 follows from

the fact that virtualization is a convenient way to manage testbeds and the fact

that field devices (which is a critical testbed component, see Section 2.3) often

have specialized hardware, software and logic that are unsupported by current

virtualization technologies (such as VirtualBox, VMware or QEMU).

The answers to these five RQs are used to propose tentative means of

constructing a high quality ICS testbed as well as means of measuring the fidelity

of such a testbed.

The outcome of VICS is planned to be implemented in an existing testbed known

as CRATE
1
 (Cyber Range And Training Environment, see Appendix E) that is

managed by the Swedish Defence Research Agency (FOI). CRATE has

previously been used for a variety of cyber security experiments (see e.g.

[40][41][85]). This is however outside the scope of this pre-study.

1.3 Related projects

The work was initiated at a meeting at Idaho National Laboratory involving all

four stakeholder organizations (MSB, FOI, DHS and INL). At this meeting, the

basic premises for the project were identified. These premises were then refined

through a technical agreement document. The INL project that is related to VICS

is known as Control System Automated Vulnerability Assessment (hereafter

denoted as AVA).

The first official project meeting between FOI and INL was conducted on the

28
th

 of November 2014 between the INL (AVA) principal investigator Craig

Rieger and the FOI (VICS) principal investigator Hannes Holm. At this meeting

it was concluded that there were opportunities to collaborate in several areas, and

that contact should be maintained on a regular basis.

AVA underwent a feasibility pre-study during 2013 [42]. The objective of this

pre-study was to “perform a feasibility assessment on the implementation of a

scalable, integrated capability for replicating ICS systems for rapid automated
vulnerability assessment (AVA)”. It was sponsored by ICS-CERT and DHS, and

1
 www.foi.se/crate

http://www.foi.se/crate

FOI-R--4073--SE

14

carried out by INL, Lockheed Martin Advanced Technology Laboratories (LM

ATL) and Draper Laboratory.

The AVA pre-study [42] focused on Supervisory Control and Data Acquisition

(SCADA) and Distributed Control Systems (DSC) in the Energy Sector and

other reference architectures taken from the DHS Cyber Security Evaluation

Tool (CSET). The study explored a variety of different topics that are relevant to

testbed creation and vulnerability assessment, including virtualization and data

collection. It focused on providing snap-shot information on these topics and

conclusions primarily based on expert competence.

The AVA pre-study [42] proposes to implement virtualized ICS architectures in

a testbed developed by LM ATL called ACORN (Automated Construction of

Realistic Networks). Implementation of some technologies in ACORN,

particularly SCADA server applications and workstations, are judged easy as

they build on COTS operating systems. Implementation of ICS specific devices

(e.g., PLCs and RTUs) are however judged more difficult as they use specific

real-time operating systems and sometimes proprietary protocols and functions.

The study mentions three means of managing this issue: (1) involving developers

that have emulation software for their specific ICS devices (e.g., ABB or

Siemens), (2) developing a novel virtualization platform based on the Low Level

Virtual Machine (LLVM) and QEMU, and (3) using real hardware platforms.

The AVA pre-study recommends data collection for a high-fidelity testbed to be

performed using a combination of active (e.g., Nmap and OpenVAS) and passive

(e.g., NetworkMiner and Wireshark) scanning combined with manual and offline

configuration analysis.

Vulnerability assessment is recommended to be performed using off-the-shelf

tools such as MetaSploit in combination with scripts developed by ICS-CERT

and INL to find known vulnerabilities, and static or runtime analysis (e.g., the

fuzzer developed by Wurldtech) to find novel vulnerabilities (also called “zero

days”) [42].

VICS builds on the results from the AVA pre-study [42] as described in the

following bullet list:

 It provides a systematic literature review. There are many initiatives in

academia concerning ICS testbeds and virtualization. The present study

complements [42] with a systematic literature review of scientific work

done within the area. This is presented in Section 4.

 It provides a second opinion on how to best create a high-fidelity ICS

testbed. In addition to providing a systematic review of ICS testbeds, the
present study also serves to provide a second opinion on how to best

create a high-fidelity ICS testbed. This is presented in Section 5.

 It provides a survey of existing ICS manufacturers. Products by different

manufacturers offer different opportunities regarding testbed integration.

 FOI-R--4073--SE

15

The present study provides an empirical survey of existing

manufacturers. This is presented in Appendix A.

 It provides a technical analysis of the Siemens S7-400 and S7-1200

PLCs. Draper laboratories conducted physical assessments of an Allen

Bradley ControlLogix 1756-L73 (Logix 5573) controller and paper

studies of the Telvent Sage 303 RTU and ABB Harmony Bridge

Controller with the purpose of gaining an initial understanding in the

evaluation of virtualization software candidates. A researcher within the

FOI project group has previously conducted physical assessments of the

Siemens S7 series [99]. Experiences from these assessments

complement those of the Draper laboratories. This is presented in

Appendix C.

1.4 Disposition

This report is structured as follows. Section 2 provides an overview of ICS

configurations and components. Section 3 provides an overview of methods that

can be used to implement ICS components in a testbed. Section 4 describes a

systematic literature review of existing ICS testbeds as well as means to

virtualize, emulate and simulate embedded devices (e.g. PLCs)
2
. Section 5

describes means to implement a testbed as well as means for evaluate its fidelity.

Finally, Section 6 concludes the report and presents possible future research

directions.

There are five appendices to the report. Appendix A describes a survey of ICS

field device manufacturers. Appendix B describes a more detailed description of

a PLC than what is given in Section 2.3 (see footnote 2). Appendix C describes a

technical analysis of the Siemens S7 series. Appendix D describes the

categorization framework that was used during the systematic review. Finally,

Appendix E describes CRATE, the testbed that is planned to facilitate the ICS

testbed.

2
 Embedded devices are specifically addressed as these components often employ special hardware,

software and logic that are considered very difficult to virtualize or emulate.

FOI-R--4073--SE

16

 FOI-R--4073--SE

17

2 Industrial control systems
ICS are systems that connect the digital world with the physical world, and are

for this purpose often referred to as cyber-physical systems [50]. These systems

are common in critical infrastructure sectors such as the energy sector, the

transportation systems sector and the water and wastewater systems sector. The

configuration of an ICS depends on what sector and what context is concerned,

however, most ICS systems involve similar components and architectures [90].

ICS typically involves components that enable remote monitoring and control of

physical processes. If this is the case, the ICS is a so called Supervisory Control

and Data Acquisition System (SCADA) [18].

An overview of a general SCADA system is presented in Figure 1 (taken from

NIST 800-82 [90]). Other overviews and case studies describing SCADA

configurations are given in e.g. [10][61][94]. According to [90], there are four

overall areas of importance for ICS testbeds: the control center, the

communication architecture, the field devices and the physical process itself.

Apart from these four areas, there are also business systems that interact with ICS

(e.g., an office network). Business systems are based on traditional IT

components that for the most part can be incorporated into a testbed such as

CRATE (see Appendix E) as-is. For this reason, they are left out of the scope of

the present study.

Figure 1. SCADA system general layout (taken from [90]).

2.1 Control center

The control center facilitates remote observation and control of physical

processes such as voltage measurement and breaker control. This service

includes, for example, systems that allow operators to interact with the process,

systems that facilitate communication with field devices, systems for storing data

FOI-R--4073--SE

18

on the state of the process, and systems for designing the configuration of the

ICS. Some important component types within the control center that are

discussed by NIST 800-82 [90] are described below.

 The Control Server hosts supervisory control software that

communicates with lower-level control devices. The control server

accesses subordinate control modules over an ICS network.

 The SCADA Server or Master Terminal Unit (MTU) acts as the

master in a SCADA system. RTU and PLC devices (described below)

located at remote field sites usually act as slaves.

 The Human-Machine Interface (HMI) is software and hardware that

allows human operators to monitor the state of a physical process under

control as well as modify control settings and operations.

 The Data Historian is a centralized database for logging process

information within an ICS. Information stored in this database can be

accessed to support various analyses, such as statistical process control

and enterprise level planning.

 The Input/Output (IO) server is a control component responsible for

collecting, buffering and providing access to process information from

control sub-components such as PLCs, RTUs and IEDs.

2.2 Communication architecture

The communication architecture enables different components within an ICS to

exchange information such as control input or information updates. For example,

the control center generally utilizes an Ethernet network to exchange information

between control center systems, such as between HMI and MTU; similarly, the

control center often utilizes modems to communicate with field devices that are

located in geographically desolate places. Some types of communication

architecture components that are discussed by NIST 800-82 [90] are described

below.

 The Fieldbus Network links sensors and other devices to a PLC or

other controller. Use of fieldbus technologies eliminates the need for

point-to-point wiring between the controller and each device.

 The Control Network connects the supervisory control level to lower-

level control modules.

 Routers, switches and hubs transfer messages within and between

networks. Common uses for these devices include connecting a LAN to

a WAN, and connecting MTUs and RTUs to a long-distance network
medium for SCADA communication.

 Firewalls protect devices on a network by monitoring and controlling

communication packets using predefined filtering policies. Firewalls are

also useful in managing ICS network segregation strategies.

 FOI-R--4073--SE

19

 Modems are used to convert between serial digital data and a signal

suitable for transmission over a telephone line to allow devices to

communicate.

 Remote Access Points are distinct devices, areas and locations of a

control network that can be used to remotely configure control systems

and access process data.

2.3 Field devices

Field devices process both digital and analog information through an embedded

system (industrial computer) that contains both sensors and actuators. They are

designed to function in harsh environments and to have extremely long time

between failures: Sun et al. [93] show that manufacturers prescribe an average of

40 years, which translates to 15 years in practice according to the authors’

measurements. Important kinds of field devices that are discussed by NIST 800-

82 [90] are described below.

 A Remote Terminal Unit (RTU), also called a remote telemetry unit, is

a special purpose data acquisition and control unit designed to support

SCADA remote stations. RTUs are often equipped with wireless radio

interfaces to support remote situations where wire-based

communications are unavailable.

 A Programmable Logic Controller (PLC) is a small industrial

computer originally designed to execute the logic of physical hardware

(e.g., relays, switches and mechanical timers/counters). PLCs have

evolved into controllers with the capability of controlling complex

processes, and they are common in SCADA systems. Other controllers

used at the field level are process controllers and RTUs; they provide the

same control as PLCs but are designed for specific control applications.

In SCADA environments, PLCs are often used as field devices because

they are more economical, versatile, flexible, and configurable than

special-purpose RTUs.

 An Intelligent Electronic Devices (IED) is a sensor/actuator containing

the intelligence required to acquire data, communicate with other

devices, as well as perform local processing and control. An IED could

combine an analog input sensor, analog output, low-level control

capabilities, a communication system, and program memory in one

device. The use of IEDs in SCADA and DCS systems allows for

automatic control at the local level.

As can be seen in the text above, RTUs, PLCs and IEDs are similar devices –

embedded devices with long lifespan that connect the digital world to the

physical world. The term used to describe a field device generally depends on the

context where it is applied. For example, the Swedish railroad uses Siemens S7

FOI-R--4073--SE

20

PLCs as transmitters/receivers of information from/to switches, which contain

the actual application logic. For this purpose, they are denoted as RTUs by the

rail operators.

A more detailed description of a PLC field device is given in Appendix B and a

survey of PLCs is given in Appendix A. These are provided as field devices have

more specialized hardware and software than what exists within the control

center or the communication architecture (that primarily employ traditional

COTS IT components). Furthermore, as PLCs are similar to RTUs and IEDs, this

description also somewhat describes these types of components in further detail.

2.4 Physical process

There are various physical processes that are observed and controlled by ICS. A

high-level overview can be given by studying the lists of critical infrastructure

sectors that DHS
3
 (16 sectors) and MSB

4
 (11 sectors) provide. The lists provided

by DHS and MSB greatly overlap and concern a wide variety of societal

functions, from healthcare to commercial facilities. All of these sectors contain

ICS in one way or another. However, usage of ICS is more central to the

functionality of some sectors than others. While the present study does not limit

itself to any single sector, its results are more valuable to these sectors. The

sectors with the arguably most significant usage of ICS are described below

(according to the MSB terminology):

 Energy sector (e.g., production and distribution of energy)

 Municipal sector (e.g., water distribution and wastewater management)

 Transportation (e.g., railroads, roads and air transportation)

The contents of this report are especially relevant for these sectors.

3
 http://www.dhs.gov/critical-infrastructure-sectors

4
 https://www.msb.se/sv/Forebyggande/Samhallsviktig-verksamhet/Om-samhallsviktig-verksamhet/

http://www.dhs.gov/critical-infrastructure-sectors
https://www.msb.se/sv/Forebyggande/Samhallsviktig-verksamhet/Om-samhallsviktig-verksamhet/

 FOI-R--4073--SE

21

3 Integrating components in testbeds
This chapter describes three methods that can be used to implement ICS

components in testbeds:

 virtualization (execute an existing platform in a virtual container),

 simulation (build a new platform that mimics the desired platform) and

 hardware (i.e., use the physical platform suggested by a vendor).

These methods are described in Section 3.1-3.3. A summary and a description of

the terminology that is used in this report are given in Section 3.4.

3.1 Virtualization

Computer virtualization was initiated during the 1960s by IBM to provide

concurrent, interactive access to mainframe computers in the form of Virtual

Machines (VM) [17]. The purpose was to enable time- and resource-sharing of

these mainframes within isolated copies of the underlying system without

altering the end-user experience of interacting with a physical machine. Interest

in virtualization then declined during the 1970s and 1980s when hardware got

less expensive, but regained popularity during the 1990s along the release of a

wide variety of hardware and operating systems – a trend that is continuing even

now. [62]

There are several kinds of virtualization that have very different functionality and

are applicable in different settings. For example, the Java Runtime Environment

and the VMware workstation are both virtualization technologies, but serve

highly different purposes. This diversity has created considerable confusion

within academia and industry, which sometimes view virtualization as simply

VMware or VirtualBox without considering how it actually works.

The purpose of this chapter is to introduce the reader to the concept of

virtualization and describe how it is defined in the present study. The following

overall definition of virtualization is applied in this report [62]:

“Virtualization is a technology that combines or divides computing resources
to present one or many operating environments using methodologies like

hardware and software partitioning or aggregation, partial or complete

machine simulation, emulation, time-sharing, and many others.”

FOI-R--4073--SE

22

Nanda and Chiueh [62] present a survey of virtualization methodologies
5
. These

methods are presented and related to the scope of the present report in sections

3.1.1-3.1.3.

3.1.1 Emulation

Emulation has the advantage that any kind of guest operating system with any

kind of hardware requirements (in theory) can be executed on completely

different physical hardware. For example, an Android-based smartphone running

an ARM architecture could be emulated on a Windows-based PC running an x86

architecture. Emulation however has the disadvantage that there is a need to

construct the translation framework. This is expensive and difficult with known

architectures (e.g., ARM), and especially so for proprietary architectures (e.g.,

what is used by the Siemens Simatic S7 PLC). For proprietary cases, the

instruction set has to be completely reversed, which can be a very troublesome

task (see Appendix C). Emulation can also have a significant decrease in

performance for the guest due to costly translation operations. Common

emulation technologies are QEMU, Boch and Crusoe.

3.1.2 Hardware virtualization

Hardware virtualization involves allowing the guest machine to execute some

instructions directly on hardware, whereas other instructions are trapped,

translated by a Virtual Machine Monitor (VMM) and then executed on hardware

(in a similar fashion to emulation) [28][62]. A typical instruction that is

translated by the VMM is when there is a write to the kernel space memory

space; a typical instruction that is executed directly by hardware is a read from

user space memory.

Paravirtualization is a special case of hardware virtualization, where the guest

operating system must be modified before it is able to run in the virtual machine.

Such a VMM provides some way for the guest operating system to make special

calls into it, asking for various tasks to be performed.

Hardware virtualization is typically divided into hosted operating system and

bare-metal virtualization [62]. These technologies are described in the following

two subsections.

5
 There are other relevant works, such as the taxonomy by Smith and Nair [84], the survey by Gu

and Zhao [29], and the analysis by Robin and Irvine [74]. This report focuses on [62] as it was

judged best suited for its scope; however, it includes other relevant work where necessary.

 FOI-R--4073--SE

23

3.1.2.1 Hosted operating system

Hosted operating system virtualization concerns when the VMM runs on top of a

host operating system (e.g. Windows 7). I/O operations that are trapped by the

VMM are delivered to hardware through the host operating system. Examples of

hosted operating system solutions include VMware workstation, VirtualBox and

Microsoft Virtual PC. [62]

3.1.2.2 Bare-metal operating system

Bare-metal operating system virtualization involves when the VMM runs directly

on hardware. This technology is more complicated than hosted operating systems

as the VMM (rather than the host) has to handle all I/O instructions. It however

in return enables a higher performance. Example bare-metal solutions include

Xen, L4 and VMWare ESX. [62]

3.1.3 Other virtualization approaches

Three other forms of virtualization are discussed by Nanda and Chiueh [62]:

operating system virtualization, programming language virtualization and library

virtualization. These approaches are discussed next.

3.1.3.1 Operating System virtualization

Operating system virtualization involves creating a virtual copy of the hosting

physical machine, but without the demand to setup a completely new machine

(which is required for hardware virtualization). This technology can be provided

either by the operating system itself, such as the FreeBSD Jail and Linux Kernel-

based virtualization, or by third-party software such as the Comodo Internet

Security Sandbox (that creates a virtual machine for “safe” web browsing) or

Ensim (that virtualizes the machine’s native operating system into isolated and

independent computing environments). [62]

3.1.3.2 Programming Language virtualization

Programming language virtualization involves a virtual machine that supports a

set of predefined instructions. The two most common forms of programming

language virtualization are the Java virtual machine and the Microsoft .NET

Common Language Runtime (CLR). [62]

3.1.3.3 Library virtualization

Most applications use application libraries with various application programming

interfaces (API) and/or application binary interfaces (ABI). Library virtualization

builds on this fact by providing such library functions to environments that not

normally supports them. The most common example of library virtualization is

Wine. Wine is an implementation of the Windows API and can be used as a

FOI-R--4073--SE

24

library to execute Windows applications in Unix environments. Other examples

are WABI, LxRun and Visual MainWin. [62]

3.2 Simulation

Simulation involves creating a model of a process or system that can be used for

experimentation and evaluation in order to understand the behavior of the system

and/or evaluate strategies for operating the system [66][78].

The purpose of simulation is thus not to enable execution of an existing platform

(as virtualization), but rather to build a platform that mimics critical aspects of

the desired platform. Simulation is used for a plethora of purposes, for instance,

to mimic TCP/IP communication [96], power grids [63] and manufacturing

processes [48].

3.3 Hardware

Using real hardware (i.e., the actual hardware suggested by a vendor) within a

testbed naturally provides very high fidelity, but is in return very expensive. For

example, reaching scale is costly, restoring configurations is difficult, and

devices are bound to occasionally get bricked due to failed exploits.

3.4 Summary and terminology

Of the methods described in sections 3.1-3.3, hardware virtualization is desired

as it enables high-performance execution of real applications in virtual

containers. To increase the readability of this report, hardware virtualization is
hereafter simply denoted as virtualization. Emulation also enables execution of

real applications, but is slower than virtualization. Simulation is less desirable as

it is expensive to develop new applications and models, and their fidelity is

uncertain. Hardware is very expensive and cumbersome to employ and thus

generally considered a last resort.

 FOI-R--4073--SE

25

4 Systematic literature review
A systematic review of past scientific work was conducted to enable answering

the research questions. The review follows the guidelines of Kitchenham [47],

which has been used for several software related reviews in recent years.

The method of this review is described in Section 4.1; an overview of identified

ICS testbeds (RQ1) is given in Section 4.2; testbed objectives (RQ2) are

presented in Section 4.3; how testbeds have been implemented (RQ3) is

described in Section 4.4; how testbed requirements are managed (RQ4) is

presented in Section 4.5; how field devices can be virtualized (RQ5) is described

in Section 4.6.

4.1 Search method

The review began with unstructured searches related to the topic with the

purpose of identifying relevant keywords for systematic searches. As a pilot

study, Scopus
6
 was queried for articles with the chosen keywords

7
 within their

titles, keywords or abstracts, yielding a total of 123 matches.

The relevance of each of these 123 articles was independently judged based on

title and abstract by randomly chosen pairs of researchers. Redundant judgments

were used to enable measuring the group’s internal agreement with the statistical

metric Cohen’s Kappa [15]. The results showed strong agreement
8
, which is a

sign that the group shares the same view on the project scope.

Twelve of the 123 identified articles, as well as fifteen articles cited by these

works, were deemed as relevant and read in detail. This activity amounted to a

categorization framework that was based partly on information about ICS [90],

partly on information about virtualization [28][29][62][74], and partly on

information provided by the articles themselves. This activity was also conducted

with two reviewers per article, with the purpose of measuring the agreement

regarding the employed categorization framework. Cohens Kappa indicated

strong agreement also for these aspects (a Kappa of 0.83). The final

categorization framework is presented in Appendix D.

6
 SCOPUS is a database that aggregates articles from most conferences and journals such as IEEE,

ACM, Springer, Elsevier and Wiley.
7
 security AND (scada OR ics OR “smart grid” OR mtu OR plc OR rtu) AND (virtual OR simulat

OR emulat)
8
 A Kappa of 0.88 on a scale from 0 (no agreement) to 1 (complete agreement).

FOI-R--4073--SE

26

A second more comprehensive review was conducted using Scopus and a set of

refined keywords
9
 that reflect the above mentioned two topics in a similar

method to the pilot. This review identified 1335 articles. The relevance of these

articles was judged by their abstracts and titles in the same means as during the

pre-study, but due to the strong agreement (as shown by Cohen’s Kappa) without

redundant judgments. Out of the 1335 articles, 63 were judged as relevant and

read in detail
10

. Of these articles, 52 articles were judged relevant after the more

detailed review. Data were extracted from these articles based on the

categorization framework presented in Appendix D. Of the 52 relevant articles,

40 concerned ICS testbeds and 12 concerned virtualization of embedded devices.

The results from this literature review are presented in the following sections.

4.2 Overview of current ICS testbeds

The systematic literature review identified a total of 40 articles that concerned 30

ICS testbeds that were planned or currently operational at the time of the present

study. An overview of these testbeds is described in Table 1.

As can be seen, almost half of the identified testbeds were located in the USA.

Five testbeds were only planned ([12], [22], [27], [44] and [98]), while the

remaining 25 were claimed to be operational to an extent that facilitated technical

studies related to their stated purposes. It should be mentioned that there are

various other testbeds, such as DETER [5] and the U.S. National SCADA testbed

(that is run by the U.S. Department of Energy), that were not directly identified

by the systematic review. There are two explanations behind this: (1) they had

either not published their results in forums indexed by Scopus or (2) did not

specifically concern ICS. The U.S. National SCADA testbed corresponds to the

prior explanation; DETER is not a testbed that has been designed for the purpose

of ICS tests and thus corresponds to the latter explanation. The testbeds that

employ DETER, such as the testbed at the Technical Assessment Research Lab

in China [25], view DETER as a tool that help realize an ICS testbed (similar to

Matlab, OPNET or VirtualBox). The present report views DETER and other

similar testbeds (e.g., Emulab, GENI and PlanetLab) in the same fashion as the

ICS testbeds that use them.

9
 (scada OR ics OR mtu OR plc OR rtu OR IO OR “embedded device” OR “embedded system”)

AND ((virtuali OR simulat OR emulat OR hypervi OR VMM OR “virtual machine” OR ”dynamic

recompilation”) OR (testbed OR “test bed” OR “cyber range”))
10

 Most of the articles judged as irrelevant concerned implementing the Java Virtual Machine on

embedded systems or Power Line Communication.

 FOI-R--4073--SE

27

Table 1. Overview of ICS testbeds.

ID University/Organization Country References

1 American University of Sharjah Abu Dhabi [19]

2 Queensland University of Technology Australia [49]

3 RMIT University Australia [2],[70]

4
Research Institute of Information

Technology and Communication
China [98]

5 Technical Assessment Research Lab China [25]

6 Tsinghua University of Beijing China [14]

7 University of Zagreb Croatia [44]

8 Queen’s University Belfast Ireland [102]

9 University College Dublin Ireland [88]

10
European Commission Joint Research

Centre
Italy [30],[83]

11
European Commission Joint Research

Centre
Italy [23]

12 Ricerca sul Sistema Energetico Italy [21]

13 American University of Beirut Lebanon [76]

14 University Kuala Lumpur Malaysia [80],[81]

15 TNO Netherlands [12]

16 ITER Korea South Korea [91]

17 Case Western Reserve University USA [58]

18 Iowa State University USA [33],[34]

19 ITESM Campus Monterrey USA [75]

20 Lewis Research Center USA [4]

21 Mississippi State University USA
[59],[60],[71],

[72],[97]

22 Ohio State University USA [31]

23 Pacific Northwest National Laboratory USA [22]

24 Sandia National Laboratories USA [95]

25 Tennessee Technological University USA [89]

26 The University of Tulsa USA [35]

27 UC Berkeley USA [27]

28 University of Arizona USA [55]

29 University of Illinois at Urbana-Champaign USA [6],[7],[20]

30 University of Louisville USA [37]

4.3 Objectives of ICS testbeds

An overview of the objectives that the creators of the testbeds present is given in

Table 2. The most commonly mentioned objective is to use a testbed for

FOI-R--4073--SE

28

vulnerability analysis, with education and tests of defense mechanisms on a split

second place. These objectives highlight the fact that most testbeds focus on

cyber security rather than, for instance, performance issues due to UDP packet

loss.

Table 2. Objectives of testbeds.

Objective Testbeds

Vulnerability analysis 16

Education 9

Tests of defense mechanisms 9

Power system control tests 4

Performance analysis 1

Creation of standards 1

Honeynet 1

Impact analysis 1

Test robustness 1

Tests in general 1

Threat analysis 1

These objectives are in general described on a very superficial level. For

example, the type of vulnerability analysis that is proposed is typically described

with generic statements such as “It is imperative to analyze the risk to SCADA

systems in terms of vulnerabilities, threats and potential impact” [12] and “An

evaluation of the security of SCADA systems is important” [2]. However, as

stated by Davis et al. [20], vulnerability analysis is not a simple matter:

“Determining the vulnerabilities of systems using these devices is a
complicated process because of the complex hardware and software

interactions that must be considered”

As vulnerability analysis is a broad and difficult topic, there is a need to break it

down into more tangible topics in order to yield useful testbed requirements. The

same reasoning applies for other objectives, such as education and tests of

defense mechanisms. This is discussed in Section 6.3.

4.4 Implementation of ICS testbed components

This section describes how the control center, communication architecture, field
devices and observed/controlled process are implemented in the 30 surveyed

testbeds. An overview of the results is described by Table 3. More detailed

descriptions are provided in sections 4.4.1-4.4.4.

 FOI-R--4073--SE

29

Table 3. Number of articles assessing different areas and methods of implementation
(virtualization, emulation, simulation and hardware).

Area Covered Virtualization Simulation Emulation Hardware

Control center 20 4 9 1 11

Communication

architecture 22 6 10 3 11

Fields devices 23 0 14 0 14

Physical process 12 0 12 0 0

An overview of the product types that are described in articles concerning the 30

analyzed testbeds is given in Table 4. As can be seen, various abstraction levels

and components are mentioned. The most commonly mentioned types of

components are RTU, MTU, PLC, HMI and IED. These are all mentioned for

more than one testbed. It is worth mentioning that these definitions are rather

vague, especially to practitioners. For example, the Swedish railroad has Siemens

S7 PLCs that are connected to switchgear. The purpose of these PLCs is to

package/unpackage the proprietary data that the switchgear sends and receives by

the MTU. For this reason, the Siemens S7 PLCs are denoted as RTUs by

operators of the Swedish railroad (as they have a specific purpose).

Table 4. Overview of product types in testbeds.

Products Testbeds

RTU 12

MTU 8

PLC 8

HMI 7

IED 4

DAQ 1

Data aggregator 1

HDBMS 1

OPC server/client 2

PDC 1

PMU 1

Relay 1

SCADA server/client 1

Not covered 13

There are several components in NIST 800-82 [90] that are not explicitly

mentioned for any testbed. In particular, the data historian, IO server and control

FOI-R--4073--SE

30

server are not mentioned. The articles do not describe why this is the case. An

explanation could however be that these components are thought of as integrated

with the MTU.

An overview of the communication protocols that are used by the testbeds is

given in Table 5. Modbus (Modbus ASCII, Modbus TCP or Modbus RTU) and

DNP3 are by far the most commonly mentioned. OPC, IEC 60870 (including e.g.

IEC 104), IEC 61850 (including e.g. GOOSE) and Profibus are also mentioned

for more than one testbed. According to the American Gas Association's AGA-

12 standard [1], there are between 150 and 200 SCADA protocols. There are thus

a plethora of protocols that are not covered by current testbeds. How common

these protocols are in practice is however unknown to the authors of this report.

Table 5. Overview of protocols in testbeds.

Protocol Testbeds

Modbus 13

DNP3 12

OPC 5

IEC 60870 4

IEC 61850 3

Profibus 2

Fieldbus 1

FINS 1

GOOSE 1

ICCP 1

IEEE C37.118 1

CIP 1

RJ45 1

DeviceNet 1

Genius 1

Not covered 9

4.4.1 Control center

The control center concerns the servers and operator stations that are used to

remotely observe and control field devices, such as MTU and data historian (see

Section 2.1). An overview of how control center components are incorporated in

testbeds can be seen in Table 3. Approximately two thirds of all testbeds contain

descriptions regarding how their control center components are incorporated. Of

 FOI-R--4073--SE

31

these, most utilize simulations (30%) and/or hardware (37%). It is interesting that

so few (13%) testbeds choose to virtualize the control system components,

something which to a large extent is possible as they typically involve COTS OS

such as Windows and Linux (see Section 5.1).

The virtualization solutions that are mentioned concern DETER, Emulab, GENI,

PlanetLab and VirtualBox. Simulation-based approaches concern LabVIEW,

Mathworks Simulink, HoneyD in combination with IMUNES (FreeBSD jails),

the RINSE network simulator and custom Python scripts. The emulation

approach involves RINSE (it combines emulation and simulation). Hardware

concerns standard x86-based computers such as CitectSCADA 6.1 on Windows

XP (used as OPC server and HMI).

4.4.2 Communication architecture

The communication architecture involves components that realize

communication within ICS, for instance, routers, switches and modems (see

Section 2.2). 73% of all testbeds contain descriptions regarding how their

communication architecture is incorporated. Of these, most utilize simulations

(33%) and/or hardware (37%). As for control systems, many kinds of

communication architectures are possible to easily virtualize. For example,

Ethernet is commonly used within ICS and is easily virtualized through e.g.

VirtualBox (see Section 5.2). Thus, it is interesting that few testbeds (20%)

choose to do so.

Virtualization is proposed using DETER, GENI, Emulab or Virtualbox.

Simulation is proposed using OPNET, SITL communication network simulator,

Iperf (for background traffic), RINSE, OMNET++, PowerWorld simulator,

Mathworks Simulink, the Inet framework, NS-2, Networksim, the c2windtunnel

framework, IMUNES, and custom Python scripts. Emulation is proposed using

CORE (in combination with OpenVZ) and RINSE. Hardware generally involves

Ethernet devices such as routers and switches.

4.4.3 Field devices

Field devices concern the components that link the physical world to the digital

world, for instance, a PLC or an RTU (see Section 2.3). 77% of the testbeds

contain descriptions on how field devices are incorporated – a higher number

than for control system, communication architecture or process. None of the

testbeds contain virtualized or emulated
11

 field devices. An explanation for this

11

 One testbed claims to utilize PLC emulation software (the RSEmulate from Allen-Bradley).

Based on our paper studies, this software however simulates rather than emulates a PLC.

FOI-R--4073--SE

32

result is that ICS field devices generally are based on specialized, sometimes

proprietary, hardware and software that are unsupported by common

virtualization and emulation tools. Simulation (47% of all testbeds) and hardware

(47% of all testbeds) are used instead.

Used simulation tools include STEP7 (of Siemens S7 PLCs), RSEmulate (by

Allen-Bradley), LabVIEW, Scadapack LP PLC, Modbus Rsim, Soft-PLC,

Python scripts with CORE, OpenVZ, PowerWorld server, and HoneyD in

combination with IMUNES (FreeBSD jails). Hardware includes, for example,

Allen Bradley Control Logix PLC, National Instruments NI-PXI, Omron PLC

CJ1M-CPU11-ETN, CompactRIO from National Instruments, ABB 800F,

Siemens OpenPMC, Siemens S7 PLC, Emerson Ctrl MD, and GE FANUC Rx3i.

4.4.4 Physical process

The physical process concerns the physical reality that the ICS observe and

control (see Section 2.4). Less than half of the testbeds describe how the process

is implemented. In all cases, implementation builds on simulation models (rather

than actual physical processes).

The simulation approaches build on Matlab, Mathworks Simulink, Power

Hardware-in-the-Loop (OPAL-RT), LabVIEW, PowerWorld, AnyLogic and

EZJCOM, ANSYS, real time digital simulators, an Abacus solar array simulator,

a library file (.dll) for EPANET, OMNET, and a custom application written in

Java.

4.5 Managing testbed requirements

Siaterlis et al. [82] describe four overall requirements that cyber security testbeds

should fulfill:

 Fidelity: Reproduce as accurately as possible the real system under

study.

 Repeatability: Repeating tests produces the same or statistically

consistent results.

 Measurement accuracy: Observing tests should not interfere with their

outcome.

 Safe execution of tests: Cyber security tests often involve adversaries

that exploit systems using malicious software. As it can be difficult to

know the outcome of these activities beforehand, tests must ensure that

the activity within the testbed is isolated.

Of these requirements, repeatability and measurement accuracy generally depend

on activities outside of the technical scope of a testbed. For example, it is

difficult to ensure that adversaries act in the same way during consecutive tests.

 FOI-R--4073--SE

33

For this reason, repeatability and measurement accuracy are excluded from the

scope of the present pre-study
12

. Safe execution of tests was a key topic during

the development of CRATE (the testbed that is planned to host VICS, see

Appendix E), and is thus already rather mature. For this reason, it is also

excluded from the scope of the pre-study.

Ensuring testbed fidelity, i.e., that a testbed accurately reflects the desired real

environment(s), is a critical task as the quality of any data produced from

interaction with the testbed otherwise is uncertain. More than half (63%) of the

testbeds are not discussed at all regarding fidelity (see Table 6). The remaining

testbeds are analyzed in respect to fidelity in two different means: practical

experiences and/or standards. The fidelity of 23% of the testbeds is argued based

on real data gathered by the authors: either from quantitative data gathered from

ICS systems in operation and/or from qualitative personal experiences or

discussions with ICS manufacturers, providers and operators. For instance,

"Based on discussions with some industry partners and on our own experience"

[2] and “In order to capture real image of the power network, a small part of

power network was taken” [19]. The remaining 13% that discuss fidelity base

their testbed designs on standards developed by NIST (e.g., the NIST 800-82),

ISA (e.g., the ISA-99) or IEC (e.g., the IEC Smart Grid Standardization

Roadmap).

Table 6. Analysis of testbed fidelity.

Fidelity Testbeds

Not covered 19

Study of real systems 7

Based on standards 4

Of the testbeds that are discussed in terms of fidelity, two provide specific

metrics that can be used to replicate their results with some degree of accuracy.

The first is Reaves and Morris [71] (a testbed at the Mississippi State

University), who describe 11 metrics involving Modbus traffic (e.g., byte

throughput, master-to-slave inter-arrival time, error count and packet size) in

addition to comparing the result from attacks against testbed components (which

in this case are simulated) compared to real components. These metrics were

chosen based on the rule sets of model-based intrusion detection systems. The

second is Siaterlis and Genge [83], who compare the execution time of their

testbed to the required execution time of seven physical processes. Their results

show that they fulfill the execution time for everything but the IEEE 118 bus

model (the testbed has an execution time of 155ms and the IEEE bus system has
a requirement of 24ms).

12

 They will however be studied in further detail in future work.

FOI-R--4073--SE

34

An important aspect of testbed fidelity concerns what data should be collected in

order to recreate a valid testbed design. For example, how a network topology or

machine configuration best should be captured. Of all testbeds, the Iowa State

University testbed is the only one that discusses this topic [33]. Hahn and

Govindarasu [33] discuss how different data collection tools are able to fulfill the

NIST 800-115 [77] methodology and the NERC critical infrastructure protection

requirements. They used Wireshark to analyze network traffic, The Open

Vulnerability Assessment Language (OVAL) Interpreter for analyzing machine

configurations, Nmap and Sandia’s Antfarm for network and service discovery,

Firewalk and the access policy tool (APT) for firewall rule set discovery, and

Nessus for vulnerability scanning. The results showed that these tools overall had

excellent support for regular IT solutions such as Windows operating systems,

but poor support for ICS specific components such as PLCs. For instance, “there

appeared to be numerous communications employing proprietary protocols
which Wireshark was unable to identify” and “Nmap was not able to identify 53

out of 157 the open ports utilized in the network. This occurrence is a result of

the heavy utilization of proprietary and SCADA specific protocols which are not
recognized by Nmap”. The analysis by Hahn and Govindarasu [33] is also

limited as it does not study the potential to collect configuration data through

agent based software, which is a common ICS industry practice (see Section 5.1).

4.6 Virtualization of embedded devices

The systematic literature review identified 12 articles that describe methods for

virtualizing or simulating embedded devices. Of these articles, three present

surveys (Section 4.6.1) and nine present implementations (Section 4.6.2).

4.6.1 Surveys of embedded device virtualization

Heiser [36] provides a number of examples of use cases of virtualization in

embedded systems, and explain the motivation and benefits, as well as some of

the differences to virtualization of non-embedded systems. For example, it is

explained how virtualization enables data privacy layers in modern smartphones.

However, the author does not discuss ICS field devices.

Gaska et al. [26] describe a survey of technologies and methods that can enable

virtualization of avionics applications requiring multiple guest OS environments.

The results show that there are many questions regarding embedded system

virtualization that still are unanswered, for example, “How will IT virtualization,

ARINC 653 virtualization, and MILS/MLS accommodate multicore with 32
processor devices on chip?”.

Gu and Zhao [29] present a survey of existing virtualization technologies for

real-time embedded systems. For example, one section presents Xen-based

 FOI-R--4073--SE

35

solutions and another presents KVM-based solutions. The author does however

not provide any in-depth discussion of any of the surveyed solutions. The most

relevant part of [29] for the present study is a survey of virtualization

technologies for “safety-critical systems”. Whether or not these surveyed

virtualization technologies support field devices is however unknown.

4.6.2 Virtualization implementations

Zamorano and Puente [105] describe ASSERT, a virtualization methodology and

platform that can be used to develop and implement real-time embedded systems.

It however only supports the LEON processor family. It is also unclear how

much effort it would require to build software for it, or how valid a developed

embedded system would be.

Xu et al. [101] propose handling binary translation requests based on the page

fault mechanism in the Linux kernel. The authors test their approach using the

ARM platform and evaluate its performance in relation to emulating ARM using

the Boch emulator. The results show that the authors approach is more efficient

than the Boch emulator.

Yoo et al. [104] argue that the I/O model of current virtual machine monitors

(e.g., Xen) is not suitable for real-time applications as it lacks predictability and

does not guarantee deterministic I/O processing. The authors then propose a

method for VMM resource scheduling given the presence of several VM guest

OSs. Measurements by the authors show that their approach is promising yet

requires work.

Sisu et al. [100] introduce a real-time multicore VM scheduling framework for

the Xen VMM. Their approach primarily addresses the Xen scheduling issues in

a similar fashion to Yoo et al. [104]. It does not address the problem that few

operational field devices are possible to virtualize in Xen. The authors estimate

the effectiveness of this approach through a resource scheduling experiment and

find, similarly to Yoo et al. [104], that their approach is promising yet requires

more work.

Similarly to Yoo et al. [104] and Sisu et al. [100], Åsberg et al. [3] address the

timing issues of embedded virtualization. The authors approach does not require

any kernel modifications, something which is accomplished by a scheduling

framework called RESCH in combination with a type-2 hypervizor such as

VirtualBox or VMware. Their approach does however not support embedded

systems with special hardware and software not covered by common type-2

hypervizors.

Chunjie and Hui [13] address the heterogeneity of manufacture-dependent PLC

programming languages by implementing the IEC 61131-3 standard in a virtual

machine. This enables porting of IEC 61131-3 compatible applications to other

FOI-R--4073--SE

36

hardware platforms. Consequently, it is a means to standardize PLC

programming rather than virtualize existing PLCs. The authors implement their

approach on a C51 based embedded PLC platform and measure the execution

time of different PLC instructions. A similar approach is presented by Zhang et

al. [106], who also propose implementing IEC 61131-3 in a virtual machine

(based on uCLinux). The authors do not attempt to estimate the effectiveness of

this approach.

Zhang et al. [107] propose a virtualization approach for cyber-physical systems

that build on QEMU and the source code of a controller to emulate a PLC and

Matlab/Simulink to simulate a physical process. Thus, it is a kind of simulation

rather than a means to virtualize or emulate existing field devices. QEMU and

Matlab/Simulink are designed to communicate through a socket. They implement

their approach for two real cyber-physical systems and find that their simulation

is close to the real systems.

Son and Lee [86] has built a cross-platform virtualization software for embedded

devices that is able to run code that has been compiled for its instruction set (a

kind of programming language virtualization, see Section 3.1.3.2). The authors

have created a compiler that can manage source code written in C, C++, Java or

Objective-C. The effectiveness of this approach is however not examined.

4.6.3 Summary

As is presented in Section 4.6.1 and Section 4.6.2, there are a number of

implemented virtualization technologies for embedded systems. However, none

enables executing a real field device (such as a Siemens S7-1200) within a

virtual or emulated container. Together with the fact that not a single of the

identified testbeds virtualize or emulate field devices (see Section 4.4.3) this is a

clear indication of the difficulty associated with virtualization and emulation of

field devices.

 FOI-R--4073--SE

37

5 Creation of an ICS testbed
This chapter describes how the control center, communication architecture, field

devices and the physical process itself might be incorporated into an ICS testbed

(sections 5.1-5.4).

The systematic review of existing testbeds identified very few tangible measures

for fulfilling testbed fidelity (see Section 4.5). As a consequence, this chapter

builds on additional literature reviews as well as practical experiences of ICS

components and configurations in the project group in order to identify tentative

means of creating a high-fidelity testbed:

 Literature reviews: The results from the systematic review (see Section

4) in combination with additional searches for specific works not

covered by it (e.g., regarding network fidelity metrics, see 5.2.2).

 Interviews with an ICS manufacturer: Interviews with personnel at

ABB Ventyx in Västerås (a product manager, an IT security architect

and a lead developer) were conducted to assess the possibility to include

ABBs SCADA system components in an ICS testbed, as well as

improve the understanding of ABBs components and configurations.

 First hand experiences with ICS components and configurations:

FOI has experience from testing, reversing, implementing and

developing various ICS components and configurations (see e.g.,

Appendix C or [61]).

On an overall level, the amount of fidelity that is necessary depends on the

objectives of the testbed. The systematic review suggests that the possible

objectives are vulnerability analysis, education and tests of defense mechanisms

(see Section 4.3).

All three objectives put one overall requirement on testbed fidelity: The testbed

should appear realistic when observed and interacted with. This includes both

the ability to appear realistic during normal usage and the ability to appear

realistic given the presence of cyber attacks. Here, cyber attacks are defined

according to [43], [57] and [79]: as a combination of asset discovery (e.g.,

mapping network topology and fingerprinting systems and services), exploits

(e.g., an attack code that provides administrator privileges of a system through a

buffer overflow vulnerability) and activity as a result of system compromise

(e.g., downloading additional files or manipulation of data). In summary, this

means that an ICS testbed should fulfill the following four general requirements:

1. The testbed should facilitate interaction between control center, field
devices and the physical process using the same protocols and with the

same outcome as a real ICS in operation.

FOI-R--4073--SE

38

2. An automated network scan should provide the same results (topology,

systems, software and vulnerabilities) as if it was performed on the real

ICS.

3. Sniffing network traffic should provide the same results as if it was done

on the real ICS.

4. Exploits should provide the same results as if run on the real ICS.

A possible fifth requirement is that an ICS user (e.g., an operator) should not be

able to tell the difference between testbed interfaces and real interfaces (e.g., the

graphical user interface [GUI] of an HMI). However, none of the reviewed

testbeds (including those addressing education) focuses on high-fidelity GUIs.

Thus, it is not judged as necessary (although preferable) for an ICS testbed.

5.1 Integrating the control center

This section describes how control center components can be implemented in an

ICS testbed (Section 5.1.1) and how the fidelity of these components can be

managed (Section 5.1.2).

5.1.1 Method of implementation

Hardware and software within the control center generally build on “traditional”

IT components such as Windows and Linux. For example, older variants of

ABBs SCADA system Network Manager are run on physical Windows and

Linux machines (e.g., Windows XP); newer Network Manager systems are run

on virtualized Windows and Linux machines (e.g., Windows 7). Next to all

control center hardware and software are thus supported by common

virtualization technologies such as VirtualBox and thus possible to integrate in a

testbed as-is. It is thus curious to why current testbeds choose to simulate control

center components rather virtualize them. One explanation could be that it is

difficult to obtain real control center components.

5.1.2 Managing fidelity

To yield a high-fidelity testbed in respect to the control center, it is necessary to

be able to replicate ICS control centers in operation. This replication should

concern three areas:

1. machine configurations (which operating systems that exist and what

applications that are installed on them),

2. application configurations (how installed applications are configured),

and

3. application interactions (how installed applications are used and

communicate with other connected systems and software).

 FOI-R--4073--SE

39

Machine configurations can be obtained by cloning hard drives, through

automated network scanners such as Nessus or Nmap, or by feeding network

traffic into special parsers such as NetworkMiner. A study by Holm et al. [39] of

automated network scanners indicate that their accuracy greatly depends on

whether or not they are allowed to login to the probed systems: their accuracy

given login was 100% for operating systems (e.g. Windows 7), 92% for

application servers (e.g. Apache Webserver) and 100% for application clients

(e.g. Adobe Reader); the accuracy without login was 62.5% for operating

systems, 67.3% for application servers and 0% for application clients. In another

study, Holm et al. [41] focus on the ability of network scanners to correctly

identify software vulnerabilities. The results show that a mean of 41% (given

login) and 17% (without login) of all existing vulnerabilities are correctly

identified by the tested scanners, and that 6% (given login) and 7% (without

login) of all reported vulnerabilities actually are false alarms (i.e., do not exist in

reality). The results described in [39] and [41] however concern “traditional” IT

systems such as Linux and Windows OSs and Apache webservers. As reported

by Hahn and Govindarasu [33], the accuracy would likely be significantly lower

when probing ICS-specific software or sniffing ICS-specific protocols.

Application configurations can be obtained by cloning hard drives or by software

agents that execute client-side code. For example, ABB has specially constructed

scripts that allow replicating control centers. Services that extract application

configurations can be agent-based (run locally on machines) or interact with

machines through remote access services such as telnet, SSH, VNC or RDP.

Application interactions are more difficult to assess than machine and application

configurations. This is the case as state transitions typically are not stored per

default (e.g., the sequence of steps used by an individual when responding to an

email). Some application usage can be captured with network sniffers (e.g., how

individuals interact with shared folders); other application usage requires live

observation of systems in operation using e.g. screen capturing software or

memory dumps.

All of these aspects (application configurations, machine configurations and

application interaction) are necessary to enable high fidelity in respect to

“regular” control center operations (without considering any adversary).

It should be easy to provide an attacker with a realistic experience when

attacking virtual control center components (such as probing or exploiting a

Windows machine) as automated scanners (e.g., Nmap or Nessus) provide the

same result as if scanning a physical system and exploits generally works the

same on a virtual system as if run against a physical system. For example,

application modules are loaded on the same logical address spaces no matter if

the underlying OS is virtualized or not.

FOI-R--4073--SE

40

If the objective of the testbed is to function as a honeypot (deceive real

attackers), virtualization is arguably only applicable given an attacker profile of a

novice. Experienced attackers can typically easily fingerprint the usage of

virtualization technologies such as VirtualBox as the guest OS requires special

drivers, e.g., to interact with the virtual devices exposed by the virtual machine

manager or to enable the VMM to impose special instructions on the guest OS

(e.g., a shared clipboard between host and guest).

Apart from the issues concerning virtual machine fingerprinting, a control center

contains various kinds of IT applications and protocols that trigger

communication messages based on different activities. For example, SMB

triggers based on access of (network) shared folders or printers, ARP requests

and responses are used to map MAC addresses to IP addresses, and DHCP

requests and responses are triggered when new system is connected to a LAN

and when its IP lease timer has expired. A testbed should well reflect such traffic

to be considered of sufficient fidelity [8]. High-fidelity network traffic is

arguably of greater importance than high-fidelity local machine usage (e.g.,

writing a document in Microsoft Word) for three overall reasons:

 Adversaries often depend on network traffic to gain an understanding of

a network and its systems and software.

 Some cyber attacks, such as sniffing and pass-the-hash
13

 attacks, require

operational network traffic to be successful.

 False alarms given by non-malicious activity is a significant issue for

network intrusion detection systems (NIDS) such as Snort [38]. To study

the effectiveness of a NIDS, there is a need to utilize realistic network

traffic and system interaction. The fact that the criticized [54] DARPA

1998/1999 intrusion detection datasets [51][52] are still used (see e.g.

[9][87]) is an indicator that this is a significant issue for the cyber

security domain as a whole.

5.2 Integrating the communication architecture

This section describes how communication architecture components can be

implemented in an ICS testbed (Section 5.2.1) and how the fidelity of these

components can be managed (Section 5.2.2).

5.2.1 Method of implementation

The identified testbeds use simulations or real hardware rather than virtualization

or emulation opportunities to implement communication architecture

13

 To bypass a Windows authentication function using an observed password hash sent over the

SMB protocol.

 FOI-R--4073--SE

41

components. This is odd considering that virtualization of the network and

communication hardware of a SCADA system can most likely be done using the

standard components of any competent virtualization software. They provide

virtual switches and hubs as-is. A router can be created by installing an existing

Linux router distribution; it only needs to be properly configured. Modems can

be either simulated using a telnet or VPN type of connection, or using a

hardware-in-the-loop model. The latter alternative is feasible since there is often

only one modem connected to a system, used as a backup if the ordinary internet

connection is down.

Regarding simulation and emulation: the main difference between network

simulation and emulation is that the first does not run in physical time, which the

latter does. In network simulation situations the simulated time used is often

slowed down relative to the physical time.

There are also specialized virtual network components that can be used. For

example, there are more than 60 WiFi software routers for Windows and *nix

available
14,15

. There are also at least 10 network simulators or emulators

available
16

.

5.2.2 Managing fidelity

To yield a high-fidelity testbed in respect to its communication architecture, it is

necessary to be able to replicate the components and network topologies of ICS

communication architectures in operation. Similarly to the control center (see

Section 4.4.1), this can be (somewhat) accomplished through network sniffing

(e.g., Wireshark) and scripts that consult firewall rulesets (e.g., Firewalk or the

access policy tool (APT)). The accuracy of such activities has not been

quantified through scientific research [33]. However, as the communication

architecture on overall concerns “traditional” components, it is likely similar to

the statistics presented in Section 4.4.1.

To be of high fidelity in respect to regular usage (without an adversary), the

virtual network should handle events such as (random) hardware failures and

degrading performance due to ageing cables and components, i.e. intermittent

failures. By measuring the performance of a real network and then creating a

virtual network with the same performance signature, a high-fidelity copy of the

real network can been constructed.

Ricciulli [73] suggests that the overall throughput and its standard deviation is to

be used to measure the fidelity of a simulated network, together with the

slowdown needed to accommodate for the heavier load put on the system when

14

 http://listoffreeware.com/list-of-best-free-virtual-router-software/
15

 https://en.wikipedia.org/wiki/List_of_router_and_firewall_distributions
16

 http://www.brianlinkletter.com/open-source-network-simulators/

http://listoffreeware.com/list-of-best-free-virtual-router-software/
https://en.wikipedia.org/wiki/List_of_router_and_firewall_distributions
http://www.brianlinkletter.com/open-source-network-simulators/

FOI-R--4073--SE

42

simulating. The slowdown is implemented using a synchronizing clock keeping

track of the simulated time, which runs in a different pace than the physical time.

The same problem and solution is discussed by Perumalla et al. [67].

Poylisher et al. [69] present a rather detailed description of how a virtual network

can be built. They explain the difference between a simulated network and an

emulated one, where the first can reach a higher fidelity. The main difference

between the two types is that network emulators run in real time while simulated

networks run in simulated time. The authors use SNMP to control their network

simulator, which is implemented by splitting the network stack in half. The upper

half (closer to the applications) is executed by the operating systems that host the

different applications. The lower half (closer to the physical layer) is simulated.

Poylisher et al. have evaluated their virtual network simulator by measuring the

latency introduced in the system at different traffic loads. The highest latency

value is 0.51 seconds at 120Mbps. They do not mention any other network

fidelity metric in their paper.

Yoginath et al. [103] addresses the problem with network fidelity where

simulators run on physical multi-core machines. To properly mimic a real

network the timing of all the virtual machines and their communication must be

taken into account. They write that such simulators must address the “concept of

a intra-node simulation timeline and also ensure the simulation time-order of

VM execution within each multi-core host node.”

Covington and Hanson [16] used link throughput, application throughput (sent

and received), application response time, VTC (Video Teleconferencing) end-to-

end delay, and VoIP jitter to measure the performance of their simulated

network.

Sultan et al. [92] present a solution called TimeSync to the timing and

synchronization problem in virtualized networks. They have concentrated on the

situation where the simulated time is running slower than the real time. To

evaluate their solution they use the measured end-to-end packet latency through

their emulated network. They have also evaluated their solution by looking at the

latency distortion induced by the size of the simulated network.

Chertov et al. [11] have compared the use of emulated and simulated networks

when performing DoS attack experiments. They conclude that there is a large

difference between the two types of network virtualization methods. The metrics

they use are:

1. average goodput
17

 in Kbps (Kbits per second) or Mbps;

2. average congestion window size in packets, computed for testbed

experiments by taking an average of the congestion window values;

17

 The number of useful information bits delivered by the network to a certain destination per unit of

time

 FOI-R--4073--SE

43

3. CPU percentage utilization; and

4. packets per second received and sent on the test network interfaces.

Pediaditakis et al. [65] have created SELENA, a Xen-based network emulation

framework, which can be used for general testing of network-based systems and

actions. They have identified fidelity, scalability and reproducibility as the three

main properties that have to be considered when designing high fidelity network

simulators and experiments [65]:

 The fidelity metric characterizes the precision and accuracy of the

experiments ability to replicate a real system. Using network

experimentation fidelity as an example the precision can be measured by

the differences of the timing properties between the real and the

experimental system, the degree of reuse of traffic models and

applications from the real system and how well the experimental

topology mimics the real system.

 The scalability of an experimentation platform is also important for its

usefulness as a substitute for real world networks and systems. There are

three functional aspects to consider with regard to the scalability of an

experimental platform: execution time scalability, resource scalability

and fidelity at scale. These three aspects exhibit Pareto efficiency, that

is, if one is improved the others are negatively affected. Execution time

scalability is the physical time needed to replicate an experiment. The

shorter the time, the more experiments per hour can be run. The resource

scalability metric measures the experimental platform’s ability to be

efficient and minimize hardware requirements. The last aspect, fidelity

at scale, measures how the fidelity of the experimental platform varies

when the size of the experiment increases.

 The reproducibility of a network experimentation platform is the third

key property, according to [65]. The property describes the fidelity of

experiments over heterogeneous hardware platforms, and the platform’s

ability to reproduce earlier experiments and their results. Regarding the

use of heterogeneous hardware platforms the goal should be the same

perceived processing capacity of the experimental system regardless of

the actual hardware used. At least the impact of the host’s actual

processing power should be controllable.

The most important things to consider when planning experiments in

experimental network environments are the following questions: “which are

the metrics that better characterize the system’s resulting behavior” and

“what is the desired degree of similarity with a reference system” [65]. For

the platform to be of high fidelity the statistical properties of the answer to

the first question should closely mimic those of a real system. The similarity

test used could for example be the Kolmogorov-Smirnov test that compares

FOI-R--4073--SE

44

an empirical cumulative distribution function with a reference cumulative

distribution function [65].

5.3 Integrating field devices

This section describes how field devices can be implemented in an ICS testbed

(Section 5.3.1) and how the fidelity of these components can be managed

(Section 5.3.2).

5.3.1 Method of implementation

The use of virtualization requires that the architecture of the guest machine is the

same as the architecture of the host machine, or in some cases a subset of it. Most

importantly, the range of possible machine code sets and CPU registers is

impacted by this demand. I/O devices may differ between the guest machine and

the host machine since they are more or less emulated by virtualization software

anyway. Because of these similarity requirements, virtualization of field devices

on regular computers is only feasible for devices built with the Intel IA32 or

IA64 architectures. This is for example the case for the ABB RTU560. In all

other cases we must either use emulation or simulation.

As long as timing requirements are not critical, emulation is almost always at

least a theoretical option. The main drawback of emulation is that it is slower

than virtualization. Emulation, as well as virtualization, also requires a detailed

knowledge about the architecture of the device to be emulated. Perhaps the

largest practical barrier to overcome is that the architecture may need exhaustive

reverse engineering before it is sufficiently well documented. Such reverse

engineering may be extremely time-consuming, bordering impossible, to

accomplish.

Another decision to be made is at which abstraction level to perform the

emulation. For example, a Siemens SIMATIC S7-400 PLC implements a kind of

virtual machine itself. In this case the virtualization is more similar to a Java

virtual machine than to a hardware virtualization product like Oracle VirtualBox.

Thus, the S7-400 has two different architecture levels. The hardware one is based

upon Infineon TriCore CPUs, while the virtual architecture runs a Siemens

proprietary machine code called MC7. Emulation can be performed either at the

hardware level or at the MC7 level.

Emulation at the hardware level of a field device assumes that the architecture of

the true hardware is documented in detail. In the case of the Siemens S7-400 it

also requires the reverse engineering and emulation of field programmable gate

arrays (FPGAs) present at the circuit boards. This presents a problem of its very

 FOI-R--4073--SE

45

own nature. The general field of FPGA reversing still seems to be in its

infancy
18

. The next problem after FPGA reversing is that the emulation of the

FPGAs runs the risk of being so slow as to be completely useless. However, it is

also conceivable that the FPGA parts of the device can be safely ignored in the

emulation, as long as the emulated device have no connection to an actual

physical process.

The benefit of emulation at the hardware level is that it would enable the

utilization of the original device firmware. This in turn may lead to a heavily

reduced emulator size, as well as magnitudes higher emulation accuracy. On the

other hand there may be intellectual property rights complications when original

firmware is to be run in an emulated environment. Hopefully such problems can

be sorted out in cooperation with each device manufacturer.

In any case, emulation requires a detailed understanding of at least some level of

architecture, which may not be feasible in practice. The fact that not a single one

of the surveyed 30 ICS testbeds attempt to virtualize or emulate field devices

(see Section 4.4.3), in addition to the lack of research on this topic (see Section

4.6), are proof of these problems.

If emulation and virtualization are not feasible, simulation is the only option left

in terms of yielding testbed scale without involving actual hardware. However,

since simulation only is accurate on the surface it cannot be used for all low level

security testing. It may be useful for other purposes though, such as education

and testing at a higher abstraction level than attacks on software (e.g.,

configurations and functions).

The level of ambition when doing simulation can lead to very different amounts

of complexity. For example, it may be desirable to fully implement real world

communications protocols. This would enable communication between the

simulator and completely external systems. In a fully simulated environment

there may be no such needs, and then even the communication between different

parts may be simulated. Another possibility is to implement known

vulnerabilities into the network stack of the simulator, so various security testing

tools and exploits can be run against it. The network stack can also be made

sufficiently similar to the real device so that it looks the same when OS

fingerprinting is performed against it.

5.3.2 Managing fidelity

Field devices are the most difficult type of ICS component to replicate due to

their special software, hardware and logic. Running a local software agent to

gather a field device’s configuration is generally not feasible and replicating their

18

 http://www.hackitoergosum.org/2010/HES2010-sbourdeauducq-FPGA-Challenge.pdf

http://www.hackitoergosum.org/2010/HES2010-sbourdeauducq-FPGA-Challenge.pdf

FOI-R--4073--SE

46

disks and memory is not only very difficult, but also generally impractical as

their special hardware still is required to execute the copied configuration. While

they have network interfaces that can be probed, doing so can cause them to

crash [53]. Network sniffers can be used, but have little support for ICS-specific

protocols [33]. Thus, there is a need to develop novel mechanisms for

fingerprinting and recreating field devices. This is further discussed in Section

6.4.

We did not identify any metrics specifically developed for the fidelity of

virtualized field devices. The explanation could be that there are no fully

virtualized field device products on the market, or in academia. Exactly what to

measure depends on the intended use of the field device. For example, the

demands on a PLC used for the discovery of novel vulnerabilities are different

from the demands on a PLC used to test the effects of a specific vulnerability on

a whole plant. Yet another example is the testing of the effects of malware

directed at devices, which places special demands on its own.

At the highest fidelity level, when the virtualized field device is used for

discovery of novel attacks it should be possible to connect the device to a real

system and it should work. Another metric can be formulated in the following

way: the virtual device should not be possible for a skilled attacker to

differentiate from a real one. At the other end of the fidelity scale it might be

enough to get the correct response to standard interactions from a system or

operator.

The main properties of field device fidelity metrics are functionality and correct

timing (which is a key focus area for works that attempt to virtualize other kinds

of embedded systems, see Section 4.6). Hence, a proper handling of latency is

vital for any high-fidelity virtual application. The latency and its statistical

properties should be controlled, for example its mean, median, variance and

distribution. Also the changes over time of these metrics should be taken care of,

for example the device’s behavior under different load conditions.

Regarding the behavioral aspect, the fidelity of the virtual field device is related

to its ability to mimic the physical device in all aspects, for normal input, as well

as when its stimulus is faulty or missing. A list of tentative example metric

components for a PLC follows:

 Are the formats of code, data and other blocks exactly similar or just

functionally similar to the ones in a real PLC? The difference may be

important for some vulnerability testing and complete accuracy may be

crucial for malware testing.

 Can it handle PLC machine code fully, so any code developed for a real

PLC can run on it? This is not the case for some PLC emulators that

currently are available on the market.

 FOI-R--4073--SE

47

 Can it handle undocumented aspects of PLC machine code? This may be

important when testing malware, since malware may insert

undocumented instructions to throw emulators, disassemblers or

debuggers off.

 Does it execute faulty machine code in a similar way to a real PLC? This

may also be important when testing malware, which may use such

constructs to throw emulators, disassemblers or debuggers off. A real

PLC might try to fix the problem and run the faulty machine code in the

way it assumes the code was expected to run. Or simply do something

other than crash - a behavior which must be replicated exactly in some

cases.

 The four above aspects can be extended to include communication

protocols. For example, undocumented and faulty protocol options.

 Are there any undocumented system areas with information that low

level code can access, and are they similar to the ones in a real PLC?

This may be very important in malware testing.

 Can the original PLC firmware be used? This most likely leads to

significantly higher fidelity than other kinds of implementation.

 Does the PLC respond as its real counterpart when subjected to overload

attacks? For example in regard to CPU and memory capacity.

5.4 Integrating the process

This section describes how physical processes be implemented in an ICS testbed

(Section 5.4.1) and how the fidelity of such processes can be managed (Section

5.4.2).

5.4.1 Method of implementation

Leaving aside the fact that a testbed can be connected to a real physical process,

there is a need to incorporate simulators. The systematic review identified a

variety of simulators that can be used for this purpose, such as Matlab/Simulink

models, OPAL-RT’s Power Hardware-in-the-Loop, PowerWorld, and custom

written applications.

The interviews with ABB Ventyx showed that they had several process

simulators; for instance, a power system operator training simulator
19

. The

respondents perceived it as non-trivial to alter these simulators as this would

require not only altering the simulator itself, but all related testbed components

as well (the configuration of field devices, the communication architecture and

19

 http://www.abb.com/industries/ap/db0003db004333/c125739a0067cb49c1257026003d4a31.aspx

http://www.abb.com/industries/ap/db0003db004333/c125739a0067cb49c1257026003d4a31.aspx

FOI-R--4073--SE

48

the control center). Other ICS manufacturers are bound to have similar process

simulators.

5.4.2 Managing fidelity

The difficulty involved with replicating the aspects of a physical process depends

on the process in question. For example, a water storage tank is simple to

simulate with high fidelity [60], whereas a power grid requires knowledge

regarding a plethora of parameters to be simulated with high fidelity [68]. For

more complex processes such as power grids, it is desirable to automatically

assess configurations as high fidelity otherwise is difficult to achieve. It is not yet

clear how this information can be automatically obtained from a general ICS in

operation. However, it is clear that some ICS store relevant process information

in control center components. For instance, the components of a power system at

an electrical level and the relationships between each component are sometimes

stored as an XML according to the Common Information Model (CIM, see the

IEC 61970-301) [56] in control center components. This information can be

extracted to enable modeling an electrical power grid in a simulator.

Similarly to replicating a physical process, how to study its fidelity also depends

on the process that is concerned – a high voltage grid has different fidality

requirements than a water distribution network. For example, how fidelity is

managed in the power system domain is described by Pourbeik [68] and in a

white paper by the North American Electric Reliability Corporation (NERC)

[64]. The white paper by NERC provides a method and metrics for validating

power system models and emphasizes that the system powerflow model should

match the real world system. Pourbeik provide a survey of different means of

measuring the fidelity of different power system models, such as transmission

line models and power generator models. Fidelity is studied by first subjecting a

simulation and a real world system to a series of stimuli that are thought to be

representative of the use of the real world system (e.g., opening a breaker or

injecting a power fault). The resulting data (e.g., power output response, voltage,

field current or Watt) is then compared for the simulation and the real world

system through graphical plots and statistical distribution fitting metrics.

An additional fidelity problem not considered by [64] or [68] concerns the fact

that running process simulations in real-time is generally extremely CPU-

intensive [83]. To manage this problem, experiments using process simulators

(e.g., Matlab/Simulink models) often slow down the execution time of the

simulation, thus decreasing the CPU load without reducing the validity of the

experiment. This is unfortunately difficult to accomplish for ICS security
testbeds as they often involve humans (such as adversaries) and real hardware

devices, which both require the testbed to perform in real-time. Siaterlis and

Genge [83] study this problem for the testbed at the European Commission Joint

Research Centre in Italy by comparing the execution time of their Simulink

 FOI-R--4073--SE

49

process models (in milliseconds) to the requirements of different physical

processes such as power plants, railway systems and IEEE bus grid (see Section

4.5).

FOI-R--4073--SE

50

 FOI-R--4073--SE

51

6 Conclusions and future work
The present study was conducted in cooperation with project AVA that is

managed by INL and DHS. Overall, the findings and suggestions for future work

match to those described in the AVA pre-study [42], and continued collaboration

with INL and DHS is deemed as critical for the success of VICS. This is further

discussed in Section 6.1. Apart from collaboration with AVA, other actors have

been involved in VICS. For example, there have been meetings with ABB

Ventyx in Västerås, a visit from David Bakken from the Washington State

University, a presentation of DETER by Terry Benzel from the University of

Southern California, and a master thesis is currently being conducted in

cooperation with the Royal Institute of Technology (KTH) in Stockholm (see

Section 6.5).

This study first examined what ICS testbeds currently exist (RQ1), what ICS

objectives these propose (RQ2), how ICS components are implemented within

them (RQ3), how they manage testbed requirements (RQ4), and what methods

are available for the virtualization of ICS field devices (RQ5).

A total of 30 ICS testbeds were identified. The most common overall objectives

of these testbeds are to facilitate vulnerability analysis, education and tests of

defense mechanisms. ICS components are typically simulated, even in cases

where virtualization is judged as feasible. The fidelity of these testbeds is seldom

discussed (63%), and when it is discussed, there are only two articles (for two

testbeds) that quantify fidelity. No existing methods for virtualizing operational

field devices were identified.

This study then suggested means of creating an ICS testbed as well as means to

examine the fidelity of such a testbed. Based on NIST 800-82 [90], an ICS

testbed should consider four general areas: the control center, the communication

architecture, field devices and the physical process itself (see Section 2). Based

on the results from the literature review and experiences within the research

group, the overall objectives for an ICS (security) testbed are facilitation of

vulnerability analyses, education and tests of defense mechanisms (see Section

4.3). The discussion presented in this section builds on these areas and

objectives.

Implementation opportunities based on four methodologies were considered:

virtualization, emulation, simulation or hardware (see Section 3). An overview

of suggested implementation methods and possible technical fidelity issues with

these methods is described in Table 7.

The results show that control center and communication architecture

components are possible to virtualize without too many technical issues. It is

however not a straightforward task to simulate application interaction, such as

interaction that leads to network traffic between different machines (see sections

FOI-R--4073--SE

52

5.1-5.2). The physical process is deemed best implemented as a simulation

model, e.g. using Matlab/Simulink (see Section 5.4). While physical process

simulators are key elements in most existing ICS testbeds (see Section 4.4.4), it

is unknown to the authors of this report how much value they actually provide –

discovery and exploitation of software and hardware vulnerabilities is not

contingent on the availability of a physical process simulator. Future work should

examine this property in-depth.

Table 7. Suggested implementation methods and perceived technical fidelity issues.

Area Implementation Technical fidelity issues

Control center Virtualization Application interaction

Communication architecture Virtualization Application interaction

Field devices Virtualization,

emulation,

simulation or

hardware

Development of simulator

Physical process Simulation Development of simulator

Implementation of field devices (e.g., a PLC or an RTU) depends on the kind of

device that is considered. Modern field devices are often based on architectures

and firmware that have current virtualization and/or emulation support
20

. The

same applies for field devices that manufacturers have created emulation

software for (it is however not certain that manufacturers would want to share

such technology). Older or proprietary field devices (such as the Siemens S7

series) are however not supported by any current virtualization or emulation

approaches. As a field device can be used for up to 40 years [93], there is bound

to be a plethora of such devices in operation. For this reason, the AVA study [42]

proposes using the emulator QEMU in combination with the compiler LLVM to

emulate field devices. The study [42] recognizes that more research is required to

validate the applicability of this approach. For this purpose, the present study

conducted technical assessments of two models in the Siemens S7-400 and

Siemens S7-1200 series (see Appendix C). The results from this analysis show

that the S7-400 and S7-1200 build on proprietary and completely different

machine code and that both are judged extremely difficult to emulate with a high

degree of accuracy. In other words, the QEMU/LLVM approach would be very

expensive to implement for the Siemens S7 PLC series. As this cost is directly

influenced by the diversity of operational field devices, we conducted a survey of

20

 For example, the Schneider Electric Modicon Quantum PLC uses an x86 processor, whereas its

Ethernet module uses vxWorks 5.4 and a PowerPC processor (MPC870):

http://www.digitalbond.com/tools/basecamp/schneider-modicon-quantum/.

http://www.digitalbond.com/tools/basecamp/schneider-modicon-quantum/

 FOI-R--4073--SE

53

PLC manufacturers (see Appendix A). A total of 341 manufacturers with an

unknown number of product families and models were identified. It is very likely

that many of the field devices that the 341 identified manufacturers have

developed are as difficult to emulate as the Siemens S7 series. Consequently, the

present study argues that PLCs which are unsupported by current virtualization

and emulation technologies should be simulated or implemented as hardware. Of

these two approaches, simulators are judged as sufficient for all testbed purposes

except software and hardware vulnerability discovery (see Section 6.5).

Based on the results gathered from the present study, six suggestions for future

work are identified for the next phase of VICS (to be conducted during 2015 and

2016). These suggestions are described in Section 6.1 – 6.6. Finally, Section 6.7

reflects on the overall project goal – creating an ICS testbed – and discusses

limitations of this study with respect to it.

6.1 Cooperation with INL and DHS

There is much to be gained if DHS, MSB, INL and FOI cooperate in the design

and construction of an ICS testbed. Pooling resources such as personnel, data

collection scripts, manufacturer and operator contacts enable better results at a

lower cost. Furthermore, the testbeds that AVA and VICS plan to base the ICS

testbeds on (ACORN and CRATE) both build on standard virtualization

technologies. This enables porting entire machines and perhaps even complete

testbed configurations.

The present report illustrates the value of this collaboration: it builds on and

complements the pre-study of AVA [42]. It would not have been possible to

achieve the results described in the present report without the collaboration with

AVA. Overall, the results from the present study support the current and planned

activities within AVA.

Future work should continue the collaboration that has been utilized so far

between DHS, MSB, INL and FOI, as well as examine how to further improve it.

6.2 Involve ICS manufacturers and operators

Implementing ICS components that build on software and hardware which can

be virtualized, such as ABBs Network Manager, are judged to require little effort

and provide high fidelity, while development of novel (simulated) components of

the same sort is believed to be expensive and provide uncertain (likely low)

fidelity. For components that are difficult to virtualize, ICS manufacturers

sometimes have emulators and simulators. Furthermore, to analyze (or replicate)

their systems in operation, manufacturers have various tools and methods that

facilitate high-fidelity data collection at a low cost without disrupting the studied

FOI-R--4073--SE

54

system. This, in addition to all the experience that manufacturers possess

regarding ICS in general and ICS testbeds in particular, suggest that involving

them is imperative for the success of VICS.

ICS manufacturers would obtain several advantages from participating in VICS,

in particular:

 Vulnerability analysis of their components and configurations under

controlled conditions. Discovery of novel vulnerabilities is coordinated

with the manufacturer.

 The many individuals who participate in the education and awareness

activities that are organized by FOI get to interact with the components

and configurations provided by the manufacturer.

 FOI develops and tests novel defense mechanisms such as network

intrusion detection systems. Participating manufacturers directly benefit

from these mechanisms as they per default are customized for their

solutions.

Similarly to ICS manufacturers, ICS operators have valuable deep knowledge on

ICS components and configurations. The key difference is that ICS operators

have specialized knowledge about their specific installations, whereas ICS

manufacturers have more general knowledge of their developed systems. A high-

fidelity testbed thus require involvement also of ICS operators. Operators would

benefit from the participation in several ways, in particular:

 Vulnerability analysis of systems in operation under controlled

conditions, as well as suggestions for how to mitigate discovered flaws.

 Participating operators directly benefit from defense mechanisms

developed and tested by FOI as they per default are customized for their

systems.

The Swedish national center for security in industrial control systems and critical

infrastructures (NCS3) is managed by FOI and funded by MSB. NCS3 has

connections with various operators and manufacturers. Thus, VICS would

benefit from coordinating these activities with NCS3.

6.3 Identify tangible testbed objectives

The three identified testbed objectives (vulnerability analysis, education and tests

of defense mechanisms) are described on a very superficial level for all existing

testbeds (see Section 4.3). To be able to relate these objectives to actual testbed

design decisions, there is a need to break them down and make them more

tangible.

 FOI-R--4073--SE

55

One means to make them more tangible is to employ taxonomies, e.g., the

taxonomy for ICS vulnerability assessment which is presented by NIST 800-82

[90]:

 Policy and Procedure Vulnerabilities are vulnerabilities due to

incomplete, inappropriate or nonexistent security documentation,

including policy and implementation guides (procedures).

 Platform Vulnerabilities are vulnerabilities due to flaws,

misconfigurations, or poor maintenance of their platforms, including

hardware, operating systems, and ICS applications.

 Network Vulnerabilities are vulnerabilities due to flaws,

misconfigurations, or poor administration of ICS networks and their

connections with other networks.

These three topics contain a total of 71 more concrete types of vulnerability

assessments that can be used to create better requirements for ICS testbeds. For

instance, if one wishes to analyze the presence of the platform vulnerability

buffer overflow, there is a need for real software to be in place. This would

preferably involve hardware, and at worst virtualization or emulation: simulation

simply would not be sufficient (as the software code-base would differ).

The above reasoning applies also to the other objectives such as education and

tests of defense mechanisms. For example, an ICS security novice would not

notice if an ICS environment is incomplete or if a PLC communicates a bit

differently than what it typically does in the real system, whereas an ICS expert

would call for a higher fidelity regarding both of these aspects to perceive a

testbed as realistic.

Another means to make the objectives more tangible is to relate them to the

activities at FOI. Within vulnerability analysis, FOI conducts both system-level

(e.g. [61]) and component-level (e.g. [99]) vulnerability discovery. For the prior,

simulated field devices are likely sufficient as the primary attack vector generally

concerns the control center (which is judged possible to virtualize). For the latter,

real software (and preferably hardware) is required. Within education, FOI

provides courses and cyber defense exercises (CDX) that are aimed both at

beginners, intermediate and advanced ICS and IT users. None of these

educations are judged to require real field devices as they do not focus on

vulnerability discovery on that level of abstraction. When it comes to tests of

defense mechanisms, FOI has previously used CRATE to test a variety of cyber

security mechanisms, such as NIDS [85], automated network scanners [41], and

the accuracy of system-level vulnerability metrics [40]. Whether or not simulated

field devices are adequate depend on what defense mechanism is concerned.

A third means to make the objectives more tangible is to survey the opinion of

ICS manufacturers and operators. This is a necessity for several reasons, in

particular: (1) these actors have significant practical experience on the matter and

FOI-R--4073--SE

56

(2) it facilitates increased involvement with them, which is imperative for the

success of VICS (see Section 6.2).

6.4 Develop tools for fingerprinting and
recreating ICS configurations

There is a need to develop a methodology for recreating ICS in operation. One

important aspect within this methodology is to collect data on ICS configurations

in a resource-effective, accurate and non-disruptive manner.

One important aspect within data collection concerns automatization using

methods such as network scanning (e.g., Nmap or Nessus) and sniffing (e.g.,

Wireshark or NetworkMiner). Automated tools enable recreating operational ICS

configurations for a lower cost and with higher fidelity than what is possible to

achieve from interview-based methods. These methods might have sufficient

accuracy for general IT applications [39][41], but lack the ability to accurately

identify ICS specific components such as field devices [33]. Consequently, there

is a need to develop ICS-specific tools that can be used to capture data in a

means that a testbed can parse configurations from. A potential bonus result from

this work could be novel intrusion detection systems, algorithms and rulesets,

such as described by Hadžiosmanović et al. [32] and Fovino et al. [24].

Apart from data collection, there is a need to generate valid application

interaction within the ICS testbed (see Section 5.1). CRATE, the testbed that

VICS is planned to be based on (see Appendix E), currently has user agents

(bots) that are able to access shared folders, read email, execute files and browse

the web. These bots should be extended with the capability to interact in a means

that is representative for ICS.

When data on application configurations and interactions have been collected,

there is a need to project this as ICS testbed configurations. To fulfill this

activity, there is a need to extend CRATE with such functionality.

Finally, there is a need to develop methodology and tools for ensuring that a

testbed configuration is valid. Some preliminary metrics and thoughts on this

subject are presented in sections 5.1-5.4.

6.5 Develop simulated field devices

Our results indicate that virtualizing or emulating field devices rarely is a feasible

solution. An alternative means to reach testbed scale is to implement simulation
models of field devices. Simulation is adequate when it doesn’t compromise the

fidelity of a testbed with respect to the objectives of an experiment. In practice,

 FOI-R--4073--SE

57

we believe that simulation is acceptable for most objectives except software and

hardware vulnerability discovery.

An acceptable simulated field device should be able to function as a real field

device both under normal (non-malicious) usage and under the presence of an

adversary (see Section 5):

1. Replacing a real field device with the simulated field device should
not impact the ICS. The simulated device should not impact the state of

the process (e.g., be able to react to a power fault in the same way as a

real PLC) or the state of the control center (e.g., act on commands from

SCADA [for instance, open a breaker] and send measurements to

SCADA [such as voltage]). What applications, protocols, and logic

(according to IEC 61131-3) that should be supported depend on the

desired ICS configuration. One approach could be to incorporate

existing simulators such as the Modbus Rsim or the Siemens SIMATIC

PLCSIM simulator. Ideas for other approaches are given by the testbeds

that have chosen to simulate field devices (see Section 4.4.3, e.g., [2],

[70], [35] and [49]) as well as Chunjie and Hui [13] and Zhang et al.

[106], who propose means of implementing IEC 61131-3 in virtual

machine containers. Discussions with operators and manufacturers

would also be beneficial to conduct.

2. An adversary scanning a simulated field device should not be able to

tell the difference between it and its portrayed real field device.

Adversaries use both active (e.g., Nmap or Nessus) and passive (e.g.,

Wireshark) data collection methods to scan IT components such as field

devices. To be of high fidelity in regard to active scanning, the field

device should respond in the same way as its portrayed real device when

subjected to network traffic. One means of accomplishing this task is to

use Honeyd
21

, a software that can be used to simulate everything from

an entire operating system to the network stack. For example, Honeyd

can be used to simulate network service responses of a Siemens S7-

1200. FOI has previously both been a user and a developer of Honeyd.

To be of high fidelity in regard to passive scanning, a field device should

employ the same network stack as its portrayed real device. This is the

case as adversaries profile applications based on protocol

implementation (i.e., actual network traffic) rather than protocol

specification. Thus a field device should not only fulfill the first

requirement described above, but its protocol should be (at best)

identical to the desired implementation. Fidelity in respect to passive

scanning is thus more difficult to achieve than for active scanning, but

arguably also less important as active scanning is more accurate and thus

more frequently used by adversaries.

21

 http://www.honeyd.org/

http://www.honeyd.org/

FOI-R--4073--SE

58

3. An adversary exploiting a simulated field device should not be able
to tell the difference between it and its portrayed real field device.

As of March 2015, the Open Source Vulnerability Database
22

 contains

1030 vulnerabilities that contain the word “SCADA” in their

descriptions. Of the vulnerabilities that concern field devices, some

enable attackers to disrupt a device (such as bricking it or blocking

network communications); others’ enable attackers to install new

instructions on it. For instance, CVE 2014-5074 enables an attacker to

remotely shut down a Siemens S7-1500 PLC, and the malware Stuxnet

infects memory block DB890 of the Siemens S7-300 PLC
23

 (to

periodically adjust motor rotation speed). A simulated Siemens S7-1500

or S7-300 in a Linux kernel would per definition not allow these attacks

to succeed as its codebase would differ from the real devices. For this

reason, it can be very difficult to enable many exploits to work on a

simulation in a way that an attacker expects. One means of

accomplishing this task could be to create a ruleset corresponding to

known exploits and implement this ruleset in the simulated field device.

Incoming packets are matched against the ruleset and if an exploit is

deemed successful, an appropriate outcome is triggered. For instance, an

exploit corresponding to CVE 2014-5074 would serve to shut down the

simulator. An example ruleset and pattern matching system that could be

used for this purpose is the NIDS Snort.

VICS is currently co-supervising a master thesis with Professor Lars Nordström

from the department of Industrial Information and Control Systems at KTH that

concerns creating simulated field devices. This master thesis is planned to be

completed by July 2015.

6.6 Automated vulnerability discovery

The AVA study [42] suggests that automated discovery of vulnerabilities within

ICS configurations as a key ICS testbed component. The present study left out

this aspect due to the time and resource constraints that are involved. We agree

with [42] that it is a key activity and thus aim to involve it in future work. This

component should involve both identifying publicly known vulnerabilities and

novel vulnerabilities (“zero days”), as well as suggesting mitigations for such

flaws.

22

 http://osvdb.org
23

 http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process

http://osvdb.org/
http://www.symantec.com/connect/blogs/exploring-stuxnet-s-plc-infection-process

 FOI-R--4073--SE

59

6.7 Develop a functional testbed

The final envisioned result of VICS is a framework including methods and tools

for replicating ICS in operation within an isolated virtual environment building

on CRATE. Extensive work is required to accomplish this task and the activities

described in sections 6.1-6.6 denote the first steps to realize it. A comprehensive

implementation plan relating these activities to the larger goal should be created.

This plan should be iteratively updated with technical specifications and design

documents.

Furthermore, this report has focused on the various technical issues related to

implementing an ICS testbed. However, there are many other issues that were not

considered, in particular:

 It is uncertain how an ICS testbed best should be administrated and

managed when it is operational (and in the long run).

 If no manufacturers or operators want to participate with their

components and configurations, there is a need to implement SCADA

simulators. It is uncertain how such an activity best should be

addressed
24

.

 When extracting ICS data, there is a need to anonymize gathered data

without compromising its validity. There are to the authors’ knowledge

no standard methods that can be used for this purpose.

Issues such as these need be addressed by future work.

24

 That said, the value of a testbed without any interest from manufacturers or operators is

questionable.

FOI-R--4073--SE

60

 FOI-R--4073--SE

61

7 References
[1] Cryptographic protection of scada communications - retrofitting serial

communications. Technical Report 12, American Gas Association (AGA), 2006.

[2] Abdulmohsen Almalawi, Zahir Tari, Ibrahim Khalil, and Adil Fahad.

Scadavt-a framework for scada security testbed based on virtualization

technology. In Local Computer Networks (LCN), 2013 IEEE 38th Conference

on, pages 639–646. IEEE, 2013.

[3] Mikael Asberg, Nils Forsberg, Thomas Nolte, and Shinpei Kato. Towards

real-time scheduling of virtual machines without kernel modifications. In

Emerging Technologies & Factory Automation (ETFA), 2011 IEEE 16th
Conference on, pages 1–4. IEEE, 2011.

[4] RF Beach, GL Kimnach, TA Jett, and LM Trash. Evaluation of power control

concepts using the pmad systems test bed. In Energy Conversion Engineering
Conference, 1989. IECEC-89., Proceedings of the 24th Intersociety, pages 327–

332. IEEE, 1989.

[5] Terry Benzel. The science of cyber security experimentation: the deter

project. In Proceedings of the 27th Annual Computer Security Applications

Conference, pages 137–148. ACM, 2011.

[6] David C Bergman. Power grid simulation, evaluation, and test framework.

2010.

[7] David C Bergman, Dong (Kevin) Jin, David M Nicol, and Tim Yardley. The

virtual power system testbed and inter-testbed integration. In CSET, 2009.

[8] Vincent H Berk, Ian Gregorio-de Souza, and John P Murphy. Generating

realistic environments for cyber operations development, testing, and training. In

SPIE Defense, Security, and Sensing, pages 835908–835908. International

Society for Optics and Photonics, 2012.

[9] Jakub Breier and Jana Branišová. Anomaly detection from log files using data

mining techniques. In Information Science and Applications, pages 449–457.

Springer, 2015.

[10] AG Bruce. Reliability analysis of electric utility scada systems. In Power

Industry Computer Applications., 1997. 20th International Conference on, pages

200–205. IEEE, 1997.

[11] 3) Chertov, R. (1, 4) Fahmy, S. (1, and 5) Shroff, N.B. (2. Fidelity of

network simulation and emulation: A case study of tcp-targeted denial of service

attacks. ACM Transactions on Modeling and Computer Simulation, 19(1), 2008.

[12] Henrik Christiansson and Eric Luiijf. Creating a european scada security

testbed. In Critical Infrastructure Protection, pages 237–247. Springer, 2008.

FOI-R--4073--SE

62

[13] Zhou Chunjie and Chen Hui. Development of a plc virtual machine

orienting iec 61131-3 standard. In Measuring Technology and Mechatronics

Automation, 2009. ICMTMA’09. International Conference on, volume 3, pages

374–379. IEEE, 2009.

[14] Wang Chunlei, Fang Lan, and Dai Yiqi. A simulation environment for

scada security analysis and assessment. In Measuring Technology and
Mechatronics Automation (ICMTMA), 2010 International Conference on,

volume 1, pages 342–347. IEEE, 2010.

[15] Jacob Cohen. Weighted kappa: Nominal scale agreement provision for

scaled disagreement or partial credit. Psychological bulletin, 70(4):213, 1968.

[16] D.A. Covington and M.D. Hanson. High-fidelity modeling and scalable

simulation for tactical network design. MILCOM 2008 - 2008 IEEE Military
Communications Conference, page 1, 2008.

[17] Robert J. Creasy. The origin of the vm/370 time-sharing system. IBM
Journal of Research and Development, 25(5):483–490, 1981.

[18] Axel Daneels and Wayne Salter. What is scada. In International

Conference on Accelerator and Large Experimental Physics Control Systems,

pages 339–343, 1999.

[19] Khalid W Darwish, AR Al Ali, and Rached Dhaouadi. Virtual scada

simulation system for power substation. In Innovations in Information

Technology, 2007. IIT’07. 4th International Conference on, pages 322–326.

IEEE, 2007.

[20] CM Davis, JE Tate, H Okhravi, C Grier, TJ Overbye, and D Nicol. Scada

cyber security testbed development. In Proceedings of the 38th North American

power symposium (NAPS 2006), pages 483–488, 2006.

[21] G Dondossola, F Garrone, and J Szanto. Cyber risk assessment of power

control systemsâ€”a metrics weighed by attack experiments. In Power and

Energy Society General Meeting, 2011 IEEE, pages 1–9. IEEE, 2011.

[22] Thomas Edgar, David Manz, and Thomas Carroll. Towards an

experimental testbed facility for cyber-physical security research. In Proceedings
of the Seventh Annual Workshop on Cyber Security and Information Intelligence

Research, page 53. ACM, 2011.

[23] I Nai Fovino, Marcelo Masera, Luca Guidi, and Giorgio Carpi. An

experimental platform for assessing scada vulnerabilities and countermeasures in

power plants. In Human System Interactions (HSI), 2010 3rd Conference on,

pages 679–686. IEEE, 2010.

[24] Igor Nai Fovino, Andrea Carcano, T De Lacheze Murel, Alberto

Trombetta, and Marcelo Masera. Modbus/dnp3 state-based intrusion detection

 FOI-R--4073--SE

63

system. In Advanced Information Networking and Applications (AINA), 2010
24th IEEE International Conference on, pages 729–736. IEEE, 2010.

[25] Haihui Gao, Yong Peng, Kebin Jia, Zhonghua Dai, and Ting Wang. The

design of ics testbed based on emulation, physical, and simulation (eps-ics

testbed). In Intelligent Information Hiding and Multimedia Signal Processing,

2013 Ninth International Conference on, pages 420–423. IEEE, 2013.

[26] Thomas Gaska, Brian Werner, and David Flagg. Applying virtualization

to avionics systems-the integration challenges. In Digital Avionics Systems

Conference (DASC), 2010 IEEE/AIAA 29th, page 5, 2010.

[27] Annarita Giani, Gabor Karsai, Tanya Roosta, Aakash Shah, Bruno

Sinopoli, and Jon Wiley. A testbed for secure and robust scada systems. ACM

SIGBED Review, 5(2):4, 2008.

[28] Robert P Goldberg. Architecture of virtual machines. In Proceedings of

the workshop on virtual computer systems, pages 74–112. ACM, 1973.

[29] Zonghua Gu and Qingling Zhao. A state-of-the-art survey on real-time

issues in embedded systems virtualization. 2012.

[30] Michele Guglielmi, Igor Nai, Andres Perez-Garcia, and Christos Siaterlis.

A preliminary study of a wireless process control network using emulation

testbeds. In Mobile Lightweight Wireless Systems, pages 268–279. Springer,

2010.

[31] Feng Guo, Luis Herrera, Mohammed Alsolami, He Li, Pu Xu, Xintong

Lu, Andong Lang, Jin Wang, and Zhijun Long. Design and development of a

reconfigurable hybrid microgrid testbed. In Energy Conversion Congress and

Exposition (ECCE), 2013 IEEE, pages 1350–1356. IEEE, 2013.

[32] Dina Hadžiosmanovic, Lorenzo Simionato, Damiano Bolzoni, Emmanuele

Zambon, and Sandro Etalle. N-gram against the machine: On the feasibility of

the n-gram network analysis for binary protocols. Ín Research in Attacks,

Intrusions, and Defenses, pages 354–373. Springer, 2012.

[33] Adam Hahn and Manimaran Govindarasu. An evaluation of cybersecurity

assessment tools on a scada environment. In Power and Energy Society General
Meeting, 2011 IEEE, pages 1–6. IEEE, 2011.

[34] Adam Hahn, Ben Kregel, Manimaran Govindarasu, Justin Fitzpatrick,

Rafi Adnan, Siddharth Sridhar, and Michael Higdon. Development of the

powercyber scada security testbed. In Proceedings of the sixth annual workshop

on cyber security and information intelligence research, page 21. ACM, 2010.

[35] Michael Haney and Mauricio Papa. A framework for the design and

deployment of a scada honeynet. In Proceedings of the 9th Annual Cyber and

Information Security Research Conference, pages 121–124. ACM, 2014.

FOI-R--4073--SE

64

[36] Gernot Heiser. Virtualizing embedded systems: why bother? In

Proceedings of the 48th Design Automation Conference, pages 901–905. ACM,

2011.

[37] Jeffrey Hieb, James Graham, and Sandip Patel. Security enhancements for

distributed control systems. In Critical Infrastructure Protection, pages 133–146.

Springer, 2008.

[38] Hannes Holm. Signature based intrusion detection for zero-day

attacks:(not) a closed chapter? In System Sciences (HICSS), 2014 47th Hawaii

International Conference on, pages 4895–4904. IEEE, 2014.

[39] Hannes Holm, Markus Buschle, Robert Lagerström, and Mathias Ekstedt.

Automatic data collection for enterprise architecture models. Software & Systems

Modeling, 13(2):825–841, 2014.

[40] Hannes Holm, Mathias Ekstedt, and Dennis Andersson. Empirical

analysis of system-level vulnerability metrics through actual attacks. Dependable
and Secure Computing, IEEE Transactions on, 9(6):825–837, 2012.

[41] Hannes Holm, Teodor Sommestad, Jonas Almroth, and Mats Persson. A

quantitative evaluation of vulnerability scanning. Information Management &
Computer Security, 19(4):231–247, 2011.

[42] Idaho National Laboratory (INL). Control system automated vulnerability

assessment study. Technical report, Idaho National Laboratory (INL), 2013.

[43] Erland Jonsson and Tomas Olovsson. A quantitative model of the security

intrusion process based on attacker behavior. Software Engineering, IEEE
Transactions on, 23(4):235–245, 1997.

[44] B Jurisic, N Holjevac, and B Morvaj. Framework for designing a smart

grid testbed. In Information & Communication Technology Electronics &
Microelectronics (MIPRO), 2013 36th International Convention on, pages 1247–

1252. IEEE, 2013.

[45] Rao Kalapatapu. Scada protocols and communication trends. ISA EXPO,

2004.

[46] Dong-joo Kang and Rosslin John Robles. Compartmentalization of

protocols in scada communication. International Journal of Advanced Science

and Technology, 8, 2009.

[47] Barbara Kitchenham. Procedures for performing systematic reviews.

Keele, UK, Keele University, 33:2004, 2004.

[48] Pär Klingstam and Per Gullander. Overview of simulation tools for
computer-aided production engineering. Computers in Industry, 38(2):173–186,

1999.

 FOI-R--4073--SE

65

[49] Nishchal Kush, Andrew J Clark, and Ernest Foo. Smart grid test bed

design and implementation. 2010.

[50] Edward A Lee. Cyber physical systems: Design challenges. In Object

Oriented Real-Time Distributed Computing (ISORC), 2008 11th IEEE
International Symposium on, pages 363–369. IEEE, 2008.

[51] Richard Lippmann, Joshua W Haines, David J Fried, Jonathan Korba, and

Kumar Das. The 1999 darpa off-line intrusion detection evaluation. Computer

networks, 34(4):579–595, 2000.

[52] Richard P Lippmann, David J Fried, Isaac Graf, Joshua W Haines,

Kristopher R Kendall, David McClung, Dan Weber, Seth E Webster, Dan

Wyschogrod, Robert K Cunningham, et al. Evaluating intrusion detection

systems: The 1998 darpa off-line intrusion detection evaluation. In DARPA
Information Survivability Conference and Exposition, 2000. DISCEX’00.

Proceedings, volume 2, pages 12–26. IEEE, 2000.

[53] Stefan Lüders. Cern tests reveal security flaws with industrial network

devices. The Industrial Ethernet Book, 35(CERN-OPEN-2006-074):12–23, 2006.

[54] Matthew V Mahoney and Philip K Chan. An analysis of the 1999

darpa/lincoln laboratory evaluation data for network anomaly detection. In

Recent Advances in Intrusion Detection, pages 220–237. Springer, 2003.

[55] Malaz Mallouhi, Youssif Al-Nashif, Don Cox, Tejaswini Chadaga, and

Salim Hariri. A testbed for analyzing security of scada control systems (tasscs).

In Innovative Smart Grid Technologies (ISGT), 2011 IEEE PES, pages 1–7.

IEEE, 2011.

[56] Alan W McMorran. An introduction to iec 61970-301 & 61968-11: The

common information model. University of Strathclyde, 93:124, 2007.

[57] Miles A McQueen, Wayne F Boyer, Mark A Flynn, and George A Beitel.

Time-to-compromise model for cyber risk reduction estimation. In Quality of

Protection, pages 49–64. Springer, 2006.

[58] DH Moore, JM Murray, FP Maturana, T Wendel, and KA Loparo. Agent-

based control of a dc microgrid. In Energytech, 2013 IEEE, pages 1–6. IEEE,

2013.

[59] Thomas Morris, Anurag Srivastava, Bradley Reaves, Wei Gao, Kalyan

Pavurapu, and Ram Reddi. A control system testbed to validate critical

infrastructure protection concepts. International Journal of Critical

Infrastructure Protection, 4(2):88–103, 2011.

[60] Thomas Morris, Rayford Vaughn, and Yoginder S Dandass. A testbed for

scada control system cybersecurity research and pedagogy. In Proceedings of the

FOI-R--4073--SE

66

Seventh Annual Workshop on Cyber Security and Information Intelligence
Research, page 27. ACM, 2011.

[61] Karin Mossberg Sonnek, Hannes Holm, Johan Lindgren, Fredrik

Lindgren, and Erik Westring. Foi-r–4029–se, ncs3 - informations- och styrsystem

inom spårbunden trafik, en kartläggning. Technical report, Swedish Defence

Research Agency (FOI), 2014.

[62] Tzi-cker Nanda and Susanta Chiueh. A survey on virtualization

technologies. RPE Report, pages 1–42, 2005.

[63] Sani R Nassif and Joseph N Kozhaya. Fast power grid simulation. In

Proceedings of the 37th Annual Design Automation Conference, pages 156–161.

ACM, 2000.

[64] North American Electric Reliability Corporation (NERC. Power system

model validation - a white paper by the nerc model validation task force of the

transmission issues subcommittee. Technical report, North American Electric

Reliability Corporation (NERC, 2010.

[65] Dimosthenis Pediaditakis, Charalampos Rotsos, and Andrew William

Moore. Faithful reproduction of network experiments. In Proceedings of the
Tenth ACM/IEEE Symposium on Architectures for Networking and

Communications Systems, ANCS ’14, pages 41–52, New York, NY, USA, 2014.

ACM.

[66] C Dennis Pegden, Randall P Sadowski, and Robert E Shannon.

Introduction to simulation using SIMAN. McGraw-Hill, Inc., 1995.

[67] K.S. Perumalla and S. Sundaragopalan. High-fidelity modeling of

computer network worms. Coll. of Comput., Georgia Inst. of Technol., Atlanta,

GA, USA, 2004.

[68] P Pourbeik. Approaches to validation of power system models for system

planning studies. In Power and Energy Society General Meeting, 2010 IEEE,

pages 1–10. IEEE, 2010.

[69] A. Poylisher, C. Serban, J. Lee, T. Lu, R. Chadha, C.-Y.J. Chiang,

K. Jakubowski, and R. Orlando. Virtual ad hoc network testbeds for high fidelity

testing of tactical network applications. 2009.

[70] Carlos Queiroz, Abdun Mahmood, and Zahir Tari. Scadasimâ€”a

framework for building scada simulations. Smart Grid, IEEE Transactions on,

2(4):589–597, 2011.

[71] Bradley Reaves and Thomas Morris. An open virtual testbed for industrial
control system security research. International Journal of Information Security,

11(4):215–229, 2012.

 FOI-R--4073--SE

67

[72] Ram Mohan Reddi and Anurag K Srivastava. Real time test bed

development for power system operation, control and cyber security. In North

American Power Symposium (NAPS), 2010, pages 1–6. IEEE, 2010.

[73] L. Ricciulli. High-fidelity distributed simulation of local area networks.

Proceedings 31st Annual Simulation Symposium, page 165, 1998.

[74] John S Robin and Cynthia E Irvine. Analysis of the intel pentium’s ability

to support a secure virtual machine monitor. Technical report, DTIC Document,

2000.

[75] Erick A Salazar and Manuel E Macás. Virtual 3d controllable machine

models for implementation of automations laboratories. In Frontiers in

Education Conference, 2009. FIE’09. 39th IEEE, pages 1–5. IEEE, 2009.

[76] Naoum Sayegh, Ali Chehab, Imad H Elhajj, and Ayman Kayssi. Internal

security attacks on scada systems. In Communications and Information

Technology (ICCIT), 2013 Third International Conference on, pages 22–27.

IEEE, 2013.

[77] Karen A Scarfone, Murugiah P Souppaya, Amanda Cody, and Angela D

Orebaugh. Sp 800-115. technical guide to information security testing and

assessment. 2008.

[78] Thomas J Schriber. Introduction to simulation. In Proceedings of the 9th
conference on Winter simulation-Volume 1, page 23. Winter Simulation

Conference, 1977.

[79] Gregg Schudel and Bradley Wood. Adversary work factor as a metric for

information assurance. In Proceedings of the 2000 workshop on New security

paradigms, pages 23–30. ACM, 2001.

[80] A Shahzad, S Musa, A Aborujilah, and M Irfan. A new cloud based

supervisory control and data acquisition implementation to enhance the level of

security using testbed. Journal of Computer Science, 10(4):652, 2013.

[81] AAmir Shahzad, Shahrulniza Musa, Abdulaziz Aborujilah, and

Muhammad Irfan. Secure cryptography testbed implementation for scada

protocols security. In Advanced Computer Science Applications and
Technologies (ACSAT), 2013 International Conference on, pages 315–320.

IEEE, 2013.

[82] Christos Siaterlis, Andres Perez Garcia, and Béla Genge. On the use of

emulab testbeds for scientifically rigorous experiments. Communications Surveys

& Tutorials, IEEE, 15(2):929–942, 2013.

[83] Christos Siaterlis and Béla Genge. Cyber-physical testbeds.

Communications of the ACM, 57(6):64–73, 2014.

FOI-R--4073--SE

68

[84] James E Smith and Ravi Nair. The architecture of virtual machines.

Computer, 38(5):32–38, 2005.

[85] Teodor Sommestad and Amund Hunstad. Intrusion detection and the role

of the system administrator. Information Management & Computer Security,

21(1):30–40, 2013.

[86] YunSik Son and YangSun Lee. Smart virtual machine code based

compilers for supporting multi programming languages in smart cross platform.

International Journal of Software Engineering & Its Applications, 8(5), 2014.

[87] Georgios Spathoulas, Sokratis K Katsikas, and Anastasios Charoulis. A

test-bed for intrusion detection systems results post-processing. In Public Key

Infrastructures, Services and Applications, pages 170–183. Springer, 2014.

[88] Alexandru Stefanov and Chen-Ching Liu. Cyber-power system security in

a smart grid environment. In Innovative Smart Grid Technologies (ISGT), 2012

IEEE PES, pages 1–3. IEEE, 2012.

[89] Joseph Stites, Ambareen Siraj, and Eric L Brown. Smart grid security

educational training with thundercloud: A virtual security test bed. In

Proceedings of the 2013 on InfoSecCD’13: Information Security Curriculum
Development Conference, page 105. ACM, 2013.

[90] Keith Stouffer, Joe Falco, and Karen Scarfone. Guide to industrial control

systems (ics) security. NIST Special Publication, 800(82):16–16, 2007.

[91] JH Suh, JS Oh, J Choi, J Goff, J Tao, EH Song, P Fu, GS Lee, and

KS Eom. Korean r&d on the converter controller for iter ac/dc converters. In

Fusion Engineering (SOFE), 2011 IEEE/NPSS 24th Symposium on, pages 1–5.

IEEE, 2011.

[92] F. (1) Sultan, A. (2) Poylisher, J. (3) Lee, C. (4) Serban, C.J. (5)

Chiang, and R. (6) Chadha. Timesync: Enabling scalable, high-fidelity hybrid

network emulation. In MSWiM’12 - Proceedings of the 15th ACM International

Conference on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, number MSWiM’12 - Proceedings of the 15th ACM International

Conference on Modeling, Analysis and Simulation of Wireless and Mobile

Systems, pages 185–194, (1)Applied Communication, Sciences (ACS), 2012.

[93] Yibin Sun, Taotao Ma, Bingfei Huang, Wei Xu, Bin Yu, and Yingwei

Zhu. Risk assessment of power system secondary devices for power grid

operation. In Electricity Distribution (CICED), 2012 China International

Conference on, pages 1–5. IEEE, 2012.

[94] Chee-Wooi Ten, Chen-Ching Liu, and Govindarasu Manimaran.

Vulnerability assessment of cybersecurity for scada systems. Power Systems,

IEEE Transactions on, 23(4):1836–1846, 2008.

 FOI-R--4073--SE

69

[95] Vincent E Urias and Brian P Van Leeuwen. Supervisory command and

data acquisition (scada) system cyber security analysis using a live virtual and

constructive (lvc) testbed. Technical report, Sandia National Laboratories (SNL-

NM), Albuquerque, NM (United States), 2012.

[96] András Varga et al. The omnet++ discrete event simulation system. In

Proceedings of the European simulation multiconference (ESMâ€™2001),
volume 9, page 65. sn, 2001.

[97] Rayford B Vaughn, Thomas Morris, and Elena Sitnikova. Development &

expansion of an industrial control system security laboratory and an international

research collaboration. In Proceedings of the Eighth Annual Cyber Security and

Information Intelligence Research Workshop, page 18. ACM, 2013.

[98] Yu Fei Wang, Tao Zhang, Yuan Yuan Ma, and Bo Zhang. An information

security assessments framework for power control systems. Advanced Materials

Research, 805:980–984, 2013.

[99] Arne Widström. Foi-r–4029–se, möjligheter och problem vid analys av

fientlig kod riktad mot siemens s7-serie. Technical report, Swedish Defence

Research Agency (FOI), 2012.

[100] Sisu Xi, Meng Xu, Chenyang Lu, Linh TX Phan, Christopher Gill, Oleg

Sokolsky, and Insup Lee. Real-time multi-core virtual machine scheduling in

xen. In Embedded Software (EMSOFT), 2014 International Conference on,

pages 1–10. IEEE, 2014.

[101] Fan Xu, Li Shen, and Zhiying Wang. A dynamic binary translation

framework based on page fault mechanism in linux kernel. In Computer and

Information Technology (CIT), 2010 IEEE 10th International Conference on,

pages 2284–2289. IEEE, 2010.

[102] Yi Yang, Kieran McLaughlin, Sakir Sezer, Timothy Littler, Eul Gyu Im,

Bernardi Pranggono, and HF Wang. Multiattribute scada-specific intrusion

detection system for power networks. IEEE transactions on power delivery,

29(3):1092–1102, 2014.

[103] S.B. Yoginath, K.S. Perumalla, and B.J. Henz. Runtime performance and

virtual network control alternatives in vm-based high-fidelity network

simulations. In Simulation Conference (WSC), Proceedings of the 2012 Winter,

pages 1–13, Dec 2012.

[104] Seehwan Yoo, Miri Park, and Chuck Yoo. A step to support real-time in

virtual machine. In Consumer Communications and Networking Conference,
2009. CCNC 2009. 6th IEEE, pages 1–7. IEEE, 2009.

[105] Juan Zamorano and Juan Antonio de la Puente. Design and

implementation of real-time distributed systems with the assert virtual machine.

FOI-R--4073--SE

70

In Emerging Technologies and Factory Automation (ETFA), 2010 IEEE
Conference on, pages 1–7. IEEE, 2010.

[106] Minghui Zhang, Yanxia Lu, and Tianjiao Xia. The design and

implementation of virtual machine system in embedded softplc system. In

Computer Sciences and Applications (CSA), 2013 International Conference on,

pages 775–778. IEEE, 2013.

[107] Yu Zhang, Fei Xie, Yunwei Dong, Gang Yang, and Xingshe Zhou. High

fidelity virtualization of cyber-physical systems. International Journal of

Modeling, Simulation, and Scientific Computing, 4(02), 2013.

 FOI-R--4073--SE

71

Appendix A. Survey of field devices
To create a testbed that is representative of the real world, there is a need to

understand it. For this purpose, we surveyed the market of field devices (PLCs,

RTUs and IEDs). We focused on field devices rather than control center and

communication architecture components as the latter both can be virtualized

through VirtualBox (and thus are possible to implement in CRATE as-is), while

the prior often have specialized hardware, software and logic that are

unsupported by current virtualization technologies (and thus require extending

the functionality of CRATE).

The survey was carried out by extracting a list of field device manufacturers

from three web sites
25,26,27

 that contained information regarding ICS hardware

and software suppliers
28

. All hits containing the string “manufacture” were

chosen and the lists were parsed into a simple database format with one hit per

row. We manually deleted rows with obvious duplicates.

The resulting list contains 341 unique company names, of which the ten largest

manufacturers of ICS equipment world-wide
29

 are ABB, Alstom, Emerson

Electric, General Electrics, Honeywell, Omron, Rockwell Automation, Schneider

Electrics, Siemens and Yokogawa. The product ranges of these companies were

not studied in depth. However, it is safe to say that there is a large variety of

PLCs around. For example, there are five different Siemens S7 PLC product

series alone (with an unknown number of submodels, see Appendix C). As field

devices have extremely long lifespans (manufacturers claim up to 40 years [93]),

there is bound to be products from different developers, series and generations in

real-world operation. For example, the Swedish railroad system has operational

switchgear that was developed between the 1960s (without embedded computers

altogether) to the 2010s (that consist of a collection of servers, including

common IT protocols such as DHCP and SMB) [61].

Consequently, if the market shares are fairly evenly distributed among the ICS

manufacturers, virtualization, emulation or simulation should be used as a

general, possibly modularized, platform instead of product specific platforms.

25

 http://www.plcs.net/chapters/links.htm,
26

 http://www.thomasnet.com/products/controllers-programmable-logic-plc-18190900-1.html
27

 http://www.automation.com/suppliers/automation-product-manufacturers/product-

category/programmable-logic-controllers-plcs
28

A future project will survey the Swedish ICS market, perhaps through a questionnaire in

conjunction with an FOI course that is attended by personnel from the major ICS operators in

Sweden.
29

According to http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-

Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-

Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-

and-Geography-Analysis-Forecast-to.html

http://www.plcs.net/chapters/links.htm
http://www.thomasnet.com/products/controllers-programmable-logic-plc-18190900-1.html
http://www.automation.com/suppliers/automation-product-manufacturers/product-category/programmable-logic-controllers-plcs
http://www.automation.com/suppliers/automation-product-manufacturers/product-category/programmable-logic-controllers-plcs
http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-and-Geography-Analysis-Forecast-to.html
http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-and-Geography-Analysis-Forecast-to.html
http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-and-Geography-Analysis-Forecast-to.html
http://www.reportlinker.com/p02131164-summary/SCADA-Market-by-Components-PLC-RTU-HMI-Communication-Systems-Architecture-Hardware-Software-Services-Application-Oil-Gas-Power-Water-Wastewater-Transport-Manufacturing-Chemicals-and-Geography-Analysis-Forecast-to.html

FOI-R--4073--SE

72

 FOI-R--4073--SE

73

Appendix B. Overview of a PLC
A PLC (Programmable Logical Controller) is a small industrial computer that is

designed to operate in harsh environments (e.g., cold, hot or moist), where it

performs logical simple instructions and is connected to real physical hardware

like water dams or oil platforms.

PLCs have analog and/or digital inputs and outputs. They can also have relay

outputs, serial communication, and motion and process control. Modern PLCs

often have a LAN port to support IP based traffic (TCP/IP). PLCs can have

different extension modules like additional physical outputs or extended

communication capabilities (e.g., an additional Ethernet port).

The internal properties of a PLC include timers, hardware and software

interrupts, ladder logic programming capabilities, different functional blocks

(e.g., organization blocks (OB), see the next section), counters and real-time

characteristics.

There are a plethora of PLC manufacturers and most of them have many

different PLCs for different working environments. As it is a computer it

contains a CPU, firmware, memory modules and a hard drive function (typically

a flash chip). Commonly used CPUs are Motorola 68000, Motorola 68020,

Motorola 68030, Motorola 68040, Intel 80C186, Intel 80C386 and Intel 80C486.

FPGAs and ASICS are also used.

The tasks that are to be conducted by a PLC are determined during its scan

cycles, where the PLC reads inputs, writes outputs, executes user program

instructions and performs system maintenance and background processing. A

scan cycle is triggered by a timer, hardware interrupt or software interrupt

(specific condition). A PLC typically has real-time requirements regarding when

tasks must be completed. Thus, it is not enough to complete a task - it has to be

done in a specified time frame.

A scan cycle is carried out in the following manner: First the PLC reads the

physical inputs and stores them in the process image input area memory (in

RAM). It is important to write the inputs into the process memory so they do not

change during the execution phase. If different calculations use the same input

data it needs to stay the same. It then executes the user program instructions and

calculations. It starts with the lowest number OB block and steps through them in

numerical order. An OB cannot call another OB to perform an operation. That

rule ensures that all OBs will be executed in sequential order. Then, the output

values are updated in the process image area. Finally, the resulting outputs are
written to the physical outputs.

FOI-R--4073--SE

74

There is a diversity of automation (industrial) protocols used by PLCs [45], [46].

Some are standardized
30

 (e.g., Modbus and DNP3); some are proprietary and

undocumented (see e.g. Appendix D). Commonly used wired protocols include

CIP (Common Industrial Protocol), Modbus (RTU, ASCII or TCP), DNP3, IEC

60870-5, IEC 61850, IEC 62351 (a security layer added to other protocols such

as GOOSE), OPC, Profinet IO and CAN. Commonly used wireless protocols

include ZigBee and HART.

The protocols have a diversity of functionality. Important ones are querying a

state for a field device, query if a switch is on or off. Other uses are to set a

switch to either on or off or to collect measurement data, for example

temperature readings or a water level. The main functions are either collecting

data or setting data on the device.

The protocols support a variety of other functionalities that are rarely used under

regular run operation. Two examples are to update the PLC firmware or to

change the ladder logic in the PLC.

30

 The actual implementation of a standardized protocol can however be proprietary.

 FOI-R--4073--SE

75

Appendix C. Siemens S7 technical

analysis
Siemens SIMATIC S7 is the sixth and current generation of Siemens control

systems, with its oldest predecessor SIMATIC G launched in 1959
31

. The S7

generation in turn consists of a number of product lines: S7-200, S7-300, S7-400,

S7-1200 and S7-1500. The S7-200 is an obsolete product line which has already

been superseded by the S7-1200. These two represent the low end of S7 PLCs.

The S7-300 contains the middle range PLCs and the S7-400 the high end. The

most recent product line is the S7-1500, launched in 2013. Until 2020 it will only

complement the S7-300 and S7-400 product lines but then finally succeed

them
32

.

The following description is based upon FOI studies of the S7-400 and the S7-

1200 PLCs. Parts of the results have previously been documented in an FOI

report [99].

The S7-400 and the S7-1200 are very different when compared at a low level.

They use different machine languages and different communication protocols for

the configuration of the PLCs.

The S7-400 protocol stack consists of several layers. Ethernet is at the lowest

level, followed in turn by IP, TCP, ISO-TSAP (ISO Transport Services Access

Protocol) and ISO 8073, also known as COTP (Connection Oriented Transport

Protocol). The role of the last two protocols is more or less to enable the use of

ISO-style connection oriented protocols on top of TCP. Finally, above COTP, we

find the proprietary Siemens S7 protocol. The S7 protocol is somewhat

extensive, but large parts of it have been reverse engineered by researchers

outside of Siemens.

The S7-1200 protocol stack also consists of several layers, with Ethernet at the

lowest level followed by IP, TCP, ISO-TSAP and COTP. The protocol on top of

COTP is however completely different from the old S7 protocol used by the S7-

400. A small part of the protocol has been reverse engineered for internal use at

FOI. This resulted in the discovery of two novel denial of service vulnerabilities

in the S7-1200 PLCs. It also made it possible to create a handful of

demonstration tools for control systems security courses held at FOI. The S7-

1200 protocol was partly reversed in both its second and third versions. The third

version has some, although lacking, protection against replay attacks. This

protection was also circumvented through the FOI research.

31

http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2005/history_

of_industrial_automation.htm
32

 https://support.industry.siemens.com/cs/#document/67856446?lc=de-WW

http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2005/history_of_industrial_automation.htm
http://www.siemens.com/innovation/en/publikationen/publications_pof/pof_spring_2005/history_of_industrial_automation.htm
https://support.industry.siemens.com/cs/#document/67856446?lc=de-WW

FOI-R--4073--SE

76

The S7-400 PLCs implement a kind of virtual machine on top of the hardware

CPU. For example, inside each of the S7-400 CPU units available at FOI are two

Infineon TriCore processors. While a long unconditional jump in this

architecture begins with the machine code byte 0x1d, a similar unconditional

jump inside the PLC virtual machine begins with the machine code bytes 0x70

0x0b. The machine code inside the virtual machine is called MC7 (Machine

Code 7) in the S7-400 architecture. The corresponding assembler language is

called STL (STatement List). The STL language is entirely documented by

Siemens, while the MC7 machine code is undocumented. However, independent

researchers have been able to reverse engineer large parts of MC7. Further, some

of the blank spaces have been reverse engineered at FOI for internal use.

The S7-1200 PLCs utilize a completely different kind of machine code compared

to the S7-400 PLCs. At this point we have not been able to identify the exact

architecture of the hardware CPUs used in the S7-1200 series. Neither do we

have any information about the PLC machine code other than that it is dissimilar

to MC7. The two machine codes may even be the same in this architecture, with

no virtual machine layer present. Reversing the machine code for S7-1200 is

harder than reversing MC7 because there is no STL for the S7-1200 product line.

It follows that one cannot easily insert known instructions and then investigate

the corresponding machine code. Instead, an unknown number of unknown

instructions are generated from each atomic higher level construct with the

available development tools.

We have also studied various block headers and footers internal to the S7-400

system. These are undocumented by Siemens as well, and they also vary in exact

layout depending on where in the system they are found. We have been able to

reverse a few of these in quite good detail, enabling us to decode some further

information from the Stuxnet worm than previously published.

Too much of the S7-400 MC7 level architecture is still completely

undocumented to realistically start the design of a high accuracy emulator at the

MC7 level. The S7-1200 is still mostly a large unknown, which may finally turn

out to be either easier or harder to emulate with high accuracy. Another

possibility is to emulate at the hardware level instead of the MC7 level, which is

something we have only recently started to investigate.

Finally, it might be possible to build something based upon the Siemens

SIMATIC PLCSIM simulator. The feasibility of this solution depends both on

the low level accuracy of PLCSIM and on the cooperation of Siemens. At present

we however have very limited low level knowledge regarding the PLCSIM.

 FOI-R--4073--SE

77

Appendix D. Categorization framework

Variabel level 1 Variabel level 2 Description Example

1
Type of

contribution
Testbed/Other If the paper discusses a testbed Testbed

2 Objectives - What testbed objectives that are given
Vulnerability analysis,

security forensics

Discussion If fidelity is discussed in the paper Is discussed

Data collection
Suggestions for data collection (to yield

realistic testbeds)

Portscanning with

Nmap

Metrics
Specific metrics for measuring fidelity that

are mentioned

Packet arrival rate for

Modbus TCP

4 Implemented - If the testbed has been implemented Yes

5 Protocols - ICS-specific protocols that are mentioned OPC, Modbus

6 Devices -
ICS-specific product types that are

mentioned

MTU, Database

Historian

Virtualization Virtualization solutions that are employed VMware, VirtualBox

Simulation Simulation slutions that are employed Matlab, Opnet

Emulation Emulation solutions that are employed QEMU

Hardware Employed hardware ABB WS500

Virtualization Virtualization solutions that are employed VMware, VirtualBox

Simulation Simulation slutions that are employed Matlab, Opnet

Emulation Emulation solutions that are employed QEMU

Hardware Employed hardware Siemens S7 PLC

Simulation Simulation slutions that are employed Matlab, Opnet

Hardware Employed hardware Power system

Virtualization Virtualization solutions that are employed VMware, VirtualBox

Simulation Simulation slutions that are employed Matlab, Opnet

Emulation Emulation solutions that are employed QEMU

Hardware Employed hardware Cisco router

11 Other -
Information that do not fit any other

category
-

Fidelity3

10 Communication

Control System7

8 Field devices

Process9

FOI-R--4073--SE

78

 FOI-R--4073--SE

79

Appendix E. Cyber Range And Training

Environment (CRATE)
A cyber range makes it possible to design and deploy IT environments of

considerable size and complexity, and expose them to cyber security threats

under realistic conditions without putting operational systems at risk. The

Swedish Defence Research Agency (FOI) develops and maintains a cyber range

named Cyber Range And Training Environment (CRATE)
33

, which is used by

FOI for cyber security research and training.

In terms of hardware, the infrastructure consists of a server room, some 350

servers, network switches, network cables and auxiliary equipment (e.g.,

specially designed portable devices that allow secure remote access). However,

the main component and the more costly and complicated part of CRATE is the

software framework necessary to enable the use of the hardware for cyber

security research and training. The framework consists of a set of tools, which

include for example:

 A web-based interface (CrateWeb) to specify desired computer networks

 Software packages and desktop software applications of various types

and versions.

 A library of virtual machines (VMs) with different operating systems

and installed applications.

 Scripts to automatically deploy virtual machines and networks.

 A scripting infrastructure to configure individual virtual computers (e.g.,

network interfaces, hostnames, users and passwords).

 Tools to monitor and log events taking place in the infrastructure.

 Tools supporting the analysis and synchronous replay of data streams.

CRATE is also equipped with prototypic software-based user agents that can

generate user activities in the environment (e.g., sending emails or surf the web)

and prototypic systems for producing and observing typical cyber-attacks (e.g.,

computer viruses).

CrateWeb, the web-based configuration tool (see Figure 2) can be used to design

computer networks consisting of any combination of virtual machines deployed

on the 350 servers. It can also be used to deploy a wide range of operating

systems and applications with different vulnerabilities, and specify the users of

each system. Some manual configurations and tuning of scripts may still be

required to deploy uncommon configurations, operating systems and applications

that currently are not covered by CRATE’s application library. The goal is that

33

 www.foi.se/crate

http://www.foi.se/crate

FOI-R--4073--SE

80

every configuration activity performed regularly should be handled through the

management interface.

Figure 2. Screenshot of the web-based configuration tool of CRATE (CrateWeb),

illustrating the virtual machines and network topology of a computer network.

An overview of CRATE’s technical architecture can be seen in Figure 3.

Networks with virtual machines, configured using CrateWeb, are deployed by a

command and control server through a separate administration network to any of

the 350 existing servers. The specific configuration of coexisting virtual

machines then operate in an Internet-wise isolated environment denoted as the

game network. Systems within the game network can then be accessed by

infrastructure administrators through the application programming interface

provided by the hypervisor VirtualBox
34

 (e.g., to set up computer networks).

The operations performed include (but are not limited to):

 Import and export of virtual machines.

 Manipulation of a virtual machine’s virtual hardware.

 Execution of programs inside virtual machines.

 File operations, for example copying files and folders to and from virtual

machines.

 Access to the virtual machines’ native graphical user interfaces (through

a remote desktop protocol server built into VirtualBox).

34 VirtualBox is the virtualization technology that is used for hosts in CRATE. See

https://www.virtualbox.org/.

https://www.virtualbox.org/

 FOI-R--4073--SE

81

Actors (scripted and human) in the exercise or experiment interface the

infrastructure through the standard interfaces of a computer under the restrictions

(e.g., firewall rules) defined in the infrastructure. Consequently, activity within

the game network can be observed from either the infrastructure administrators’

point of view (with no restrictions) or from the perspective of normal users’ or

attackers’ point of view (under the restrictions given by the infrastructure

administrator).

Since the game network is an isolated environment, Internet backbone

technologies that are taken for granted, such as DNS Root name servers
35

 and a

router infrastructure, have been implemented in CRATE.

Figure 3. An overview of CRATE’s technical architecture.

In its current state, CRATE makes it possible to virtualize large computer

networks, and efficiently deploy and configure a large number of virtual

machines to create sizeable computer networks of various types. For instance, in

an experiment performed in 2012, more than one thousand virtual machines were

deployed in over eighty different computer networks. The computer networks

can be designed from scratch to fit some particular need or be generated based on

templates of standardized environments (e.g. representing cyber environments of

industrial production facilities, schools, hospitals or newspapers). CRATE has

been designed with cyber security testing in mind (for instance with respect to

software tools and machine templates). Thus, while other domains may also

benefit from the emulation of large computer networks, CRATE is primarily

constructed to meet the needs associated with research and education related to
cyber security.

35 http://www.internetsociety.org/internet-domain-name-system-explained-non-experts-daniel-

karrenberg

http://www.internetsociety.org/internet-domain-name-system-explained-non-experts-daniel-karrenberg
http://www.internetsociety.org/internet-domain-name-system-explained-non-experts-daniel-karrenberg

FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are

research, method and technology development, as well as studies conducted in the interests of Swedish defence and the safety and

security of society. The organisation employs approximately 1000 personnel of whom about 800 are scientists. This makes FOI Sweden’s

largest research institute. FOI gives its customers access to leading-edge expertise in a large number of fi elds such as security policy

studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,

protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Virtual Industrial Control
System Testbed

HANNES HOLM, MARTIN KARRESAND,

ARNE VIDSTRÖM, ERIK WESTRING

FOI-R--4073--SE

ISSN 1650-1942 March 2015

FOI

Swedish Defence Research Agency Phone: +46 8 555 030 00 www.foi.se

SE-164 90 Stockholm Fax: +46 8 555 031 00

Critical societal functions such as electricity and water purifi cation depend on
Industrial Control Systems (ICS) to properly function. Not long ago, these ICS
were realized by specially constructed isolated devices. Along with the rest of
our society, ICS have evolved and are now often delivered by complex intercon-
nected IT solutions including commercial-off-the-shelf technologies that in one
way or another are connected to the Internet. As a consequence, ICS are vulnera-
ble to IT attacks similarly to most other IT systems.

Due to the extreme availability requirements on ICS in operation, it is diffi cult
to perform cyber security experiments on them, such as vulnerability discovery
or tests of defense mechanisms. To accommodate such experiments, researchers
and practitioners turn to testbeds that mimic real ICS.

This study fi rst surveys ICS testbeds that have been proposed for scientifi c re-
search. Special focus is given to fi eld devices, a kind of ICS component that is
considered particularly challenging to implement in testbeds. It then compares
these results with fi ndings from product surveys, practical experiences, and in-
terviews with a manufacturer. The outcomes of this comparison are methods and
tools for creating a high-fi delity ICS testbed.

The study was conducted in collaboration with other actors, in particular, the
Idaho National Laboratory.

