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Sammanfattning 
I strålskyddsberedskapen ingår spridningsmodellen Pello framför allt för att beskriva 
transport av radioaktiva partiklar efter en kärnvapendetonation, Pello är implementerad 
i beslutstödssystemet ARGOS via Matchskalet hos SMHI. Pello är en 
partikelspridningsmodell som innebär att en stor mängd modellpartiklar släpps ut för 
att representera en källa, dessa sprids därefter med de advekterande vindarna och späds 
av turbulens. För att visualisera resultatet räknas partiklarna traditionellt in i gridboxar, 
boxcounting, och koncentrationsfält beräknas och visualiseras på en karta. 

Databehandling kan göras på många olika sätt, varav boxcounting är en metod, för 
olika syften. I den här rapporten har vi undersökt om kernel density estimators (KDE) 
istället kan användas för att databehandla resultaten från partikelspridningsmodellen 
Pello. Databehandlingsmetoder fördelar om massan från varje partikel till dess 
omgivning. Fördelen med KDE:er är att denna omfördelning kan göras med större 
urskiljning, vilket gör att såväl brus som överutslätning av modellresultat kan 
reduceras. 

I rapporten presenteras några olika alternativa metoder för att beräkna KDE:er. Två 
metoder ”Integrerad turbulens” respektive ”Partitionsvarierande bandbredd” används 
sedan för att databehandla resultat från en och samma körning med Pello (ett 
Fukushima Daiichi-scenario). De databehandlade resultaten, både depositionsfält och 
luftkoncentrationsfält, jämförs sedan visuellt såväl som statistiskt (medelkvadratfel). 

Givet ett fixt antal partiklar genererar KDE-metoderna resultat som är bättre (såväl 
reducerat brus som överutslätning) än boxcountingmetoden. Vi visar även att KDE-
metoderna kan minska mängden partiklar som behöver släppas ut för att generera 
resultat av viss given kvalitet: KDE metoden kan generera likvärdiga resultat som 
boxcounting fast med färre partiklar. Resultaten tyder på att antalet partiklar kan 
minskas med åtminstone en storleksordning. En minskning av antalet partiklar leder i 
sin tur till en tidsvinst då simuleringstiden är beroende av antalet partiklar i körningen. 

 

Nyckelord:  Partikelmodell, Pello, kernel density estimation, depositionsfält, 
koncentrationsfält, databehandling
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Summary 
The dispersion model Pello is used, amongst other applications, for estimating and 
tracking dispersion of radioactive nuclides and gases. Pello is a stochastic particle 
model, where the source is represented by emission of model particles which are then 
transported by the wind field and diluted by turbulence. Today Pello is accessible to the 
Swedish radiation emergency preparedness system via an implementation in ARGOS 
through the Match framework at SMHI. 

To visualise the result from Pello, the particles are traditionally counted grid-boxwise, 
box-counting, and thus the concentration field is estimated and then visualised on a 
map. Visualisation is one of several purposes of post-processing the result from the 
dispersion model, and box-counting is one post-processing method amongst many. In 
this report we have investigated whether kernel density functions (KDE) may serve as 
a good alternative method for post-processing of particle model dispersion results. All 
post-processing methods aims at redistributing the mass of each particle to its 
neighbourhood. The advantage with KDEs is that this redistribution can be done more 
delicately in order to reduce both noise as well as over smoothing in the model results.  

In this report we present a number of different alternative algorithms to compute 
KDEs. Two methods “Integrated turbulence” and “Partition varying bandwidth” are 
then singled out for benchmarking against box-counting. The test case is a model run 
with Pello of the Fukushima Daiichi accident. The post-processed results, deposition 
fields and air concentration fields, are then compared both visually and statistically 
(mean square error). 

Given a fixed number of particles, the KDE-methods generate results that are better 
(less noise, less over smoothing) than box-counting. We also show that, given a certain 
quality threshold, the KDE methods may reduce the relative number of particles that 
need to be simulated: KDE methods can yield equivalent results as box-counting, but 
with fewer particles. Our results indicate that the number of particles can be reduced by 
at least one order of magnitude. A reduction in the number of released particles will in 
turn reduce the time it takes to run the model. 

 

Keywords: Particle model, Pello, kernel density estimation, field of deposition, field of 
concentration, post-processing 
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1 Introduction 
The dispersion model Pello is used, amongst other applications, for estimating 
and tracking dispersion of radioactive nuclides and gases. Pello is a stochastic 
particle model, where the source is represented by emission of model particles 
which are then transported by the wind field and diluted by turbulence. The 
output from the dispersion simulation is typically either a concentration field or 
field of deposited material. To aid the comprehension of these fields they are 
typically visualised on a map, see Figure 1.  

 
Figure 1. Example of how data from a stochastic particle model can be post-
processed with box counting and visualised on a map. 

The compilation of a concentration field is the result of post-processing the 
model results, and in this sense it is distinguished/separated from the model 
and any simulation using the model. The field may be compiled in numerous 
ways, but currently box counting is the method implemented in the emergency 
preparedness system. While being a simple and straightforward method it has a 
shortcoming: at locations with a small number of model particles, the box 
counting method gives large variations. As a consequence, the contour plot of 
the estimated concentration are scattered (“jumpy”) at these locations, see 
Figure 1. Kernel density estimation (KDE) is designed to decrease the variance 
and thus render contour plots smoother at positions with low density [1]. This 
report aims at investigating whether KDEs are suitable for post-processing of 
Pello model results. KDE should also perform as well as box counting for 
regions with high particle density, that is, there should be no relative loss in 
resolution. This is an important point as smoothing could also be achieved 
simply by picking larger boxes for the box counting, but that would also render 
a loss in resolution in areas with a large number of particles. Indeed, the 
criterion that KDEs should yield as good as, or rather better, concentration 
estimates than the box counting method has another implication: in the KDE 
case fewer model particles has to be released to obtain results of the same 
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quality as using box counting. If the KDE is appropriately chosen the number 
of particles can be reduced by an order of magnitude according to de Haan [1]. 
Particle models suffer from long simulation times, hence reducing the number 
of particles will yield in a welcome reduction in simulation time. 

In this report we give a background to KDEs and we discuss different KDE 
algorithms to motivate our choice of algorithm to implement. The objective of 
the work described in this report is to find a better algorithm for calculating 
concentration fields from Lagrangian particle models by making the 
concentration fields smoother while keeping high resolution in areas containing 
high concentration. 

The developed algorithm will also be benchmarked against deposition data 
from the Fukushima Daiichi Power Plant accident [2, 3]. 

1.1 Model particles 

Pello uses model particles to simulate the atmospheric dispersion of a plume. A 
model particle represents a fraction of the cloud and each such model particle 
has properties such as sedimentation velocity and radioactive activity. To 
represent an entire plume, a large number of model particles are required. In 
Pello the model particles span the plumes total activity, actual particle size 
distribution, plume spatial size, and plume age. One model particle does in 
reality represent an entire cluster of real particles with equal properties. Each 
model particle is transported with the prevailing wind and diffused with a 
stochastic contribution representing atmospheric turbulence.  

1.2 Compilation of concentration fields 

Since a model particle only represents a point in space, information from 
nearby model particles has to be used to generate a concentration field. In the 
current implementation of Pello this is done by means of box counting where 
the space is divided into a grid with three-dimensional cells. In each cell the 
activity is a sum from all model particles inside the cell and the concentration 
is then the activity divided with cell volume. This method is fast and 
straightforward. However, it also generates discrete irregularities in the fields 
and depends on the choice of grid. 

1.3 MatchPello and ARGOS 

Today Pello is accessible to the Swedish radiation emergency preparedness 
system via an implementation in ARGOS. In this system the model is known as 
MatchPello as it resides at SMHI’s servers under their Match framework. 
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2 Kernel density estimation (KDE) 
Kernel functions regard each particle position as a density distribution (a 
smoothing kernel) instead of just a point. The distribution could be of any type 
but are typical normal (Gaussian). At a local scale, dispersion processes 
typically leads to a normal distribution which suggests that this distribution is 
suitable as kernels in this project. The density estimation at any given position 
is then the sum of each smoothing kernel at that position. Figure 2 shows how 
KDEs are calculated for one-dimensional data and compares it with the method 
of box-counting (in the one dimensional case box-counting is the same as 
drawing histograms). 

 
Figure 2. KDE versus box-counting. Box-counting of six data points (market as black 
points on the x-axis). They are collected into a histogram depicted in green. To obtain 
a KDE each point is represented by a kernel function shown with dashed black line. 
These kernels are summed up to obtain the collective KDE of the six data points, 
depicted by the thick blue line. The difference between box-counting and a KDE 
representation is illustrated here. 

As a remark, before proceeding, we notice that box-counting is in fact a KDE-
method as well: the KDE-distribution that corresponds to box-counting is a 
uniform distribution in the box in which the model particle is located. 
However, note that this type of kernels are not self-centred, which inherently 
gives rise to a decreased accuracy in the concentration field. The fact that this 
distribution is binary, i.e., only contribute to one box, strongly contributes to 
the discontinuities in the resulting concentration/deposition field. While 
keeping the simplicity of the box-counting method but alleviating some of the 
problems with discontinuity the method may be augmented to a neighbouring-
box-counting method. Here each model particle shares some of its weight 
(uniformly) with the immediate neighbouring boxes. Neighbouring-box-
counting is also a KDE-method (a superposition of uniform distributions with 
varying support).  

As motivated above we will only consider normal distribution in the kernel 
function in the remainder of this report. The kernel will furthermore be self-
centred, thus we are left with determining the standard deviation of this (multi-
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dimensional) distribution. In the literature the standard deviation of a 
smoothing kernel is called the bandwidth of the smoothing kernel. The 
selection of bandwidth has a strong influence on the resulting density 
estimation.  

2.1 Bandwidth selection of an individual kernel 

Deciding the bandwidth is very important for getting good estimations. One 
can use a single bandwidth in all dimensions (Type A), different bandwidths in 
each dimension (Type B) or use a d x d-matrix (Type C), where d = number of 
dimensions, for getting the shape of the kernel in any direction. Figure 3 shows 
the 2D-kernel shape for the three types. Type A can also be considered as a 
scalar times the d x d identity matrix, Type B as a diagonal d x d matrix with 
positive numbers at the main diagonal and Type C as symmetric positive 
definite d x d matrix. The two first types are special cases of the general Type 
C. 

There are competing views on how to pick the ultimate bandwidth on kernels 
depending on which measure you use to estimate the error (the Integrated 
Squared Error or the Mean Integrated Squared Error). The bandwidth also 
depends on the number of particles, n, in the data set. In a survey paper Turlach 
[4] found that the bandwidth should scale with a factor of 0.2n . 

 

Figure 3. 2D-kernel shapes for different bandwidth types. The left picture, type (A), 
shows a 2D-kernel shape of a constant bandwidth, the picture in middle, type (B), 
shows a 2D-kernel with different single bandwidths in both dimensions, and the picture 
to the right, type (C), shows a 2D-kernel that can take any direction due properties of a 
symmetric positive definite bandwidth matrix. 

There are two main school of thoughts on how to choose the bandwidth: a prior 
choice and a posterior choice. 

2.2 Choosing the bandwidth a priori 

By choosing the bandwidth a priori we mean that the bandwidth is determined 
at run-time by the dispersion model. Each model particle will be assigned its 
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own kernel bandwidth depending on the physical processes it undergoes in the 
dispersion model, hence the bandwidth will directly depend on the scenario, 
including meteorological conditions, at hand. In essence the bandwidth will 
increase with the amount of turbulence that the particle has endured during its 
flight through the atmosphere. This approach has for example been adopted in 
the DERMA particle model (thereby making it a puff-particle model) [5].  

2.3 Choosing the bandwidth a posteriori 

If the bandwidth is chosen after the dispersion model has finished and 
delivered its result (a swarm of dispersed particles) we say that the bandwidth 
is chosen a posteriori. Since the model run at this point is a compli fait there is 
only an indirect influence of the physics involved. In essence the bandwidth 
will be chosen after an initial assessment of how the particles are distributed, 
see e.g. [1] and [6]. 

2.3.1 Variable bandwidths 

Often the same bandwidth is used for all smoothing kernels (particle positions). 
KDE with constant bandwidth is often good enough but for data with large 
variation in density the method are over-smoothing at high densities and und-
smoothing at low densities. The use of variable kernel bandwidth on the other 
hand, allows for more adequate smoothing where particle density is high and 
are minimizing the variance where particle density are low.  

To utilize variable bandwidths it is necessary to calculate, or estimate, the local 
density for each individual model particle. This requires an extra initial 
calculation which can be computationally intensive and become a severe 
drawback of this approach. Even so, in this report we opt to use KDEs with 
variable bandwidth while trying to find algorithms that reduce the 
computational cost. Indeed, we will divide the space into a number of partitions 
of equivalent density and use KDEs of constant bandwidth inside each 
partition: partition varying bandwidth. 

2.3.1.1 Binned kernel 

As mentioned, for a large number of particles, field compilation using a normal 
KDE may be very computer intensive. Therefore, alternative methods have 
been devolved to handle this problem. 

To apply a varying bandwidth it is necessary to first establish the density at the 
location of each model particle. This can be done by, for each model particle, 
summing up the contribution from each other individual model particle. This is 
very computational demanding. Another way that are substantially faster is to 
use binned kernels. 

Binned kernel is a method where all model particles are binned to a pre-defined 
grid. The contribution of a model particle to the calculation of the density at an 
arbitrary position depends on the distance between the sample point and the 
position.  
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2.3.2 Partition varying bandwidth 

To acquire a relatively fast field compilation the FFT-approach is the best 
choice. However, it does not support variable bandwidths which is also a 
preferred feature to obtain the desired resolution and smoothness of the field. 

One way of overcoming the problem with algorithms that does not handle 
varying bandwidths is to split data into partitions and use different constant 
bandwidths within the partition. The combined KDE will be a partition varying 
bandwidth. When this method is utilized, it is important to use the same grid 
points (the points where the density estimation is to take place) in all partitions 
in order to be able to combine the results into a partially varying bandwidth 
KDE. Figure 4 illustrates how data can be split into three parts according to 
sample point densities. 

 
Figure 4. Partition based on sample point densities. Example of how data can be split 
into three parts according to density. Black means high density, blue means medium 
density and orange means low density. 



  FOI-R--4135--SE 

 

 13 

3 Methods 
In this chapter we explore several methods for choosing the bandwidth. We 
begin with describing one method for making a prior choice of bandwidths, 
and this is then followed by a presentation of several methods of making a 
posterior choice. Seemingly there are more degrees of freedom when making 
sound posterior choices of bandwidth. 

3.1 A priori choice of bandwidth 

In the dispersion model Pello each model particle is inert and independent. At 
every timestep in a Lagrangian random displacement model each model 
particle, if still airborne, will be translated. The length and direction of this 
translation is determined by two components: the main movement will take 
place along flow lines of the wind field, and then there will be diffusive 
(turbulence induced) jumps along or between flow lines. Typically we would 
expect the advective part to dominate the turbulent component. The turbulent 
component is modelled as a stochastic process, and it is this process that yields 
a spread amongst particles (in particular among particles released 
simultaneously in the same position). It is therefore natural to consider each 
model particle as the centre point of a swarm of nearby particles (i.e. a 
distributed particle) where the size of the swarm depends on how much 
dispersing turbulence that the particle has experienced. We model the 
stochastic turbulence by a random walk, thus a normally distributed (Gaussian) 
KDE is a natural choice, and we choose the bandwidth, a priori, to be the 
integral of the turbulence encountered. 

Let us now consider the diffusive component mentioned above in more detail 
to see how the kernel bandwidth is estimated. 

3.1.1 RDM – Random displacement model 

For simplicity we only consider turbulence in one direction, the x-direction, but 
in the actual model turbulence acts in all three direction. At each small time 
step, t , the model particles takes a stochastic step given by 

2 xx K dW       (1) 

where the diffusion coefficient  is given by 
2

x xK         (2) 

and x  is the variance in wind velocity in the x-direction and   is the turbulent 
time scale. The stochastic contribution comes from dW which a Wiener process 
with variance t , this means that the process generates normally distributed 
steps with variance t  or equivalently standard deviation W t   . The 
turbulence model is described in Lindqvist 1999 [9]. 
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3.1.2 A random walk 

The time discrete version of a Wiener process is a random walk. A random 
walk is the trajectory of particle that, on random, takes a step to the left or 
right. Each step is independent of the previous ones. The variance of the sum of 
two steps is 

     2 2
2 1 1 2 2 1 1 2 2Var Var a X a X a Var X a Var X       (3) 

and for N steps 

 2

1 1

N N

N i i i i
i i

Var Var a X a Var X
 

 
  

 
  .   (4) 

3.1.3 Constant turbulence K - normally distributed KDE 

If we make the simplifying assumption that xK is constant then equation (4) 
implies that a set of particles performing this random walk will be normally 
distributed with variance 

2 22 2 2R x W x xnK nK t K t         (5) 
where n is the number of time steps in the random walk. The assumption that 

xK is constant is required to obtain an analytic expression for the bandwidth of 
the KDE. We choose to set xK equal to the mean turbulence experienced by 
each particle, thus we integrate the turbulence along the trajectory of the given 
particle and divide by the total time. This choice of xK together with equation 
(5) yields the KDE we are looking for. The choice (5) coincides with the 
choice made by Sørensen et al. [5] to describe the turbulent diffusion affecting 
the puffs in the particle-puff model DERMA. 

3.2 A posteriori choice of bandwidth 

Several methods were tested for being able to calculate KDEs with variable 
bandwidths on large data sets. These are described below. All methods are 
based on a two-step procedure, first a pilot run to calculate densities at all 
sample points and then a final step run with varying bandwidths derived from 
the densities estimated in the pilot run. The test data used are from Pello model 
runs for the Fukushima accident 2011, see Figure 5a for the particle 
distribution from this model run and Figure 5b for the corresponding box-
counting estimation of the concentration field. Now, when computing KDEs 
for a large number of particles computational efficiency becomes a problem. A 
computationally effective method of computing KDE is to use the Fast Fourier 
Transform, see e.g. Silverman [7].  Botev et al. [8] presents a very fast FFT 
based KDE estimation using a linear diffusion processes and claims it 
outperforms existing methods in terms of accuracy and reliability. See Figure 
5c for the resulting concentration estimation. A disadvantage of the FFT based 
method is that variable bandwidths is not applicable. 
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3.2.1 In-house program 

No computer software was found that calculates two-dimensional KDE with 
variable bandwidths for each sample point and different bandwidths in each 
dimension. Therefore, a program was developed in-house that uses products of 
two one-dimensional KDEs (product kernel). The algorithm for calculating 
variable bandwidths is based on a pilot run with constant bandwidths for 
estimating density at each sample point. The sample point density estimation 
from the pilot run is then used to calculate the variable bandwidth according to 
[1]. This method works well for moderate data sizes, see Figure 5d. For large 
number of data-points (>10 000) the program is slow, especially due to the 
pilot run.  

 
Figure 5. Contour plots for different estimation methods. a) Distribution of particles. b) 
Concentration by “box counting”. c) Concentration by FFT-generated KDE (Botev et 
al. [8]) with constant bandwidth using all 62286 particles. The density is estimated on 
a 512x512 grid. d) Sample point estimator (individual bandwidth for all sample points) 
using product kernel (in-house program). 5000 particles out of 62286 are used.    

3.2.2 Binned kernel + in-house program  

An alternative method was to do the pilot run using a binned kernel technique 
and then using the in-house program for calculating the concentrations. The 
pilot run can for example be done using a KDE binning algorithm developed 
by Duong [10]. This method is faster than the FFT-algorithm used to generate 
Figure 5c and the in-house program used to generate Figure 5d, but for 
extremely large data sets (>100 000 data points), the second step is still slow.  

3.2.3 Binned KDE + binned KDE 

A very fast method is to use the binned KDE both in the pilot run and the 
second step. The results from such a run is illustrated Figure 6. The binning 
grid is defined in advance and often symmetrical in all directions (dimensions). 
If the variation in the particle positions mainly occurs in one direction, the 
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d. Varying bandwidth by sample point estimator
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binning method might be a too big approximation       

 
Figure 6. Binned KDE with varying bandwidths. KDE with sample point varying 
bandwidth for all data using binned option. First a pilot run with constant bandwidth 
and estimations at each sample point are performed using a KDE binning algorithm 
developed by Duong [10]. Individual sample point bandwidths are being calculated as 
a function of the density at the pilot run. These bandwidths are used in a new Binned 
KDE with the weight option. 

3.2.4 Binned kernel + partition varying bandwidth KDE  

The last method examined is a KDE with partition varying bandwidths. The 
pilot run can be done in the same manner in the two previous methods. The 
final step, with separate constant bandwidths KDE runs on each partition can 
for example be done using a FFT KDE. Figure 7 shows the results from such a 
run.     
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Figure 7. KDE with partition varying bandwidth. First a pilot run with constant 
bandwidth and estimations at each sample point are performed using a KDE binning 
algorithm developed by Duong [10]. The data are then being split into five parts 
depending on the KDE from the pilot run. KDEs with constant diagonal bandwidth are 
being calculated for each part (the bandwidths differ between the KDEs) on a 
predefined grid (same grid for each KDE) using a FFT-algorithm (Botev et al. [8]). The 
KDEs are then summed to form a total KDE with partition varying bandwidth. 
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4 Implementation 
The current version of Pello holds a box-counting method to estimate 
concentration and deposition fields. This box-counting method is implemented 
in Fortran. The ambition in this project has been to make an equivalent 
implementation of one, or several, KDE methods. Due to limitations in 
resources we had to stop short of this and we mainly used MATLAB as our 
development environment. 

4.1 A priori chosen bandwidth, integrated turbulence 

Each particle experiences different amount of turbulence, therefore the 
turbulence is integrated separately for each particle. Pello has been updated to 
perform this integration (summation) at run-time. The integrated turbulence is 
then stored in the particle properties struct. This information is thereby made 
available to an external application handling the output from the dispersion 
model. 

Generating the corresponding KDEs and plotting the result has been done in 
MATLAB using built in libraries.   

4.2 A posteriori chosen bandwidth, partition varying 
bandwidth 

We deemed that the method “binned kernel + partition varying bandwidth” was 
the most promising alternative for choosing the a posteriori bandwidth. This 
method has been implemented in a development environment in MATLAB and 
R. The pilot run that bins particles into regions of differing levels of 
concentration is done using an R package called ks developed by Duong [10], 
but modified to allow for the options “binned=true” and “eval.point = data” to 
be set simultaneously. The output from the R package is then read by 
MATLAB and in each partition (bin) the optimal bandwidth is computed using 
the FFT based KDE script KDE2d.mat by Botev et al. [8]. The final result is 
then visualised in MATLAB using build in libraries. 

4.3 Cartesian grid 

For long-range dispersion models it is natural to use lat-long coordinates, not 
least because weather data is supplied on that format. The scripts we have used 
for determining the a posteriori chosen bandwidth is however written for a 
Cartesian grid. Converting the fast fourier transform scripts from handling 
KDEs on flat Cartesian grids to instead coping with spherical surfaces in lat-
long coordinates is outside the scope of this project. Then as a consequence, for 
the two KDE methods to be comparable, the a priori KDE was also written for 
a Cartesian grid. Converting the latter to a lat-long grid is however 
straightforward. 
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5 Results 
To compare the different KDE methods (a priori and a posteriori chosen 
bandwidth) and box-counting we picked a well-studied test bench: the release 
of radioactive material following the Fukushima accident. 

5.1 Case study 

During the nuclear power plant accident in Fukushima 2011 radioactive 
material was released into the atmosphere. This case has since then been used 
to study behaviour of atmospheric dispersion models. Since this event is 
familiar to us and we have worked with is since the accident, e.g. [3, 11, 12], it 
provides a good case to study how KDEs behave. We study the release of 
Caesium 137, 137Cs, into the atmosphere which is assumed to attach to 
surrounding aerosols (assumed to be a rural aerosol described by von 
Schoenberg and Grahn [11]). The variation of the source term in time comes 
from the latest official source term from Katata et al [13]. We have chosen to 
simulate the first 20 days of the accident for deposition studies and 3 days for 
air concentration fields. 

5.2 Concentration in the boundary layer 

We released different number of particles and post-processed the resulting 
concentration using box-counting and turbulence integrated KDEs respectively. 
Note that the partitioning varying bandwidth KDE is not used in this 
comparison. In this analysis we have taken into account all particles that are 
airborne within the planetary boundary layer at the time of comparison. In 
Figure 8, Figure 9 and Figure 10 we compare turbulence integrated KDEs with 
box-counting for 1 000 000, 100 000 and 10 000 model particles. The 
visualisation grid has a resolution of 0.1*0.1 degrees in latitude and longitude. 
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Figure 8. Box-counting (upper image, labelled BOX) versus integrated turbulence 
KDE (lower image, labelled KDE). Both images show post-processing of the same 
model run with 1 000 000 released particles. 
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Figure 9. Box-counting (upper image, labelled BOX) versus integrated turbulence 
KDE (lower image, labelled KDE). Both images show post-processing of the same 
model run with 100 000 released particles. 
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Figure 10. Box-counting (upper image, labelled BOX) versus integrated turbulence 
KDE (lower image, labelled KDE). Both images show post-processing of the same 
model run with 10 000 released particles. 
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5.2.1 The resolution of the visualization grid matters 

We note that decreasing the resolution of the visualisation grid has two effects, 
the KDE will be less smooth, looking more like a box counting method, while 
the box-counting method looks smoother as the mass is distributed over a 
larger grid cell, see Figure 11. 

 

Figure 11. Box-counting (upper image, labelled BOX) versus integrated turbulence 
KDE (lower image, labelled KDE), with a coarser visualisation grid. Both images show 
post-processing of the same model run with 100 000 released particles. Comparing 
with Figure 9 we note that coarsening the visualisation grid has a smoothing effect on 
the box-counting method, while at the same time the behaviour of the KDE 
approaches that of box-counting. 
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5.2.2 Contour plots 

Once the concentration fields have been estimated, regardless of method, there 
are several plotting algorithms which can be employed. Since contour plotting 
is popular we include such an example for reference, see Figure 12. 

 

Figure 12. Box-counting (upper image, labelled BOX) versus integrated turbulence 
KDE (lower image, labelled KDE), both plotted using a contour function. Both images 
show post-processing of the same model run with 100 000 released particles. 
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And as previously, the resolution of the visualization grid also affects how 
smooth the output looks, see Figure 13. 

 

 

Figure 13. Box-counting (upper image, labelled BOX) versus integrated turbulence 
KDE (lower image, labelled KDE), both plotted using a contour function but on a 
coarser visualization grid. Both images show post-processing of the same model run 
with 100 000 released particles. 
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5.3 Deposition fields 

In this comparison we study the particles from the Fukushima simulations that 
deposited over the portion of mainland Japan where radioactivity 
measurements were collected by airborne measurements [3] . We simulated 
releases of different number of particles and post-processed the resulting 
deposition fields using box-counting, integrated turbulence KDEs and partition 
varying bandwidth KDEs respectively. Instead of making a number of 
simulations with a different amount of released particles we made a single 
model run with 9 670 558 particles released over 20 days. From this set of 
particles we picked, randomly and unbiased, six subsets of particles to 
represent six simulations with fewer released particles. The choice was 
calibrated to yield an even number of deposited particles. Of the deposited 
particles a fraction (roughly 24%) deposited over the area of mainland Japan 
that was studied. The total number of deposited particles and the corresponding 
amount of deposited particles in the area are presented in Table 1. 

Table 1. Total number of model particles deposited and the corresponding number of 
particles that deposited in the area of mainland Japan that we studied. 

Number of 
released particles 

Total number of 
deposited particles 

Number of deposited particles 
in the area of interest 

13 900 10 000 2 428 

69 500 50 000 12 026 

139 000 100 000 24 001 

695 000 500 000 120 447 

1 390 000 1 000 000 241 434 

6 950 000 5 000 000 1 206 888 

To have a reference field, “a truth”, to compare with we have also made a 
simulation with 700 000 000 particles, out of which nearly 500 000 000 
particles deposited in the area. We consider this model result to be the correct 
answer. It is shown in Figure 14. 
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Figure 14. In the figure 500 000 000 model particles have deposited in the area 
plotted, out of which 24% in the area shown. We consider this result to be the true 
deposition field. 

In Figure 15, Figure 16 and Figure 17 we compare box-counting, integrated 
turbulence KDEs and partition varying bandwidth KDEs for deposited 
particles. In the model runs there were 5 000 000, 500 000 and 50 000 model 
particles that deposited, out of which roughly 24% in the area of interest. 
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Figure 15. Post-processing of deposition field. There are 5 000 000 deposited 
model particles, out which 1 206 888 in the shown area. The fields are post-
processed using box-counting, partition varying bandwidth KDE and integrated 
turbulence KDE respectively. 
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Figure 16. Post-processing of deposition field. There are 500 000 deposited 
model particles, out which 120 477 in the shown area. The fields are post-
processed using box-counting, partition varying bandwidth KDE and integrated 
turbulence KDE respectively. 
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Figure 17. Post-processing of deposition field. There are 50 000 deposited model 
particles, out which 12 026 in the shown area. The fields are post-processed using 
box-counting, partition varying bandwidth KDE and integrated turbulence KDE 
respectively. 
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5.4 Statistical comparison: integrated mean square 
error 

Visual comparison of concentration fields and depositions fields, like in Figure 
8 to Figure 18, gives an intuition of how the different post-processing methods 
perform. That type of comparison can be complemented by quantitative 
statistical measures. In this case we have chosen the integrated mean standard 
error (MSE) as our statistical measure. As the level of deposited material spans 
a large interval, with the area around the source completely dominating the 
picture, we have taken the logarithm (base 10) of the estimated deposition 
values to get a fairer comparison (otherwise, the area around the source would 
also dominate the statistical measure making the rest of the deposition field 
more or less irrelevant). 

The integrated mean square error of the logarithm (base 10) of the estimated 
deposition field is presented in Table 2 for each post-processing method for 
each model run. 

Table 2. Integrated MSE of the logarithm (base 10) of the estimated deposition field 
as a function of released model particles for box-counting, integrated tubulence KDE, 
partition varying bandwidth KDE. 

No dep 
particles log(Box) 

log(Int 
turbulence) 

log(Partition 
varying) 

10 000 0.492313 -1.66144 -0.0963

50 000 0.209166 -2.17792 -0.11871

100 000 -0.08152 -2.31715 -0.12139

500 000 -1.20793 -2.4375 -0.14601

1 000 000 -1.3886 -2.47413 -0.15342

5 000 000 -1.4797 -2.52612 -0.16364

 

This data is plotted in Figure 18. 
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Figure 18. In the plot the logarithm (base 10) of the integrated mean square error of 
the estimated deposition field is plotted for the three post-processing methods box-
counting (Box), integrated turbulence KDE (Int turb) and partition varying bandwidth 
KDE (Partition). 

5.5 Comparison with field data 

We originally intended to compare a KDE post-processed deposition field and 
a box-counting post-processed field with measurements of deposited material 
from Fukushima [11]. But given that the deposition field around Fukushima 
depends on both the local geometry and the local weather during the accident 
and that none of these are resolved by the dispersion model combined with the 
used weather forecast data [3] we decided that such a comparison is to be 
postponed until the dispersion model has been developed further. In other 
words, the deposition measurements from around Fukushima is not a good data 
set to validate any post-processing method against. 
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6 Discussion and conclusions 
Different methods to post-process data from a Lagrangian dispersion model 
have been examined quantitatively using the Fukushima Daiichi accident as 
source term. Box-counting is a commonly used method to compile a 
concentration field from particle data and is currently used in Pello. Box-
counting is a fast method that suffers from noisy results that often can appear 
unphysical. Two different kernel density estimation methods has been 
investigated in this work. By the utilization of KDEs it is possible to obtain 
smoother fields and thereby avoid discrete hotspots. The kernels have spatial 
widths that determines the smoothness of the concentration field. The two 
versions of KDE presented here employ two completely different ways of 
determining the bandwidths. 

In the method referred to as partition varying bandwidth KDE the widths of the 
kernels are determined from the distribution of particles. The width scales 
inversely proportional towards the local density of particles. The advantage of 
this approach is that the field becomes smooth in low density areas which 
reduces the noise while the impact of the KDE-treatment is reduced in high 
density areas to maintain the small-scale details in the field. The drawback is 
that it is nontrivial to compute this method in a time efficient manner. 
However, by introducing binned kernel + partition varying bandwidth the 
method becomes significantly faster and thereby also useful. Note that this 
method of determining the bandwidth is exclusively based on the particle 
distribution and has no further correlation to the physics of the dispersion 
process. 

The second method investigated is labelled integrated turbulence KDE. In 
contrast to the partition varying bandwidth KDE the physics of the dispersion 
model is directly implemented to calculate the individual bandwidths based on 
the path of the particles. The bandwidths are therefore readily derived with no 
regard to the other particles. This implies that the widths are quickly 
determined. On the other hand, the concentration field may be more time-
consuming to calculate since FFT-schemes are not possible to apply when all 
particles have different widths. 

The three post-processing methods were compared towards an extremely high 
resolved field that served as a reference field (also called True field). There was 
a distinct difference between box-counting and the two KDE-methods. Box-
counting performs poorly especially when there are few particles. In this case 
the concentration field becomes noisy and difficult to analyze. As the number 
of particle increases the box-counting method improves as expected. When 
comparing the two KDE-methods it is clear that the integrated turbulence 
method outperform the partition varying bandwidth method. The mean square 
error in the deposited field shows significantly better results for the former 
method. The coupling to the physics in the dispersion model also suggests that 
each model particle is represented more adequately by this approach. 

In conclusion, it has been shown that the use of KDE improves the compilation 
of concentration fields from discrete particle data. The method that yielded the 
best results is the integrated turbulence which in all cases performed well. This 
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method will be implemented as a standard post-processing method in the 
dispersion systems at the Swedish Defence Research Agency (FOI). Even 
though smoother fields in themselves may be a good enough reason to use 
KDE, the benefit may also take other forms. For instance, the dispersion 
simulation may be performed with fewer particles and thereby be conducted 
faster which is a highly desirable outcome. Moreover, given this improvement 
in performance the model could utilize more advanced physics schemes which 
could answer new questions and result in a more precise dispersion modelling.    
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