
FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are

research, method and technology development, as well as studies conducted in the interests of Swedish defence and the safety and

security of society. The organisation employs approximately 1000 personnel of whom about 800 are scientists. This makes FOI Sweden’s

largest research institute. FOI gives its customers access to leading-edge expertise in a large number of fi elds such as security policy

studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises,

protection against and management of hazardous substances, IT security and the potential offered by new sensors.

Overview of formal methods
 in software engineering

IOANA RODHE, MARTIN KARRESAND

FOI-R--4156--SE

ISSN 1650-1942 December 2015

FOI

Swedish Defence Research Agency Phone: +46 8 555 030 00 www.foi.se

SE-164 90 Stockholm Fax: +46 8 555 031 00

Overview of formal methods in
software engineering

Ioana Rodhe, Martin Karresand

Bild/cover: Martin Karresand

FOI-R--4156--SE

Titel

Title

Report no

Month

Year

Pages

Customer

Project no

Approved by

FOI Research area

Armed Forces R&T area

Division

ISSN

This work is protected under the Act on Copyright in Literary and Artistic Works (SFS 1960:729). Any form
of reproduction, translation or modification without permission is prohibited.

FOI Swedish Defence Research Agency

Översikt över formella metoder i programvaruutveckling

Overview of formal methods in software engineering

FOI-R--4156--SE

December

2015

50

The Swedish Armed Forces

Command and control

E36077

Christian Jönsson

ISSN-1650-1942

Information- and Aeronautical Systems

FOI-R--4156--SE

Abstract

Keywords

The most common way to check for faults and bugs in IT systems is to use
testing, simulations and human reviews. Nevertheless, these techniques are
not exhaustive and cannot guarantee the absence of defects. A more promising
method is to use formal methods during the development process of the IT
system, for example by writing a formal specification of the system on which
different properties can be proved and then mathematically proving that the
implementation of the system abides by the specification.

In this report we aim to give a brief introduction to the field of formal methods
together with a classification of the different existing formal methods. We
also guide the reader through some of the existing literature in the field and
we present some systems where formal methods are used to prove security
properties. An overview of a functional correctness proof for a security-critical
micro-kernel is also provided.

From the literature we have surveyed we conclude that using formal methods
can be cost-effective in the long run and it can reduce the number of defects to
close to zero. Nevertheless, the methods are not yet widely used and, therefore,
there are a limited number of tools that can be used.

formal methods, functional correctness, IT system, software development

3

FOI-R--4156--SE

Sammanfattning

Nyckelord

Det vanligaste sättet att leta efter fel och buggar i IT-system är att använda
testning, simulering och manuell kodgranskning. Dessa tekniker är dock inte
uttömmande och kan inte garantera frånvaro av defekter. En mer lovande me-
tod är att använda formella metoder under IT-systemets utvecklingsprocess, till
exempel genom att skriva en formell specifikation för systemet genom vilken
olika egenskaper kan bevisas och sedan matematiskt bevisa att implementatio-
nen följer specifikationen.

I denna rapport avser vi att ge en kortfattat introduktion till forskningen kring
formella metoder tillsammans med en klassificering av de olika existerande for-
mella metoderna. Vi guidar också läsaren genom ett urval av forskningslittartu-
ren inom området och vi presenterar några system där formella metoder använts
för att bevisa säkerhetsegenskaper. Även en överblick av ett funktionellt riktig-
hetsbevis för en säkerhetskritisk mikrokärna ges.

Utifrån den litteraturstudie vi gjort kan vi konstatera att användning av for-
mella metoder verkar vara kostnadseffektivt i det långa loppet och att det
reducerar antalet defekter till nära noll. Oavsett det har metoderna ännu inte
fått någon större spridning och det finns därför ett begränsat antal verktyg att
tillgå.

formella metoder, funktionella riktighetsbevis, IT-system, mjukvaruutveckling

4

FOI-R--4156--SE

Contents

1 Introduction 7

1.1 Formal methods in software engineering 7

1.2 Background . 8

1.3 Scope and method . 9

1.4 Outline . 9

2 Relevant literature 11

3 Classification of formal methods 15

3.1 Specify and analyse . 15

3.2 Specify and prove . 17

3.3 Specify and derive . 18

3.4 Specify and transform . 18

4 How to choose a formal method 21

4.1 Systems classification . 21

4.2 System properties . 22

4.3 Application domains . 22

4.4 Where to use formal methods 23

5 Associations and agencies 25

6 Limitations of formal methods 27

7 Examples of practical use of formal methods 29

7.1 Mondex smart card . 29

7.2 Tokeneer secure entry system 30

7.3 The seL4 micro-kernel . 31

8 Functional correctness proof of the seL4 micro-kernel 33

8.1 Kernel design process . 33

8.2 Abstract specification . 33

8.3 Executable specification . 34

5

FOI-R--4156--SE

8.4 High-performance C implementation 35

8.5 Formal verification . 35

9 Research groups and researchers in Sweden 37

9.1 Chalmers/University of Gothenburg 37

9.2 Uppsala University . 38

9.3 Royal Institute of Technology/Stockholm University 38

9.4 Mälardalen University . 39

9.5 Linköping University . 39

10 Questions 41

11 Discussion and conclusions 43

Bibliography 45

6

FOI-R--4156--SE

1 Introduction
Ever since the first systems appeared, a question has been why systems are
not fault free. The simple answer is that even the most rudimentary system is
affected by parameters we cannot grasp and stimuli we cannot control. If we
limit the scope of the question to IT systems, the development process itself is
full of opportunities to introduce faults and bugs into the code.

In this chapter we introduce formal methods, what they are and how they
can reduce the number of faults and bugs, and we present a background describ-
ing the development process, its pitfalls and how formal methods come into the
picture. We further define the scope of the report and give an overview of the
remaining chapters.

1.1 Formal methods in software engineering
In computer science, formal methods are “mathematically rigorous techniques
and tools for the specification, design and verification of software and hardware
systems” [43]. Mathematically rigorous means that the specification consists of
well-formed statements using mathematical logic and that a formal verification
consists of rigorous deductions in that logic. The strength of formal methods
is that they allow for a complete verification of the entire state space of the
system and that the properties that can be proved to hold in the system will
hold for all possible inputs. When formal methods cannot be used through the
entire development process (due to the complexity of the system, lack of tool
or other reasons), they can still successfully be used on parts of the system, for
example for the requirements and high-level design or only on the most safety
or security critical components.

The diversity of available formal methods is a result of the different mod-
elling methods and proof approaches needed by different application domains.
Also, different development phases of a system might require different tools
and techniques.

Although many developed formal methods are the result of research efforts
in universities, more and more tools and techniques are available outside the
academic community.

Several of the standards used for system development require formal meth-
ods at the highest levels of accreditation. Some examples are the Common
Criteria standard1 and the DO-178C standard Software Considerations in Air-
borne Systems and Equipment Certification2 for software for airborne systems
in commercial aircraft.

1http://www.commoncriteriaportal.org/
2https://en.wikipedia.org/wiki/DO-178C

7

FOI-R--4156--SE

1.2 Background
When a new system is to be implemented, the first step is to write a re-
quirement specification (usually in natural language). The specification should
correctly describe the system’s desired behaviour and it should be complete
and unambiguous, which can be hard to achieve.

The specification is then transformed into code by a programmer, who has
to understand the specification correctly and handle any ambiguities. Also,
the programmer’s way of coding and solving technical challenges can introduce
faults in the code. Then there is the sheer size of the system; nowadays systems
are so big that it can be hard to keep track of all the parts to make sure that
they correctly follow the specification. Furthermore, there is often a team of
programmers working together, which also is a source of faults since they will
all have their own interpretations of the specification and of the information
shared during the development process.

During and after the coding of the system, the system’s functionality is usu-
ally tested to make sure that the resulting program satisfies the requirements
and that no errors or bugs are present. Testing big and complex systems can
be very time consuming and, due to the size of the system and the amount of
code, an exhaustive testing is not practically feasible.3 Nevertheless when the
system is safety and security critical, correct functionality has to be guaran-
teed, which requires either exhaustive testing or a way of proving that the code
correctly implements the specification [24].

The concept of formal methods introduces tools to mathematically describe
a system (or parts of a system) in a specification and to prove that the result-
ing program meets the requirements described in the specification. A formal
specification is precise and there is no risk for misinterpretations. Also, if
there is a proof that the implementation abides by the specification, then one
can be sure that the programmers have implemented what is described in the
specification. In practice, one cannot completely guarantee that the resulting
implementation is fault free, since the formal method used can have defects, or
there might be some error in the proof. Nevertheless, increased use of formal
methods and tools will result in better and more reliable methods and tools.
To summarise: by using formal methods in the system development, errors can
be found earlier and some classes of errors can be nearly eliminated [30].

A limitation of formal methods is that they only can be used to prove a
system’s correctness with respect to a specification. Therefore, just because a
program has been mathematically proved to abide to the specification, there
is no guarantee that the specification in itself is correct and fault free. Never-
theless, properties can be proved on the specification to strengthen the belief
that the specification correctly represents the desired functionality.

3A simple program that adds two six digit numbers give 1012 execution paths to test.
Testing 105 paths per second we still need almost 2778 hours, more than 115 days, to do an
exhaustive test.

8

FOI-R--4156--SE

1.3 Scope and method
In this report we aim to give a brief introduction to the field of formal methods
together with a classification of the different existing formal methods. We also
guide the reader through some of the existing literature in the field.

In order to gather as much relevant background information as possible in
the field of formal methods, we contacted several researchers from different
universities in Sweden and asked them some questions related to the field. The
questions can be found in Section 10. We furthermore gathered information on
which research groups there are in Sweden and on some of their members.

1.4 Outline
Chapter 1: The current section provides an introduction to the research prob-

lem and the scope of the report.

Chapter 2: Presents what we together with some Swedish researchers within
the area regard as relevant literature regarding formal methods. The
selection is not meant to be exhaustive, but a start for someone wanting
an overview of the area.

Chapter 3: Contains a classification of the different formal methods currently
available. The classification is based on [3].

Chapter 4: Provides a review of how to choose the best formal method for a
project. To aid in that a classification framework for systems is presented.
The classification is based on [51].

Chapter 5: Contains a brief presentation of non-academic sources of infor-
mation on formal methods.

Chapter 6: Discusses limitations of the use of formal methods.

Chapter 7: Presents a few examples of using formal methods. The focus lies
on what has been proved and what assumptions that have been made.

Chapter 8: Gives an overview of how a functional correctness proof can be
carried out.

Chapter 9: A listing of some of the research groups and researchers active in
the field of formal methods in Sweden.

Chapter 10: Presents the questions used in the interviews with the different
Swedish researchers and groups listed in Section 9.

Chapter 11: Contains the conclusions of the study.

9

FOI-R--4156--SE

2 Relevant literature
There are thousands of conference and journal papers on the subject of formal
methods, most of them focusing on a particular method and very few overviews
over the area. In order to find relevant literature, a search for literature giving
an overview of the area of formal methods and their use was performed. The
keywords used were “formal methods overview” and “formal method tutorial”.
Furthermore, we asked researchers in the area about relevant overviews.

In [10, 11, 12] the fundamentals of software engineering based on a formal
methodology is presented by Dines Bjørner. He writes in the preface that,
unlike other system engineering books where formal methods are tucked away
in a separate chapter, this book has the formal methods embedded in the text.
The reason for that is the fact that formal methods apply in all stages of
software engineering.

Dines Bjørner, together with Klaus Havelund, wrote a conference article
on the history of formal methods [13]. It is a short text, but contains a com-
prehensive account of the history, current status and future development of
formal methods. They also list the core research groups, conferences, etcetera
in a section called “A Syntactic Status Review”. In the second half of the pa-
per, they also present their personal views on eight obstacles to the success of
formal methods. The authors believe that the academic and industry obstacles
regarding formal methods can be overcome. The lack of scalable and practical
support tools is, according to the authors, a main reason for the slow adop-
tion in the industry. As for the future of formal methods, the authors believe
that we are moving towards “a point of singularity where the specification and
programming will be done within the same language and verification tooling
framework”.

A survey of the actual use of formal methods in industry is presented in [60].
Data was collected from 62 industrial projects by using a structured question-
naire. The projects are from different application areas. The results of the
survey show that the effect on time (that is, time to do the work) was on av-
erage beneficial, three times as many reported a reduction in time rather than
an increase. In about half of the projects, it was considered hard to judge the
effect on time taken. The same was noticed for the cost, five times as many
projects reported reduced costs rather that increased and in about half the
cases it was hard to judge the effect. Furthermore, in most of the cases, 92%,
it is believed that formal methods have helped increase the quality. From this
survey and past surveys, the authors can observe that formal methods and
verification has successfully been applied to problems of industrial scale and
significance. Nevertheless, the authors identify remaining challenges for the
broader adoption of formal methods in the industry. Some of these challenges
are tool support, increased automation and convincing evidence that formal

11

FOI-R--4156--SE

methods can be cost-effective. The survey is accompanied by an account of
a series of industrial projects where formal methods were used with emphasis
on developing verified systems cost-effectively. Some of the projects are briefly
presented in Chapter 7.

A survey of automated techniques for formal software verification is pre-
sented in [22]. The three techniques presented are Abstract Static Analysis,
Model Checking, and Bounded Model Checking. The authors provide a short
tutorial of each method with discussions of the differences between them. Also,
tools implementing these techniques are presented and their maturity, strengths
and weaknesses are discussed.

In [49], the European project DEPLOY is presented. The project lasted
for four years and aimed at introducing the Event-B formal method [2] to a
variety of industrial organisations in different application domains. 15 partners
participated and reported the lessons learned from the project. The results
were used to improve the process and the formal method. The book contains an
“honest and insightful” account of the participants’ experiences. The DEPLOY
project also has a useful website http://www.fm4industry.org with resources
on success stories and FAQ on formal methods in industry.

In [36], the fundamentals of the use of formal methods in operating system
verification is presented. The first half of the article is a general overview of
formal methods and their use in software engineering. The second half of the
article covers different formal methods used in operating system verification.
The authors look at OS verification projects between 1973 to 2008, and there-
fore the paper does not include the recently verified micro-kernel seL4. We
present seL4 as one of our examples in chapter 7 and further give an overview
of its functional correctness in Chapter 8.

In [28], a comprehensive survey of the area is presented where both safe
and secure systems are considered. The survey aims to give an overview of
the state-of-the-art in the field of formal methods, including tools, languages
and methodologies. The authors also aim to give an evaluation of strengths
and limitations of formal methods and to set guidelines for the deployment
and use of formal methods in the industry. The authors believe that formal
methods have been advertised too early in the industry, before the languages
and tools were mature enough to be used in an industry scenario. They also
identify recent advances in the area that make formal methods more available
for the industry, such as: the foundational principles are more widely taught
and understood; more expressive and user-friendly languages are available; new
tools are available; and the diversity of problems that formal methods can tackle
increases continuously.

There are many books on formal methods, both about the theory and on
practical applications. Regarding the application of formal methods in the
industry, the following books have been recommended by the researchers we
have talked to:

1. Stefania Gnesi and Tiziana Margaria (ed.), Formal Methods for Industrial

12

FOI-R--4156--SE

Critical Systems: A Survey of Applications [54]

2. Jean-Louis Boulanger (ed.), Industrial Use of Formal Methods [14]

We finish the literature list with a webpage where many formal verifica-
tion reviews and surveys are listed: http://www.cerc.utexas.edu/~jay/fv_
surveys/.

13

FOI-R--4156--SE

3 Classification of formal methods
Almeida et al. [3] present several classifications for formal methods which we
use in this chapter. At a general level, formal methods are used in two aspects
of software development:

• To enforce the desired behaviour in the specification of the system. A
specification is a model of the system that describes its behaviour and
formal methods are used for model validation.

• To verify that an implementation has the same behaviour as the specifi-
cation, or to obtain an implementation that has the same behaviour as
the specification. Here one talks about the formal relationship between
implementation and specification.

Another general classification of formal methods can be made by considering
how the modelled system is described:

• as a transition system with states, transitions and state transformations,
or

• some program logic with pre- and post-conditions as well as axioms and
inference rules.

A third way to classify formal methods, which we also elaborate on in the
remainder of this chapter, is:

1. formal methods used to specify and analyse the specification,

2. formal methods used to specify and prove properties of the specification
(formal verification),

3. formal methods used to specify and derive an implementation from the
specification, and

4. formal methods used to specify and transform the specification, transfor-
mations which either hide details or enrich the specification with extra
details.

3.1 Specify and analyse
A specification describes the data that the system manipulates and what oper-
ations transform the data. The system can be described in two ways. One way
is to consider an internal state and to describe the operations that modify this
state. These kinds of specifications of specifications are called model-based or
state-based specifications and build a unique model of the system. The second

15

FOI-R--4156--SE

way to describe systems is by focusing on the data that is being manipulated
and how the data evolves. These kinds of specifications of specifications are
called algebraic specifications and, in this case, there can be many models that
provide the required functionality based on the manipulated data. To reduce
the number of models, properties of the specification are provided and, com-
monly, only a few of the models satisfy the required properties.

Model-based specifications are described in languages where the internal
state is the central point. Such languages are abstract state machines, set
and category theories, automata-based modelling and modelling languages for
real-time systems.

An abstract state machine describes the system in terms of states and state
transformations. Some examples of such languages are the B Method together
with the B specification language [2].

When the set or category theory is used, states are described in terms of
mathematical structures such as sets, relations or functions. Transitions are
expressed as invariants1, together with pre- and post-conditions. Examples of
set theory formal methods are Z [47] and VDM [34] and examples of category
theory methods are Specware [35] and Charity [18].

Automata are a different class of transition systems, which are particularly
adequate to describe concurrent, reactive and communicating systems. Au-
tomata can be extended and, as such, used to specify real-time systems. The
most common such automata are timed automata [4], but extensions for mod-
elling of other characteristics of systems such as temperature, inclination or
altitude can be found. SCADE [1] is a complete modelling environment, based
on Lustre [15], that can be used to model synchronous concurrent real-time
systems.

Algebraic specifications concentrate on the specification of data and the
input-output behaviour of functions that manipulate data. They are particu-
larly well suited for describing interface specification (i.e., when a large system
is divided into several subsystems with well-defined interfaces between them).
Nevertheless, when object operation depends on object state, that is when the
result of applying an operation is dependent of the results of previous opera-
tions, then algebraic specifications become cumbersome [52]. Sommerville fur-
ther on claims that a combination of model-based and algebraic specifications
defines the overall behaviour of the system [52].

Furthermore, declarative languages, such as logic-based languages, func-
tional languages and rewriting languages, can be used when writing the spec-
ification. Many functional languages are based on the λ-calculus [6] and the
notion of function is a central point of the specification. There also are available
proof assistants like Isabelle [46] and HOL [29] and languages like Haskell [56]
based on variants or extensions of the λ-calculus.

1An invariant is a property P, with respect to a program, that holds initially and that is
preserved by all the atomic properties of the program.

16

FOI-R--4156--SE

3.2 Specify and prove
Another aspect of formal methods is to prove properties about the specification
(or about the implementation), which is also called formal verification. In order
to do formal verification, some logical system has to be used, such as first-order
logic or temporal logic.

The formal frameworks for verification are divided by Rushby [50, p. 26] in
three different levels:

First level Demonstrations are carried out by hand with no computer sup-
port. Natural languages can be used.

Second level Demonstrations are carried out by hand but a rigorous formu-
lation of demonstrations is required.

Third level Computer-based tools with support for carrying out demonstra-
tions and proofs.

Different approaches to formal verification exist, such as proof tools, model
checking and program annotations. When using proof tools one can choose be-
tween logical expressiveness (that gives the possibility to study complex prop-
erties) and the simplicity of the logical formalism (that gives the possibility to
automatically generate the proof). On one hand, automated theorem provers
can be used, which focus on simplicity rather than on expressiveness. The
construction of proofs is automatic since they rely on the decidability of the
underlying theory. Example of automatic theorem provers are Satisfiability
Modulo Theory solvers such as Yices [23], CVC3 [8] and Z3 [21].

On the other hand, if one needs higher expressiveness, proof assistants can
be used where undecidable logic such as higher-order logic is used.

Model checking [5] is a technique for verification of finite-state systems
broadly used in the industry. The main idea is to express the system with
help of temporal logic and then traverse the model entirely and validate the
desired properties. If a property is not valid then a counterexample is shown.
The drawback with model checking is state space explosion where the transi-
tion graph grows exponentially with the size of the system. There are different
techniques available that try to solve the state space explosion problem, for
example one can use a higher level of abstraction.

Bounded model checking (BMC) [9] is a form of model checking that per-
forms a depth-bounded exploration of the state space, i.e., only states reachable
within a bounded number of steps are explored. Due to the bounded explo-
ration, faults that require a longer path are missed. BMC is mostly used for
semiconductor verification although it can also be applied to software.

Program annotations are used to check behavioural properties of programs
(source code in particular). An annotation is a logical formula of the speci-
fication, placed together with the program whose behaviour is to be verified.
The formula includes the pre and post conditions for that piece of program,

17

FOI-R--4156--SE

for example a method. One specific form of annotations, that is widely spread,
is contracts and the runtime verification of contracts. Almost all widespread
programming languages have such a contract layer. For example the JML
annotation language2 for Java and the ACSL annotation language for C.

3.3 Specify and derive
When a specification with desired properties is available, the next step is to
obtain an implementation with a behaviour that matches the specification.
There are two solution categories for this step. One is to have a specification
that can directly be executed, for example by using logic-based languages like
Prolog or functional languages like Scheme and OCalm. Another one is to
derive an implementation from the specification. In the first case one already
has an implementation that satisfies the desired properties. In the second case
one has to prove that the derivation is correct. There are different approaches
for how to prove correctness of a derivation. One approach is to focus on the
derivation process and prove that it is a correct derivation process. Another
approach is to make the derivation process generate a set of proof obligations
and prove that they are correct. Therefore either the derivation mechanism or
the individual derivation will be subject to formal verification.

A very popular technique, that is used in the industry, is refinement where a
program is synthesized step by step from the specification, such that each step
increases the degree of precision with respect to the implementation. Steps are
implementation choices, such as, which algorithm to use or which data type to
choose for a specific variable. Each step is then proved correct. Z, VDM and
B use the refinement technique.

3.4 Specify and transform
It is often desirable to construct transformations of a specification in order to
either abstract details (by approximating them) or to enrich the specification
with extra details. The theory of abstract interpretation3 [20] is the main
foundation for such transformations.

As in engineering, where large problems often are divided into smaller ones,
transformations allow for modularity in formal verification. By decomposing
the behaviours of the global model into different views the work is simplified.
In some situations, studying individual aspects can even give equivalent results
to studying the global model.

A problem with such transformations is that the abstractions in their gen-
eral form are easily undecidable. Moreover, transformations are deeply tied to
the modelling language used and the properties to be proved. As a consequence,
there are a limited number of tools that can be used for such transformations.

2http://www.jmlspecs.org
3A framework for relating abstract analyses to program execution.

18

FOI-R--4156--SE

Approximations are often done in an ad-hoc fashion and it is hard to make
them sound and appropriate.

However, there exists one example of an early ad-hoc model transformation
tool set called JaKarTa, which is used for reasoning about JavaCard specifica-
tions. JaKarTa provides a rule-based language and transformation specifica-
tions based on the effect on the analysed model’s data structures. An example
of such transformations is when the focus is on the typing policy of the op-
erational semantics of a virtual machine. By focusing on the typing policy,
the actual values are of no interest. The transformation to be performed on
the data manipulated by the virtual machine can automatically be passed by
JaKarTa on to the operations of the machine and then the soundness of the
transformation can be ensured by producing proof obligations in the Coq proof
assistant 4.

4https://coq.inria.fr/

19

FOI-R--4156--SE

4 How to choose a formal method
The Formal Methods Europe association has on its website a brief docu-
ment [25] about what steps to take when beginning with formal methods.

Furthermore, the researchers we have spoken with suggested to find quali-
fied people with a wide background in formal methods, so that they can choose
the right formal methods for a specific project.

Which formal method that is most suitable for a specific project is depen-
dent on the kind of system and the kind of properties to be proved. In this
chapter we provide classifications over systems and system properties that can
help when choosing a formal method.

4.1 Systems classification
According to Klaus Schneider [51], systems can be classified as follows, based
on their architecture:

• Asynchronous or synchronous hardware

• Analogue or digital hardware

• Mono- or multi-processor systems

• Imperative/functional/logic-based/object-oriented software

• Multi-threaded or sequential software

• Conventional or real-time operating systems

• Embedded systems or local systems or distributed systems

The author discusses some of the distinguishing characteristics of these systems
and what formal methods are most appropriate for them. For example, multi-
threaded software might require the implementation of complex control tasks
and therefore requires a high-level description language. In sequential systems
one could use logic-based languages, such as Prolog, and functional languages,
such as ML or Haskell.

Further, also based on [51], systems can be classified based on the type of
interaction:

Transformational systems
Systems that read some input data and produce output. As the output
is produced at termination, these systems should always terminate. A
compiler is an example of such a system.

21

FOI-R--4156--SE

Interactive systems
Systems that continuously run and interact with the environment. When
the environment gives an action, the system replies with a reaction. The
environment has to wait until the system is ready for new actions.

Reactive systems
Similar to interactive systems, only that the environment can freely decide
when to start new actions. Therefore the system has to react to a given
action before the next action comes. This kind of system falls under the
real-time systems category.

Considering this last classification, it is reactive systems that are the most
challenging to implement.

4.2 System properties
Many formalisms can be classified by which system properties they can express.
A taxonomy of properties is given next, based on [51]:

Safety properties “something bad will never happen”.

Liveness properties “something good will eventually happen”.

Fairness properties “some property will infinitely often hold”.

Persistence properties “stabilisation of certain properties”. After some point
in time, a given property will always hold.

4.3 Application domains
The authors of [28] consider that formal methods can be categorised based on
the application domain and based on the environmental assumptions. These
categories can be used when choosing an appropriate formal method. The
following application domains are considered:

Protocol design and engineering Formal description, and verification, have
been used when designing new protocols. Some protocol specific lan-
guages are ESTELLE and SDL, but they have been replaced by more
general languages.

Software design and engineering In this area theoretical foundations and
analysis tools are provided by formal methods.

Hardware design and engineering Formal verification tools are widely used
which are aimed at detecting design mistakes.

Furthermore, different environments are considered, based on how well un-
derstood and predictable they are, with appropriate formal methods suggested
for each environment as follows:

22

FOI-R--4156--SE

Nominal environment which is well-understood and predictable. In such
an environment, formal methods focus on correctness and performance
issues.

Faulty environment which is mostly understood and predictable, but ab-
normal events can affect the system. In such environments, the formal
methods focus on dependability and performance issues.

Hostile environment which is neither totally understood nor predictable
and its behaviour cannot be trusted. In such environments, the for-
mal methods focus on security issues. Both general formal methods and
dedicated formal methods have been successfully applied to security is-
sues. For example model checking has been used to find unknown attacks
in security protocols [40, 41]. Examples of dedicated formal methods are
security-oriented formal notations and software tools for automated anal-
ysis of security protocols. Furthermore, in order to ensure security one
has to ensure both correctness and dependability. At the same time, for-
mal methods cannot address security issues such as computer hacking,
tampering or social engineering.

4.4 Where to use formal methods
In this section we give a brief overview of how formal methods have evolved
with time and in what kind of systems they can be used, based on [28].

To begin with, formal methods were developed for sequential programs fo-
cusing on formally proving program correctness. Then concurrent systems were
the focus and they were formalised with help of Petri nets1. Here the focus was
on message-passing and shared memory. Petri nets were further used for com-
munication systems and distributed and mobile systems. Later formal methods
were used in time-critical systems, both for software and for hardware. Both
discreet time (reactive systems) and continuous time (hard real-time systems2)
can be modelled. Then quality of service and performance evaluation were
covered by formal methods. As a result, hard real-time systems, stochastic sys-
tems3 and probabilistic systems4 are also covered by formal methods. Formal
methods have also expanded to new application domains such as computer se-
curity and bioinformatics. Considering the broad area of use, it is not at all
surprising the diversity of methods that exists and the importance of choosing
the right method.

Although there are many different formal methods that have been developed
(mostly as research projects in academia), there is no broad adoption in the

1a mathematical modelling language for describing distributed systems
2a system where missing a deadline is a total system failure
3a system where the result of the system is undeterministic, but can be predicted by

probability distributions
4a system where state transitions are done according to probabilities

23

FOI-R--4156--SE

industry with the exception of two areas: mission-critical systems (where mis-
takes are very expensive and sometimes impossible to correct after the system
has been started) and life-critical systems (where there are legal requirements
to adhere to specific standards) [28].

High-security information systems also require adherence to relevant stan-
dards, such as Common Criteria For Information Technology Security Eval-
uation5. However, Common Criteria only requires formal verification in the
highest assurance levels, and there are only a few systems that are evaluated
to such levels.

The authors of [28] also discovered that the use of formal methods in in-
dustry is not broad, it is mainly used to solve particular issues, and there is
consensus neither on which formal methods to use nor for which part of the
development process.

The EU project DEPLOY has on its website several FAQs related to where
to use formal methods, for example: What important system concepts can be
handled “elegantly” with a selected formal method? 6.

5http://www.commoncriteriaportal.org
6http://www.fm4industry.org/index.php/G-EA-1

24

FOI-R--4156--SE

5 Associations and agencies
Formal Methods Europe (FME)1 is a world wide association in the area of for-
mal methods for software development, with the aim of encouraging research
and application of formal methods. Through their symposia and sponsored
events they contribute with dissemination of research findings and industrial
experience. The latest organised symposium (at the time of writing this doc-
ument) is the 20th International Symposium on Formal Methods 2. The sym-
posium is organized once every 18 months and usually gathers 200–300 world-
leading researchers from academia and industry.

The Defense Advanced Research Projects Agency (DARPA) has several
projects that focus on or include formal methods. One such project is Clean-
slate design of Resilient, Adaptive, Secure Hosts (CRASH) that focuses on
“the design of new computer systems that are highly resistant to cyber-attack,
can adapt after a successful attack to continue rendering useful services, learn
from previous attacks how to guard against and cope with future attacks, and
can repair themselves after attacks have succeeded” [16]. Results from the
project are gathered on DARPA’s Open Catalog 3. Among the results from
this project there is Smten4, a unified language for general-purpose functional
programming and SMT query orchestration and ACL25, which is both a pro-
gramming language for modelling computer systems and a tool for helping to
prove properties of those models.

Another interesting DARPA project is the High-Assurance Cyber Military
Systems (HACMS) with the goal “to create technology for the construction
of high-assurance cyber-physical systems, where high assurance is defined to
mean functionally correct and satisfying appropriate safety and security prop-
erties” [31]. Results from the project are also gathered on DARPA’s Open
Catalog 6.

1http://www.fmeurope.org
2http://fm2015.ifi.uio.no/
3http://opencatalog.darpa.mil/CRASH.html
4http://www.cl.cam.ac.uk/research/security/ctsrd/smten.html
5http://www.cs.utexas.edu/users/moore/acl2/v6-3/
6http://opencatalog.darpa.mil/HACMS.html

25

FOI-R--4156--SE

6 Limitations of formal methods
In this chapter we discuss the limitations of formal methods. We do not discuss
the limitations of any specific formal method, but consider limitations of the
area as a whole.

One important question about the use of formal methods is if it results in
products with zero defects. The answer is that it results in products with very
few defects, close to zero, but that there is still no guarantee that the product
will be bug free. Moy and Wallenburg [42] list some reasons for why formally
verified products may still contain defects:

• not all parts of the product are formally verified,

• formal verification can only guarantee that the specification has been
followed, and therefore only the specified properties can be verified,

• not all properties can be formally verified, for example covert channels
can be hard to detect as well as dead code, and

• the formal method and the tools used can have defects, for example the
theorem prover.

Proofs can also be wrong, especially if they are done manually. Therefore
researchers nowadays recommend the use of automated tools [45].

Another limitation is that there is no way to easily choose a suitable formal
method. There are many formal methods available, especially ones developed
be research groups in universities, and their maturity varies considerably.

Another aspect to consider is the needs of an organization, in terms of peo-
ple, to start using formal methods. For most formal method tools it should be
enough with one specialist in the development team. Nevertheless, for some
formal methods, e.g., proof assistants, specialized mathematical skills are re-
quired [3].

27

FOI-R--4156--SE

7 Examples of practical use of formal
methods
We present, in short, some projects where formal methods have been used
outside academia and where security is a requirement. The focus is on what
has been proved and, where possible, what assumptions have been made.

7.1 Mondex smart card
The Mondex application [55] consists of smart cards with electronic purses for
electronic commerce. The smart cards are used for low-value cash-like trans-
actions and require no third-party involvement. The security requirements are
considered critical for this application, being vital that it is free of implemen-
tation or design bugs that would allow for subversion once in the field. Due to
the critical security requirements, Mondex was certified to the highest standard
available at the time: ITSEC Level E6 [33], which is equivalent to Common
Criteria Evaluation Assurance Level 7 [19]. Mondex was the first product to
achieve ITSEC Level E6.

The development of the Mondex application is described in [55]. Two mod-
els are developed: an abstract model and a low-level concrete model. The ab-
stract model describes the world of purses and the exchange of value through
atomic transactions and expresses the security properties that the card design
needs to preserve. The concrete model includes the design of the purses and
the message protocol for value exchange between purses. The models are de-
scribed in the Z notation and proofs are carried out that the concrete model
is a refinement of the abstract, which means that the concrete model abides
by the abstract model’s security requirements. The abstract model is simple
and easy to understand, as are the security properties. The proofs were done
manually, since the authors considered that there were no proof tools suited
for such a large task at that time. In order to ensure proof correctness, the
statements and many of the proof steps were type-checked using the fUZZ [53]
and Formalizer [27] tools. Proofs were also independently checked by external
evaluators.

The security properties were that:

• no value may be created in the system,

• all value must be accounted for in the system,

• all transfers are between authentic purses, and

• one needs sufficient funds to be able to transfer.

29

FOI-R--4156--SE

The proofs revealed a flaw in one of the minor protocols and the design was
changed to rectify it [60].

One of the reasons for choosing manual proofs was the belief that automa-
tising them would be very expensive. Nevertheless, Mondex was revised in
2006 as part of the Grand Challenge in Verified Software [59] with the goal of
understanding the state of the art of mechanical verification. Eight research
groups took up the challenge by using different formal methods and, as a result,
the cost of automizing the Z proofs was 10% of the original development cost.
An important result is that almost all formal methods used achieved the same
level of automation.

7.2 Tokeneer secure entry system
Tokeneer [48] is a system developed by the NSA for securely accessing an
enclave that has a controlled physical entry. The access control is done with
help of biometrics and security tokens. When a user owning a security token
passes the biometric tests and is allowed entry into the enclave, the token is
loaded with authorisation information describing what the user is allowed to
do during this visit in the enclave.

In order to show that it is possible to develop highly secure systems conform-
ing with the Common Criteria Requirements at Evaluation Assurance Level 5
in a cost effective way, NSA decided to use formal methods for developing a
well defined component of the Tokeneer system. The experiment was also time
boxed and the skills needed to perform the development and the effort were
monitored.

The component to be formally developed included a formal specification
using the Z Notation, refinement of the specification to a formal design, soft-
ware developed in SPARK (which is a subset of Ada with an accompanying
tool-set) with proof of system properties and absence of run-time errors. Ad-
ditional software was written (using traditional methods) in Ada to interface
with peripherals.

The project was further on donated to the Verified Software Repository
in 2008 and, as a result, was the subject of wide public scrutiny. J. Barnes
notes that up to 2011 only five defects were found in the core software (the
software that has been formally analysed) [7]. The defects were found by using
a newer version of the tool-set and by critical review. More information about
the defects can be found in [58].

Finding errors in this project is a good reminder that even when using
formal methods there is no guarantee that all the defects will be found. Moy
and Wallenburg [42] analysed the whole system including the software that has
not been formally analysed, and found a total of 20 errors of which only two
were in the core software. Considering that the whole system was written by
the same developers, one can compare the number of errors found in the core
software with the number found outside it and conclude that it is possible to
build systems with considerable confidence by using formal methods.

30

FOI-R--4156--SE

7.3 The seL4 micro-kernel
The seL4 micro-kernel1 is a third-generation micro-kernel that features abstrac-
tions for virtual address spaces, threads, inter-process communication and ex-
plicit in-kernel memory management model and capabilities for authorisation.
The seL4 micro-kernel has been formally verified from its abstract specifica-
tion down to its C implementation using machine checking. Correctness of a
very detailed, low-level design is shown and the C implementation is formally
verified. The formal proofs assume correctness of boot code, management of
caches, the hardware and the hand-written assembly code2.

A comprehensive description of the system and the formal methods used is
given in [38]. According to the authors, seL4 is the only general-purpose OS
kernel that is fully formally verified for functional correctness with machine
checked end-to-end theorems. An abstract specification of the system was
created as an operational model of the system. Then the Haskell programming
language was used to implement a prototype of the kernel. This prototype
could be automatically translated into the theorem prover Isabelle/HOL [44]
to form an executable, design-level specification of the kernel. Then the model
was manually implemented in C to form a high-performance C implementation
of seL4. Refinement proofs link the specifications and the C code.

Functional correctness was proved for the kernel. This means that the be-
haviour of the binary implementation is fully captured by the abstract specifi-
cation. As in the case of the Mondex application, this means that if properties
can be proved to hold on the abstract model, then they will hold for the imple-
mentation as well. The functional correctness also means that the system will
never fail and that it always has a defined behaviour. Some properties that
are proved are that the kernel cannot be subverted by buggy encodings, spuri-
ous calls, maliciously constructed arguments to system calls or buffer overflow
attacks.

Functional correctness means that the system is implemented correctly.
Nevertheless, it does not mean that the right system is implemented (in this
case “right” system means that the kernel has the high-level properties that
are needed). To increase the confidence that the right system is implemented,
formal verification has been used to verify that the system has desired security
properties, such as authority confinement, integrity and confidentiality. The
authors have great confidence that the proofs are logically correct since they
are carried our in the Isabelle/HOA proof assistant and all derivations are
from first principles. The security proofs are built on top of the functional
correctness proofs and therefore inherit their assumptions. Furthermore, more
assumptions are needed for the security proofs:

• for the integrity and confidentiality proofs: the system is correctly con-
figured in accordance with a given access-control policy, and

1https://sel4.systems/
2parts of the kernel cannot be implemented in C, and are therefore written i assembly

31

FOI-R--4156--SE

• for the confidentiality proof, further system configuration assumptions
are made: all non-timer interrupts are disabled and no partition has the
authority to destroy any partition-crossing resource.

There are other logical assumptions for the security proofs that are well doc-
umented in [38]. The authors consider that all the assumptions made are
reasonable for a high-assurance system.

Another aspect that is discussed is that the integrity theory is strong, which
means that, if the contents of some memory cannot be changed by some thread,
then that memory will remain unchanged under the proof assumptions. How-
ever, the confidentiality theory is not as strong since covert channels have to be
considered that cannot be covered by the abstract model and this may result
in information being inferred over such channels. One such example is timing
channels, which are not modelled in the formal models. The authors believe
that their security results enable such channels to be more easily identified and
then complementary techniques can be applied.

The idea with seL4 is to be able to build secure applications on top of it
and, for this, the authors present a method for provably bringing a system
into a known configuration and protection state. This way one knows that
the security properties will hold. Also, in such a system, both trusted and
untrusted applications can run together.

The SMACCM project3, funded by DARPA’s HACMS program presented
in Chapter 5, is developing an Unmanned Little Bird (ULB), which is an
optionally-piloted autonomous helicopter with seL4 on-board.

3http://ssrg.nicta.com.au/projects/TS/SMACCM/

32

FOI-R--4156--SE

8 Functional correctness proof of the
seL4 micro-kernel
We describe how functional correctness is proved for seL4, based on [38]. In
this chapter, we choose to list code that the authors of seL4 have listed in
several of their papers, and we also list some code that we take from their
online repository available at https://github.com/seL4.

8.1 Kernel design process
Since OS developers usually take a bottom-up design approach and formal
methods practitioners usually take a top-down design approach, the design
approach used for seL4 is a compromise that combines both needs and uses the
Haskell functional programming language. A Haskell prototype was written
that can automatically be translated into an executable specification. When
the Haskell prototype began to be stable, an abstract specification was also
constructed in Isabelle/HOL.

Although the Haskell prototype is an executable model and implementation
of the system, it is not used as the final production kernel. The model is
reimplemented, manually, in C. One reason for not using the Haskell prototype
is that it is a large amount of code and that it would be hard to verify its
correctness. C allows for more optimisations of the low-level implementation.
C code could have been automatically generated from the Haskell prototype,
which could have simplified verification. Nevertheless, the authors consider
that most opportunities to micro-optimise would then have been lost.

Klein, Derrin and Elphinstone report on their experience on implementing
seL4 in [39], where they discuss in more detail the impact of the different choices
made throughout the project.

8.2 Abstract specification
The abstract specification is written in Isabelle/HOL and describes what the
system does without describing how it is done. Isabelle is a generic proof
assistant where mathematical formulas can be expressed in a formal language
and then be proved using logical calculus. Both the correctness of the software
and properties of the protocols described can be proved.

At this level argument formats, encodings and error reporting are described.
Memory and typed pointers are modelled explicitly. Non-determinism is used
so implementation choices can be left for the lower levels. This means that if
there exist multiple correct results for an operation, all of them are returned
and it is clear that there is a choice. In the implementation, any of the correct
results can be picked. As an example, we consider the Isabelle/HOL code for

33

FOI-R--4156--SE

the scheduler presented in [38]:

schedule ≡ do
threads ← allActiveTCBs;
thread ← select threads;
switch_to_thread thread

od OR switch_to_idle_thread

At the abstract level there is no scheduling policy, the scheduler is modelled
as a function of picking any thread that runs and is active or the idle thread.
The select statement picks any element of the set and the OR makes a non-
deterministic choice.

The function allActiveTCBs is listed below:

text {* Gets all schedulable threads in the system. *}
definition

allActiveTCBs :: "(obj_ref set,l’z::state_ext) s_monad" where
"allActiveTCBs \<equiv> do

state \<leftarrow> get;
return {x. getActiveTCB x state \<noteq> None}

od"

returns a list of all runnable threads. The function is implemented as an
abstract, logical predicate over the system.

Further, global invariants1 of seL4’s abstract specification are proved using
a monadic Hoare logic2. More information about the Hoare logic can be found
in [17].

8.3 Executable specification
Haskell was used to write a prototype of the system. The Haskell program
was then translated into Isabelle/HOL, resulting in an executable specification
where more details are specified compared to the abstract specification and
where it is specified how the kernel works. Initially, the translation was done
manually, but was later automatized. The Hoare logic used for the translation
is presented with examples in [17].

The executable specification is deterministic and all data structures are
explicit data types, records and lists. If we take the scheduler example again,
when selecting a thread, there is an explicit search backed by data structures
for priority queues. The specification also expresses when the idle thread will
be scheduled. Part of the Haskell code for the scheduler, found in [38], is:

schedule = do
action <- getSchedulerAction

1Invariant – a property P, with respect to a program, that holds initially and that is
preserved by all the atomic properties of the program.

2The Hoare logic is a way to connect code to its logic specification.

34

FOI-R--4156--SE

case action of
ChooseNewThread -> do

chooseThread
setSchedulerAction ResumeCurrentThread

...

chooseThread = do
r <- findM chooseThread’ (reverse [minBound .. maxBound])
when (r == Nothing) $ switchToIdleThread

chooseThread’ prio = do
q <- getQueue prio
liftM isJust $ findM chooseThread’’ q

chooseThread’’ thread = do
runnable <- isRunnable thread
if not runnable then do

tcbSchedDequeue thread
return False

else do
switchToThread thread
return True

8.4 High-performance C implementation
The C code was also translated into Isabelle/HOL, and for that the C semantics
were mapped into the theorem prover. The translation is, according to [37],
correctness-critical and the semantics of the C subset were modelled precisely
and foundationally. Precisely means that the C semantics, types and memory
model are treated as prescribed by the C99 standard [32]. Foundationally
means that the behaviour of C is derived from first principles3 as far as possible.

The translation of the C code into the Isabelle/HOL representation is pre-
sented in detail with examples in [57].

8.5 Formal verification
The main property proved on the system is functional correctness, which means
that the C implementation adheres to its specifications. Klein et al. [37] mo-
tivate why this kind of functional correctness proof is one of the strongest
properties to prove about a system: once functional correctness is proved with
respect to a model, the model can be used to establish further properties in-
stead of having to reason about the low-level code.

3“A first principle is a basic, foundational proposition or assumption that cannot be
deduced from any other proposition or assumption.” [26]

35

FOI-R--4156--SE

The proof of functional correctness is done in Isabelle/HOL by using the
abstract specification, the executable specification and the translation of C
code into Isabelle/HOL. Funtional correctness is shown by formal refinement,
which is first proved between the abstract and executable specification and
second between the executable specification and the C code. The first proof in
described in [17] and the second proof in [57]. The implementation refines the
abstract specification if the behaviours of the implementation are a subset of
the behaviours of the specification.

The two refinement layers result into one abstract-to-C refinement proof in
Isabelle/HOL.

Furthermore, the authors have proved refinement between the C implemen-
tation and the kernel binary. This refinement is proved by using the HOL4
theorem prover4 and two SMT solvers, Z35 and Sonolar6. More details about
this refinement proof can be found in [38].

4http://hol-theorem-prover.org/
5https://github.com/Z3Prover/z3/
6http://www.informatik.uni-bremen.de/agbs/florian/sonolar/

36

FOI-R--4156--SE

9 Research groups and researchers in
Sweden
We list the research groups that focus on formal methods in Sweden. The list
in not intended to be exhaustive – it includes researchers we have spoken to
and researchers that have been referred to in our interviews. We have also
examined the main Swedish universities and, for each group, we list the senior
members.

9.1 Chalmers/University of Gothenburg
At the Software Technologies Division at the Department of Computer Science
and Engineering, there is a group on formal methods1 that focuses on de-
velopment and use of formal software verification approaches based on model
checking, testing, automated reasoning and contract analysis. Some members
of the group are:

Prof. Gerardo Schneider
Research interests: formal specification and analysis of contracts, for-
malisation of privacy policies, model checking, verification of real-time
and polygonal hybrid systems, verification of embedded systems (in par-
ticular smart Java cards), semantics, logic for computer science, security.
http://www.cse.chalmers.se/~gersch

Assoc. Prof. Laura Kovacs
Research interests: formal software analysis and verification, more
specifically designing new methods for computer-aided verification by
combining automated theorem proving, automated assertion generation
and symbolic computation.
http://www.cse.chalmers.se/~laurako

Assoc. Prof. Wolfgang Ahrendt
Research interests: model generation and disproving, automated de-
duction and formal methods in software engineering.
http://www.cse.chalmers.se/~ahrendt

There is also a language-based security group that focuses on development
of security models and software construction methods for secure systems based
on programming language technology. Some members of this group are:

Prof. Dave Sands
Research interests: programming languages, computer security, and

1www.chalmers.se/en/departments/cse/organisation/st

37

FOI-R--4156--SE

their combination.
http://www.cse.chalmers.se/~dave

Prof. Andrei Sabelfeld
Research interests: web security, data and application security, language-
based security, and location privacy.
http://www.cse.chalmers.se/~andrei

Assis. Prof. Alejandro Russo
Research interests: rigorous theoretical programming language tech-
niques, e.g. type-systems, instrumented-semantics, and label transition
systems.
http://alejandrorusso1.wix.com/personal-web-page

9.2 Uppsala University
Some researchers in formal methods at the Division of Computing Science 2 at
the Department of Information Technology are:

Lars-Henrik Eriksson, Senior Lecturer
Research interests: theory and implementation of logic programming,
logical frameworks, and formal methods (specification, verification and
synthesis).
http://www.it.uu.se/katalog/lhe

Prof. Bengt Jonsson
Research interests: formal methods, especially in connection with real-
time and distributed systems, semantics of concurrent systems, and ver-
ification of concurrent systems.
http://user.it.uu.se/~bengt/

Prof. Wang Yi
Research interests: model-checking of real-time systems, multiproces-
sor scheduling and analysis, real-time applications on multicore.
http://user.it.uu.se/~yi/

9.3 Royal Institute of Technology/Stockholm University
The Theory group3 at the School of Computer Science and Communication
(CSC), Royal Institute of Technology (KTH) and Department of Numerical
Analysis and Computer Science (Nada)4 at Stockholm University is conducting
research on formal methods. Researchers interested in formal methods are:

2http://www.it.uu.se/research/computing_science
3http://www.csc.kth.se/tcs/
4Nada, a joint department of Stockholm University and KTH, is a part of CSC at KTH

38

FOI-R--4156--SE

Prof. Mads Dam
Research interests: logic, semantics, programming languages, security,
and communication networks.
http://www.csc.kth.se/~mfd/

Assoc. Prof. Dilian Gurov
Research interests: program correctness, with focus on compositional
reasoning.
https://www.nada.kth.se/~dilian

9.4 Mälardalen University
Formal Modelling and Analysis of Embedded Systems group at Division of Em-
bedded Systems5 is focusing on formal modelling, analysis, and verification tech-
niques for real-time embedded systems. In particular, formal syntax and se-
mantics of component-based and service-oriented models with extra-functional
properties such as time or resources. The group leaders are:

Prof. Paul Pettersson
Research interests: component-based design and model-based verifi-
cation techniques, in particular model-checking and model-based testing,
for real-time and embedded systems.
http://www.es.mdh.se/staff/166-Paul_Pettersson

Assoc. Prof. Cristina Seceleanu
Research interests: developing formal models and verification tech-
niques for designing predictable real-time embedded systems.
http://www.es.mdh.se/staff/173-Cristina_Seceleanu

9.5 Linköping University
Real-Time Systems Lab at the Software and Systems Division6 within the De-
partment of Computer and Information Science is conducting research in the
areas of dependability and resource allocation in distributed systems. The re-
search is applicable in many areas, one example is fault-tolerant and mission-
critical systems in disaster area networks.

Prof. Simin Nadjm-Tehrani
Research interests: formal analysis of safety and fault tolerance.
http://www.ida.liu.se/~simna73

5http://www.es.mdh.se/divisions/11-Division_of_Embedded_Systems
6https://www.ida.liu.se/divisions/sas

39

FOI-R--4156--SE

10 Questions
We contacted several researchers in the area of formal methods from different
universities in Sweden and asked them about the area of formal methods in
software engineering. The goal was to obtain, among other things, relevant
literature and examples of projects where formal methods were implemented
in the industry.

In our discussions with the researchers we have used the following questions:

1. What should I read to get an overview and a basic understanding of the
area of formal methods?

2. What formal methods are mature enough to use in practice?

3. What formal methods related to software security requirements are there?
Are they mature and can be used in practice?

4. Examples of industrial projects (both successful and unsuccessful)? Some
IT security related projects?

5. What do I need to know in order to start using formal methods? How
do I choose a suitable formal method?

6. How can formal methods be used to ensure the separation logic (one
important aspect is the separation of information between different levels
of classified information)? Do you know of any projects where they try
this?

41

FOI-R--4156--SE

11 Discussion and conclusions
Results from actual use of formal methods in software engineering show that
there are usable formal methods that work. Studies also show that their use
can be cost and time effective. Formal methods projects spend more time
in the specification phase, which results in fewer bugs in the later phases of
the development. It is nevertheless a considerable change to introduce formal
methods and therefore the gain in efficiency comes from using formal methods
in several projects. Formal methods can be introduced stepwise in the devel-
opment process and they will give effect from the beginning. For example one
could write a formal specification and then continue as usual.

We present several examples of practical use of formal methods to illus-
trate that formal methods have successfully been applied in real-world applica-
tions. Choosing an appropriate formal method seems to be a challenge in itself,
where careful consideration needs to be taken as to which system and which
application domain are targeted and which properties that need to be proved.
We present classifications for the system, system properties and application
domain, which can guide the development team in choosing an appropriate
method. In most cases one formal methods specialist is enough in the develop-
ment team to introduce formal methods into the design process. Furthermore,
different formal methods can be used during the different stages in the devel-
opment process. We therefore also present a classification of formal methods
based on their functionality.

Several of the standards used for system development require formal meth-
ods at the highest levels of accreditation. Some examples are the Common
Criteria standard and the DO-178C standard Software Considerations in Air-
borne Systems and Equipment Certification. The fact that formal methods is
a requirement in different standards indicates that it is considered a valuable
asset in the verification and validation process.

We consider formal methods to be an interesting field for the Swedish Armed
Forces since it can reduce the number of defects in the system and, since this
reduction is achieved early in the development process, formal methods have the
potential to reduce the cost of the whole system. Nevertheless, a more thorough
investigation would be necessary to better understand how the Swedish Armed
Forces could begin using formal methods and which projects or which parts of
the projects would be best suited to use them.

To conclude, the literature in the area indicates that using formal methods
can be cost-effective and can reduce the number of possible defects to close
to zero. Nevertheless, it is an evolving field and, to take full advantage of its
potential, it is advisable to follow the development of new methods and tools
and keep looking for new ones.

43

FOI-R--4156--SE

Bibliography
[1] P. A. Abdulla, J. Deneux, G. Stålmarck, H. Ågren, and O. Åkerlund. ”De-

signing Safe, Reliable Systems Using Scade”. In: Proceedings of the First
International Conference on Leveraging Applications of Formal Meth-
ods. ISoLA04. Paphos, Cyprus: Springer-Verlag, 2006, pp. 115–129. doi:
10.1007/11925040_8.

[2] J.-R. Abrial. The B-book: Assigning Programs to Meanings. New York,
NY, USA: Cambridge University Press, 1996.

[3] J. B. Almeida, M. J. Frade, J. S. Pinto, and S. Melo de Sousa. ”Rigor-
ous Software Development”. In: Springer Verlag London, 2011. Chap. An
Overview of Formal Methods Tools and Techniques, pp. 15–44.

[4] R. Alur and D. L. Dill. ”A Theory of Timed Automata”. In: Theoretical
Computer Science 126.2 (Apr. 1994), pp. 183–235. doi: 10.1016/0304-
3975(94)90010-8.

[5] C. Baier and J.-P. Katoen. Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008.

[6] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics. Re-
vised. Vol. 103. North Holland, 1984. url: http://www.cs.ru.nl/
~henk/Personal%20Webpage.

[7] J. E. Barnes. ”Experiences in the Industrial use of Formal Methods.” In:
ECEASST 46 (2011). url: http://dblp.uni-trier.de/db/journals/
eceasst/eceasst46.html#Barnes11.

[8] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,
A. Reynolds, and C. Tinelli. ”CVC4”. In: Proceedings of the 23rd Inter-
national Conference on Computer Aided Verification. CAV11. Snowbird,
UT: Springer-Verlag, 2011, pp. 171–177. url: http://dl.acm.org/
citation.cfm?id=2032305.2032319.

[9] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. ”Symbolic Model Check-
ing Without BDDs”. In: Proceedings of the 5th International Confer-
ence on Tools and Algorithms for Construction and Analysis of Systems.
TACAS 99. London, UK: Springer-Verlag, 1999, pp. 193–207. url: http:
//dl.acm.org/citation.cfm?id=646483.691738.

[10] D. Bjørner. Software Engineering 1. Springer-Verlag Berlin Heidelberg,
2006.

[11] D. Bjørner. Software Engineering 2. Springer-Verlag Berlin Heidelberg,
2006.

[12] D. Bjørner. Software Engineering 3. Springer-Verlag Berlin Heidelberg,
2006.

45

FOI-R--4156--SE

[13] D. Bjørner and K. Havelund. ”FM 2014: Formal Methods”. In: vol. 8442.
LNCS. Springer International Publishing Switzerland, 2014. Chap. 40
Years of Formal Methods — Some Obstacles and Some Possibilities?,
pp. 42–61.

[14] J.-L. Boulanger. Industrial Use of Formal Methods. Wiley, 2012.
[15] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. ”LUSTRE: A Declar-

ative Language for Real-time Programming”. In: Proceedings of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages. POPL 87. Munich, West Germany: ACM, 1987, pp. 178–188. doi:
10.1145/41625.41641.

[16] Clean-slate design of Resilient, Adaptive, Secure Hosts (CRASH) project.
url: http://www.darpa.mil/program/clean- slate- design- of-
resilient-adaptive-secure-hosts.

[17] D. Cock, G. Klein, and T. Sewell. ”Secure Microkernels, State Monads
and Scalable Refinement”. In: Proceedings of the 21st International Con-
ference on Theorem Proving in Higher Order Logics. Montreal, Canada:
Springer, Aug. 2008, pp. 167–182.

[18] R. Cockett and T. Fukushima. About Charity. Yellow Series Report No.
92/480/18. Department of Computer Science, The University of Calgary,
June 1992.

[19] Common Criteria for Information Technology Security Evaluation. Part
1: Introduction and general model. Tech. rep. CCMB-2012-09-001, Ver-
sion 3.1, Revision 4. Common Criteria Recognition Agreement, Sept.
2012.

[20] P. Cousot and R. Cousot. ”Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints”. In: Proceedings of the 4th ACM SIGACT-SIGPLAN Sym-
posium on Principles of Programming Languages. POPL 77. Los Angeles,
California: ACM, 1977, pp. 238–252. doi: 10.1145/512950.512973.

[21] L. De Moura and N. Bjørner. ”Z3: An Efficient SMT Solver”. In: Proceed-
ings of the Theory and Practice of Software, 14th International Confer-
ence on Tools and Algorithms for the Construction and Analysis of Sys-
tems. TACAS08/ETAPS08. Budapest, Hungary: Springer-Verlag, 2008,
pp. 337–340. url: http://dl.acm.org/citation.cfm?id=1792734.
1792766.

[22] V. D’Silva, D. Kroening, and G. Weissenbacher. ”A Survey of Automated
Techniques for Formal Software Verification”. In: IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD) 27.7
(July 2008), pp. 1165–1178.

[23] B. Dutertre and L. de Moura. The Yices SMT solver. Tech. rep. SRI
International, 2006. url: http://yices.csl.sri.com/tool-paper.
pdf.

46

FOI-R--4156--SE

[24] L.-H. Eriksson. Matematik kan ge färre fel i datorprogram. url: http:
//user.it.uu.se/~lhe/fmpop.pdf.

[25] F. M. Europe. Choosing a Formal Method. url: http://www.fmeurope.
or/?page_id=264.

[26] First principle. url: https://en.wikipedia.org/wiki/First_principle.

[27] M. Flynn, T. Hoverd, and D. Brazier. ”Formaliser — An Interactive Sup-
port Tool for Z”. In: Z User Workshop. Ed. by J. Nicholls. Workshops in
Computing. Springer London, 1990, pp. 128–141. doi: 10.1007/978-1-
4471-3877-8_8.

[28] D. H. Garavel and D. S. Graf. Formal Methods for Safe and Secure Com-
puters Systems. Tech. rep. Federal Office for Information Security, 2013.

[29] M. J. C. Gordon and T. F. Melham, eds. Introduction to HOL: A Theo-
rem Proving Environment for Higher Order Logic. New York, NY, USA:
Cambridge University Press, 1993.

[30] A. Hall. ”Seven Myths of Formal Methods”. In: IEEE Software 7.5 (Sept.
1990), pp. 11–19. doi: 10.1109/52.57887.

[31] High-Assurance Cyber Military Systems (HACMS). url: http://www.
darpa.mil/program/high-assurance-cyber-military-systems.

[32] ISO/IEC JTC1 SC22 WG14. ISO/IEC 9899:TC2 Programming Lan-
guages - C. Tech. rep. May 2005. url: http://www.open-std.org/
JTC1/SC22/WG14/www/docs/n1124.pdf.

[33] ITSEC. Information technology security evaluation criteria (ITSEC): Pre-
liminary harmonised criteria. Tech. rep. Document COM(90), Version
1.2. Commission of the European Communities, July 1991.

[34] C. B. Jones. Software development : a rigorous approach. Englewood
Cliffs, N.J. Prentice/Hall International, 1980. url: http://opac.inria.
fr/record=b1085664.

[35] R. Juellig, Y. Srinivas, and J. Liu. ”SPECWARE: An advanced envi-
ronment for the formal development of complex software systems”. In:
Algebraic Methodology and Software Technology. Ed. by M. Wirsing and
M. Nivat. Vol. 1101. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 1996, pp. 551–554. doi: 10.1007/BFb0014339.

[36] G. Klein. ”Operating system verification — An overview”. In: Sadhana
34.1 (Feb. 2009), pp. 27–69.

[37] G. Klein, J. Andronick, K. Elphinstone, G. Heiser, D. Cock, P. Derrin, D.
Elkaduwe, K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch,
and S. Winwood. ”seL4: Formal Verification of an Operating-System Ker-
nel”. In: Communications of the ACM 53.6 (June 2010), pp. 107–115. doi:
10.1145/1743546.1743574.

47

FOI-R--4156--SE

[38] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell, R. Kolan-
ski, and G. Heiser. ”Comprehensive Formal Verification of an OS Micro-
kernel”. In: ACM Trans. Comput. Syst. 32.1 (Feb. 2014), 2:1–2:70. doi:
10.1145/2560537.

[39] G. Klein, P. Derrin, and K. Elphinstone. ”Experience Report: SeL4: For-
mally Verifying a High-performance Microkernel”. In: SIGPLAN Not.
44.9 (Aug. 2009), pp. 91–96. doi: 10.1145/1631687.1596566.

[40] G. Leduc and F. Germeau. ”Verification of security protocols using LOTOS-
method and application”. In: Computer Communications 23.12 (Sept.
2000), pp. 1089–1103. doi: 10.1016/S0140-3664(99)00239-X.

[41] G. Lowe. ”An Attack on the Needham-Schroeder Public-key Authenti-
cation Protocol”. In: Information Processing Letters 56.3 (Nov. 1995),
pp. 131–133. doi: 10.1016/0020-0190(95)00144-2.

[42] Y. Moy and A. Wallenburg. ”Tokeneer: Beyond Formal Program Veri-
fication”. In: Proc. 5th Int. Congress on Embedded Real Time Software
and Systems (ERTS’10). Toulouse, France, May 2010.

[43] NASA Langley Formal Methods. url: http://shemesh.larc.nasa.
gov/fm/fm-what.html.

[44] T. Nipkow, M. Wenzel, and L. C. Paulson. Isabelle/HOL: A Proof Assis-
tant for Higher-order Logic. Berlin, Heidelberg: Springer-Verlag, 2002.

[45] J. Parrow. The Greatest Challenge. url: http://opct2014.cs.vu.nl/
?post_type=document&p=286.

[46] L. C. Paulson. Isabelle: a generic theorem prover. Lecture notes in com-
puter science. Berlin, New York: Springer-Verlag, 1994. url: http://
opac.inria.fr/record=b1085788.

[47] B. Potter, D. Till, and J. Sinclair. An Introduction to Formal Specification
and Z. 2nd. Upper Saddle River, NJ, USA: Prentice Hall PTR, 1996.

[48] L. Reinert and S. Luther. Tokeneer User Authentication Techniques Using
Public Key Certificates Part 3: An Example Implementation. Tech. rep.
NSA Central Security Service, Feb. 1998.

[49] A. Romanovsky and M. Thomas, eds. Industrial Deployment of System
Engineering Methods. Springer-Verlag Berlin Heidelberg, 2013.

[50] J. Rushby. Formal Methods and their Role in the Certification of Critical
Systems. Tech. rep. CSL-95-1. accessed 2015-04-30. Computer Science
Laboratory, SRI International, 1995. url: http://sdg.csail.mit.edu/
6.894/dnjPapers/rushby-tr.pdf.

[51] K. Schneider. ”Verification of Reactive Systems: Formal Methods and
Algorithms”. In: SpringerVerlag, 2004. Chap. Introduction, pp. 1–43.

[52] I. Sommerville. ”SOFTWARE ENGINEERING 9”. In: Web chapter, 2010.
Chap. 27 Formal Specification. url: http://ifs.host.cs.st-andrews.
ac.uk/Books/SE9/WebChapters/PDF/Ch_27_Formal_spec.pdf.

48

FOI-R--4156--SE

[53] J. Spivey. The fuzz Manual. Tech. rep. 2nd edition. 34 Westlands Grove,
Stockton Lane, York YO3 0EF, UK: Computing Science Consultancy,
1992.

[54] T. M. Stefania Gnesi. Formal Methods for Industrial Critical Systems: A
Survey of Applications. Wiley-IEEE Computer Society Pr, 2012.

[55] S. Stepney, D. Cooper, and J. Woodcock. An Electronic Purse: Specifi-
cation, Refinement, and Proof. Technical monograph PRG-126. Oxford
University Computing Laboratory, July 2000.

[56] S. Thompson. Haskell: The Craft of Functional Programming. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997.

[57] S. Winwood, G. Klein, T. Sewell, J. Andronick, D. Cock, and M. Norrish.
”Mind the Gap: A Verification Framework for Low-Level C”. In: Theorem
Proving in Higher Order Logics. Ed. by S. Berghofer, T. Nipkow, C.
Urban, and M. Wenzel. Vol. 5674. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, pp. 500–515. doi: 10.1007/978-3-
642-03359-9_34.

[58] J. Woodcock, E. G. Aydal, and R. Chapman. ”The Tokeneer Experi-
ments”. In: Reflections on the Work of C.A.R. Hoare. Ed. by A. Roscoe,
C. B. Jones, and K. R. Wood. Springer London, 2010, pp. 405–430. doi:
10.1007/978-1-84882-912-1_17.

[59] J. Woodcock and R. Banach. ”The Verification Grand Challenge”. In: j-
jucs 13.5 (May 2007), pp. 661–668. url: http://www.jucs.org/jucs_
13_5/the_verification_grand_challenge.

[60] J. Woodcock, P. Gorm Larsen, J. Bicarregui, and J. Fitzgerald. ”For-
mal Methods: Practice and Experience”. In: ACM Computing Surveys 41
(Oct. 2009), 19:1–19:36. doi: 10.1145/1592434.1592436.

49

