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Sammanfattning 
I inledningen i kapitel 1 definierar vi visuell dataanalys (VA) som vetenskapen 
om att stödja mänskligt tänkande och situationsuppfattning med hjälp av visuella 
representationer där interaktion är en viktig del av analysprocessen. Dessutom 
noterar vi att VA är en vetenskap som är i gränslandet mellan beteende-
vetenskaper och datavetenskap. Vi betonar att VA är beroende av människor för 
att uppnå integrerad kunskap, för upptäckter och insikter. Den kreativa process 
som stöds av visualiseringar är normalt inte automatisk utan förlitar sig på 
mänsklig förståelse, upptäckter och insikter. Det behövs därför träning i att tolka 
representationer och använda visualiseringsverktyg för att uppnå insikter och 
situationsförståelse. Målgruppen för denna rapport är FOI-forskare som behöver 
veta mer om visualisering. 

Visualiseringsverktyg och visuella representationer är i många fall djupt rotade i 
arbetsprocesser i organisationen och har utvecklats organiskt när människor lär 
sig att använda VA-verktyg för att utföra och kommunicera sitt arbete. Nya 
medarbetare behöver utbildning i att förstå och använda de visualiseringar som 
används i organisationen. 

Metoderna för visuell dataanalys kan användas för, men är inte beroende av, de 
stora samlingar av data i vissa organisationer och företag som stereotypt 
benämns "Big Data". 

Kapitel 2 undersöker de senaste tre årens utveckling inom visuella 
representationer och interaktionstekniker. Det visar att kända riktlinjer från de 
mest ärevördiga experterna i visuell dataanalys inte alltid vilar på vetenskaplig 
grund och i minst ett rapporterat fall står i konflikt med den senaste psykologiska 
forskningen. 

Kapitel 3 handlar om interaktiv visualisering av flerdimensionella data. Många 
tillämpningar lider av "dimensionsförbannelsen", vilket innebär att antalet 
alternativ att presentera visuellt är överväldigande stort. Detta är oftast på grund 
av en så kallad "kombinatorisk explosion", där varje nytt ja- eller nej-alternativ 
som läggs till beslutsutrymmet fördubblar antalet beslutsvägar att analysera. 
Kapitel 3 presenterar två huvudsakliga metoder för att hantera detta i 
visualisering: 1) behandla alla dimensioner lika i syfte att utforska beslutsrymden 
utan förutfattade meningar, och 2) att minska antalet dimensioner genom att 
tillämpa matematiska metoder såsom exempelvis principalkomponentanalys 
(PCA) i syfte att göra viktiga val synliga bland röran av alternativ. För vart och 
ett av dessa metodologiska grenar granskas flera olika VA-metoder. 

I många ledningssituationer inom affärsvärlden, produktion, logistik och 
militärväsendet kämpar ledare med att hantera ett mycket stort antal alternativ. 
Det är ofta svårt att göra en fullständig uppsättning handlingsalternativ begripliga 
för ledare under sådana omständigheter. Helst bör visuella representationer 
användas för att orientera chefen i den täta undervegetationen av 
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handlingsmöjligheter och möjliga utfall. Kapitel 4 handlar om hur man löser 
denna typ av problem genom visuell dataanalys och vi finner att forskarsamhället 
har lagt liten vikt vid denna problemtyp. Trots detta definieras i kapitel 4 
problemet med att visuellt representera flera alternativ och pekar på möjliga 
lösningar och forskningsinriktningar. 

Data fångas från interaktion i användargränssnitt, genereras av simuleringar eller 
genom mätningar och är därför aldrig en exakt bild av verkligheten. Data är 
osäkra på grund av användarfel, orealistiska simuleringsmodeller och mätfel. 
Denna osäkerhet skulle kunna göra visuella representationer av data 
vilseledande. Kapitel 5 behandlar osäkerhet i VA med fokus på visualisering av 
osäkerhet och de metoder vi behöver för att göra användaren medveten om 
osäkerheter i underliggande data – och i de visuella representationerna. 
Problemet är att osäkerheten är en extra dimension att visualisera i de uppgifter 
som ofta redan är tyngda av flerdimensionella data, så som beskrivs i kapitel 3. 

Vi går härefter mer i detalj in på ett illustrativt exempel på en praktisk 
tillämpning av VA. Numerisk strömningsmekanik (CFD) är en grundläggande 
fysikalisk vetenskap som är viktig i processer så som fordonskonstruktion, 
konstruktion av jetmotorer eller fartygsskrov. Strömningsmekanik är också 
avgörande för många försvars- och säkerhetstillämpningar, inklusive förståelse 
för spridning av farliga ämnen och för undervattenstillämpningar. Kapitel 6 
handlar om hur visuell dataanalys används i verksamhet baserad på CFD och 
visar därmed hur VA fungerar i verklig forskning. Det bör påpekas att VA är 
djupt integrerat i forskarnas arbetsprocess och särskilt i efterbehandlingen där 
data från en CFD-simulering analyseras och jämförs med experimentella data i 
syfte att förstå resultatet. Simuleringsresultat visualiseras i syfte att hjälpa 
forskarna till bättre insikter som kan leda till nya lösningar på det aktuella 
problemet. Kapitel 6 diskuterar vidare hur många organisationer har utvecklat 
sina egna visualiseringsverktyg och representationer och nämner hur viktig 
programvara med öppen källkod ofta är. 

Författarnas sammanfattande synpunkter på visuell dataanalys finns i kapitel 7, 
där vi påpekar att intelligens och kreativitet i VA- processen kommer från 
människor och att teknik så som virtuell verklighet kommer att vara viktig för 
utvecklingen av VA. Vidare beskriver vi tillämpningar av VA för 
försvarstillämpningar. I sektion 7.4 visar vi att läsaren med fördel kan betrakta 
varje kapitel i denna rapport som grönt ektoplasma som väller ut ur 
högdimensionella sprickor i väggarna i det stolta bygget som är visuell 
dataanalys. 

Nyckelord: Visuell dataanalys, Visualisering, Interaktiv visualisering, Datarepresentationer, 
Informationsvisualisering, Vetenskaplig visualisering, Användargränssnitt, Interaktionsteknik, 
Interaktionsdesign, Numerisk Strömningsmekanik, Simulering, Stora datamängder, 
Osäkerhetsvisualisering, Flerdimensionella data, Dimensionell reduktion, Projektionsmetoder, 
Flervalsvisualisering, Beslutsstöd, Externa representationer, Fysiska datarepresentationer, 
Haptik, Kraftåtermatning, Fysiska användargränssnitt.



 FOI-R--4200--SE 

5 

Summary 
In the Introduction in chapter 1, we define Visual Analytics (VA) as the science 
of supporting human reasoning and sense-making via visual representations in 
which interaction is an essential part of the analysis process. Furthermore, we 
note that Visual Analytics as a Science is in the borderland between the 
Behavioral sciences and Computer science. We emphasize that Visual Analytics 
depends on humans for integrating knowledge, for discovery and insights. The 
creative processes that are enabled by visualizations are typically not automated 
but rely on human individuals or teams, trained in both visual literacy and the use 
of visualization tools, to achieve insights and sense-making. The target audience 
of this report is FOI-researchers in need of knowledge about visualization. 

Visualization tools and representations are in many cases deeply engrained in the 
work processes of the organization, and have evolved organically as people learn 
to use Visual Analytics tools for performing and communicating their work. New 
team members need training in understanding the visualizations that are used in 
the organization. 

Visual Analytics processes can use, but are not dependent on, the vast collections 
of data in some organizations and businesses that stereotypically are referred to 
as “Big Data”.  

Chapter 2 surveys the last three years developments in visual representations and 
interaction techniques. It demonstrates that age-old wisdom stemming from the 
most venerable authorities in Visual Analytics is not always based on scientific 
evidence, and in at least one reported case stands in conflict with recent 
psychology research. 

Chapter 3 is about Interactive visualization of multidimensional data. Many 
applications suffer from the “curse of dimensionality” which means that the 
number of options to investigate is overwhelmingly large. This is typically due to 
a so called “combinatorial explosion”, caused by each new yes/no choice added 
in exploring a decision space doubles the number of options to analyze. Chapter 
3 reviews two main methods for handling this in visualization: 1) treating all 
dimensions equally for the purpose of exploration and 2) reducing the number of 
dimensions by applying mathematical methods such as principal component 
analysis (PCA) for the purpose of making the most important choices visible 
among the clutter of options. For each of these main methodological branches 
several data processing and visualization options are reviewed.  

Many management situations including business, production, logistics and battle 
management include a very large number of options. It is often hard to make the 
full set of options comprehensible to managers in such circumstances. Ideally, 
Visual Analytics should be employed to guide the manager in the dense forest of 
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action opportunities and possible outcomes. Chapter 4 Effective visualization of 
multiple options addresses this challenge, finding that the Visual Analytics 
research community has given it little emphasis. In spite of this, Chapter 4 
defines the problem of visually representing multiple options and points to 
feasible solutions and research directions. 

Data is captured from interactions with user interfaces, generated by simulations 
or by measurements. Data is never a precise reflection of reality but is fraught 
with uncertainty, which could make visual representations of the data misleading. 
Chapter 5 handles Uncertainty in Visual Analytics focusing on visualization of 
uncertainty which is the methodology that we need for making the user aware of 
uncertainties in the underlying data. Chapter 5 reviews appropriate visualization 
methods for showing the degree of uncertainty in the data, and also reflects on 
uncertainty in the representations. The level of uncertainty constitutes an extra 
dimension in the often already multidimensional information, thereby requiring 
the use of methods for visualization of multidimensional data, as described in 
Chapter 3. 

Computational Fluid Dynamics (CFD) is a basic Physical Science underlying 
much of the design of vehicles, jet engines or ship hulls. CFD is also crucial for 
defense and security applications, including understanding contaminant flows 
and underwater applications. Our chapter 6 on Visual Analytics in CFD 
illustrates how VA is used in applied research. It is pointed out that Visual 
Analytics is deeply integrated in the work processes, particularly in the post-
processing stage where data from a CFD-simulation is analyzed and compared to 
experimental data for the purpose of understanding the result. Simulation output 
is visualized for stimulating human insight. Furthermore, chapter 6 discusses 
how many organizations have developed in-house visualization tools and 
representations and mentions the important role of open-source software. 

The authors’ final opinions on Visual Analytics are provided in Chapter 7 
Discussion and Conclusions in which we point out that intelligence and 
creativity in the VA-process is supplied by humans and that 3D Virtual Reality 
displays will be important for the evolution of VA. Furthermore, we describe 
applications of VA for defense. In section 7.4 we argue that the reader 
advantageously can view each chapter in this report as green ectoplasm seeping 
out from high-dimensional cracks in the shiny walls of the edifice of Visual 
Analytics. 

Keywords: Visual Analytics, Visualization, Interactive Visualization, Data Representations, 
Information Visualization, Scientific Visualization, User Interfaces, Interaction Techniques, 
Interaction Design, Computational Fluid Dynamics, CFD, Simulation, Big Data, Visualization 
of Uncertainty, Multidimensional Data, Dimensional reduction, Projection Methods, 
Visualization of Multiple Options, Decision Support, External Representations, Data 
Physicalization, Haptics, Force Feedback, Tangible User Interfaces.
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1 Introduction 
One-year-old Emile Ouamouno died in December 2013. Shortly after, his sister, 
mother and grandmother also died. This marked the onset of the recent Ebola 
epidemic in Africa. Local health authorities and the World Health Organization 
(WHO) thereafter faced the task of tracking and containing the epidemic that 
eventually claimed over 10.000 lives.  

Visualization of databases as in Figure 1 proved to be an essential instrument for 
understanding and containing the disease. By generating and interacting with 

Figure 1. Distribution of new and total confirmed Ebola cases, 19 August 2015. From 
the World Health Organization website, 
http://www.who.int/csr/disease/ebola/maps/en/ 
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visual displays of the outbreak, decision makers could make sense of the 
situation and focus containment and health-care resources on the proper targets. 

“… outbreaks rarely have only local or regional consequences in our highly 
interconnected and interdependent world,” claims one of the most prominent 
leaders of the containment effort, Dr, Margaret Chan of WHO. 

The science behind the tools used by experts, researchers and decision-makers to 
visualize, analyze, understand and communicate vast and/or complex data is the 
topic of this report. 

This section defines where Visual Analytics (VA) belongs in the taxonomies of 
applications and research fields. 

Thomas and Cook (2005) define Visual Analytics as the science of analytical 
reasoning facilitated by interactive visual interfaces. Applications of Visual 
Analytics (see Figure 2) are often partitioned as information visualization or 
scientific visualization where the former is about visualization of abstract facts 
about e.g. organizations, economics, communication and software structures. 

Figure 2. Further details about the application scope of Visual Analytics. Adaptation 
from figure in (Keim, Mansmann, Schneidewind, Thomas, & Ziegler, 2008). 
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Scientific visualization is taken to be about physical phenomena that can be 
displayed in space-time dimensions as for example hydrodynamic flows.  

In Figure 3 we furthermore define how Visual Analytics fits into the taxonomy 
of sciences. Since Visual Analytics is about supporting human reasoning it 
overlaps with behavioral sciences including Psychology, Neuroscience and in 
particular the field of Perception research. In chapter 2 we exemplify how 
psychology lab studies are essential for confirming or falsifying VA methods. In 
addition, Visual Analytics is to a great extent a part of Computer science 
including subfields such as computer graphics and user interface design. It shares 
this position in-between behavioral science and computer science with the fields 
of Human-Machine Interfaces (HMI) and Human-Machine Interaction (HMI). 

1.1 Our Interpretation of Visual Analytics 
Given the extensive scope of Visual Analytics and the opportunities for 
broadening the range of the field we have selected to follow Thomas and Cook 
(2005) and restrict our study to support of human reasoning and sense-making 
via visual representations in which interaction1 is an essential part of the 
analysis process. 

 
1 By interaction we mean human-computer interaction in computer science roughly as described in 
http://en.wikipedia.org/wiki/Human%E2%80%93computer_interaction 

 

HMI

Visual Analytics

Behavioral Sciences
Computer Science

Figure 3. The research landscape of visual analytics. 
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1.2 Broader Definitions of Visual Analytics 
Visual analytics can and have been generalized to include other sensory faculties 
than vision thus encompassing human-machine interaction via hearing, haptics 
(tactility and proprioception2), olfaction and nociception3. Visual representations 
could also support reasoning even if no interaction is employed as a part of the 
process. 

1.3 The Process of Visual Analytics 
Figure 4 shows an outline of the pipeline for Visual Analytics. If expanded the 
process can be described as consisting of the following steps: 

1) Compiling data guided by the present knowledge of the situation. 

2) Transformation of the data to a standard format in preparation for 
visualization. 

3) The user defines filters for describing essential aspects of the data. In the 
Ebola case a filter could be a parametrized data structure representing 
the health status of a province or a country as related to the known 
phases describing how an epidemic infection spreads. 

4) Data mining for building content that will support the visualization. This 
step typically follows procedures from statistical analysis or machine 
learning. 

5) Feeding the visualization interface with filtered and processed 
information. 

6) User interaction in which knowledge is extracted by the user. The next 
phase of hypothesis formation and visualization is guided by insights 
gained by the user. 

7) Repetition of steps 1-6 for the next round of data transformation, model-
building, visualization and user interaction. 

8) Further user interaction supported by refinement of filtering parameters 
and possibly by further compilation of data based on new insights 
gained in the process.  

 
2 Sensory perception of bodily position, such as relative joint movements. 
3 The brain’s processing of pain and other sensory data related to harm to own body 
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The interactive analysis process presumes a fairly quick response of the system 
even in cases where the user interaction may trigger very complex database 
queries. 

1.4 Visual Literacy 
When working with visualizations it is important to learn how to read them – to 
develop a visual literacy. The visual literacy has to be considered in design of 
visual representations, and these considerations go beyond the mere perceptual, 
stretching into cultural and subjective notions of meaning (Byrne, Angus, & 
Wiles, 2016). The issue of how novices make sense of unfamiliar visualizations 
has been studied by Lee et al. (2016) who managed to map the process to five 
major cognitive activities. Furthermore, Ruchikachorn and Mueller (2015) 
showed that visual literacy about representations can be improved by visual 
morphing. In their work they presented the user with a view of a familiar 
representation that morphed into an unfamiliar, thereby making it possible to see 
an analogy between the two. 

In addition to visual literacy, spatial ability also has a very large impact on the 
viewer's ability to comprehend, extract meaning and learn from visual 
representations (Ottley, et al., 2016; Bivall, 2010). Both visual literacy and 
spatial ability are topics of research in their own right. However, dwelling deeper 
into visual literacy or the field of spatial ability is beyond the scope of this report. 

Figure 4. The visualization pipeline as presented in most visualization courses. 

Visualization Pipeline
(somewhat simplified)

Raw
data

Filtered 
data RepresentationData

objects

Read and 
filter Filter

Mapping Render
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1.5 Mapping the Field of Visualization 
Traditionally the field of visualization has been divided into two major areas: 
Scientific visualization and Information visualization. Representations where the 
dimensions of the representation have a natural mapping to the dimension of the 
measurement or simulation, most frequently three or four dimensions, have 
normally been sorted into scientific visualization. Examples are medical images 
such as computer tomography or magnetic resonance imaging data, or 
representations of fluid dynamics such as those described in chapter 6. 
Representations of abstract, sometimes multi-variate data, numerical or 
categorical data, where there does not necessarily exist a natural mapping to the 
dimensions of the representation, end up under the umbrella of information 
visualization. 

This dichotomy has been prevalent but is becoming obsolete. The field of 
visualization has matured, and the types of data as well as representations have 
become more mixed and methods of data analysis are more often shared across 
the former boundary. In this report we unify the fields by using the term Visual 
Analytics. 

Another dichotomy could be applied to the field of visualization through a divide 
based on the different usages of presentation/communication and data analysis. 
One indication of the power of visualization for communication is the increasing 
number of infographics present in almost every magazine or newspaper. External 
representations can sometimes clarify rather complex relations or rapidly put 
information into a context, such as information related to populations rendered 
on maps in different shapes and forms. 

While the power of visualization as a means for communication is widely 
recognized, visualization for data analysis on the other hand, despite its potential, 
is left untouched by many scientists outside the field of visualization. 
Alternatively, as touched upon in parts of this report, the concept of visual data 
analysis is over-exploited as the remedy to all corporate business analysis needs. 

It is important to note that the Visual Analytics process normally is not 
automated and driven by intelligent software. The intelligence, creativity and 
insights must come from humans who are trained in using the appropriate 
software tools and the various visualization options and that are well versed in 
the domain under study. Designers of underlying models can also be expected to 
encode human knowledge and visualization traditions in the software that 
generates visual representations. 
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Sometimes teamwork takes the form of a staff preparing briefings for managers 
using visual representations. The analytics team must understand the needs of the 
decision makers that they are serving and guiding. The ability to foresee the best 
decision and present visualizations that guide the decision maker in the right 
direction is an essential skill for the analysts but can also be construed as a threat 
against the independence and integrity of the decision makers. The precise 
boundary between adept visualization and skillful manipulation is difficult to 
draw. 

Visual analytics is often described in a language that seems to imply that Visual 
Analytics is a subject who acts, achieves and thinks. For example:  

“Visual analytics integrates the analytic capabilities of the computer and the 
abilities of the human analyst, thus allowing novel discoveries and empowering 
individuals to take control of the analytical process. Visual analytics sheds light 
on unexpected and hidden insights, which may lead to beneficial and profitable 
innovation.”4 

The reader of this text could easily be lead to believe that there is some process 
or software that provides automated intelligence although in reality human 
workers must integrate, discover and provide insights. There is no automated AI 
that performs the analysis and presents results via a visual interface. Humans 
must provide creativity and insights while using the data processing tools. 

Kohlhammer et al. (2011) is much clearer about the important role of human 
labor and thinking in the Visual Analytics process: 

“visual analytics is the creation of tools and techniques to enable people to: 

- Synthesize information and derive insight from massive, dynamic, 
ambiguous, often conflicting data. 

- Detect the expected and discover the unexpected. 

- Provide timely, defensible, and understandable assessments. 

- Communicate these assessments effectively for action” 

This is also in line with the definition by Card, Mackinlay and Shneiderman 
(1999) that visualization is about: “the use of computer-supported, interactive, 
visual representations of data to amplify cognition”. 

  

 
4 www.vismaster.eu/wp-content/uploads/.../VisMaster-book-lowres.pdf preface, first paragraph. 
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Both individuals and organizations wishing to make use of Visual Analytics can 
only make limited progress by simply downloading or acquiring a software 
toolkit. In addition they must be prepared to: 

- Train themselves or others in Visual Analytics. 

- Set up a Visual Analytics process related to their domain of interest. 

- Integrate the Visual Analytics process in relevant internal processes 
including management and decision-making processes. 

Visual Analytics is often described as an essential tool for making sense of the 
huge piles of data that accumulate everywhere in the modern world. Advocates 
of Visual Analytics speak about organizations’ problems of making use of Big 
Data and how we all suffer from information overload. Visual Analytics is 
promoted as the remedy for these problems. In our view, the loudest advocates of 
VA promise more than they can deliver as they are driven, most likely, by 
commercial interests or the fierce hunt for research funding. 

Through this report we promote the use of Visual Analytics but prefer also to 
inform and increase awareness of both its risks and opportunities. In summary, 
VA has great potential to increase the understanding of data and VA can be a 
valuable tool for analysis. Furthermore, visualization is a very powerful way to 
communicate. At the same time there are no free lunches, meaning that to fully 
exploit the power of VA the visualization tools are likely to require 
customization to fit the particular problem at the hand of the analyst. Caution is 
also needed to ensure that representations are not selected that only show the 
aspects of the data that the researcher/user already knows are present, thereby 
preventing discovery of new and unknown features in the data. 

Hence we conclude that the Visual Analytics process and tools typically are 
firmly bound to and integrated with the domain of the application at hand. The 
tools and techniques for visualization in Computational Fluid Dynamics as 
described in chapter 6 would for example be quite useless for financial analytics 
and vice versa. Most organizations invent their own tools based on generic 
visualization tools or otherwise acquire a set of tools that meet the visualization 
needs of the organization. An important part of the on-the-job-training is to learn 
how to read and generate the visualizations in use by the organization and, as 
researcher, to also learn to identify the visualization needs and generate the tools 
required. 
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Selecting the appropriate representations does require knowledge about what 
type of data and/or features each representation can convey, which, in turn, 
require that the representation has been evaluated. Forsell, together with 
Johansson or Cooper (2010; 2010; 2012) have conducted thorough evaluations of 
their solutions for parallel coordinates plots, and also presented general methods 
for how to evaluate visualization tools. Their work has been an important 
contribution to the visualization community as many visualization techniques 
have been presented but frequently not proven through evaluation. It is not until 
recent years that evaluation has become a major topic in the field of 
visualization, nevertheless the questioning of both novel and established 
representations can be required. For example, the work of (Rubio-Sanchez, Raya, 
Diaz, & Sanchez, 2016) shows that the common way of using two 
representations (called RadViz and Star Coordinates) can actually introduce 
distortions with respect to the data. 

1.6 Aim and Outline of the Report 
The present study is the result of a field survey project aiming at increasing the 
knowledge of visual analytics at FOI. The target audience of this report is 
researchers in need of knowledge about visualization. The intention is not to 
provide a complete overview of the field of visual analytics, nonetheless we 
postulate that the report summarizes a substantial part of the available methods in 
the field, and thus also serves as a good starting point for readers with low prior 
knowledge of visual analytics. 

At this point we want to explain the choice of subjects in the chapters that 
follows. We have focused on aspects that can be issues of concern in VA-
applications. Although these aspects are present in academic visualization 
research, they are often lacking in overviews, especially by VA sales people. 
Hence the chapters discuss, uncertainty in data, issues related to the “curse of 
dimensionality”, the evidential basis of VA methods, multi-option decision-
making and how VA is used in real-life research. We think that the reader is best 
served by getting information about subjects that are typically excluded from VA 
reviews and sales presentations. For a researcher in need of analysis tools or for 
someone considering making use of VA in their organization this should be of 
greater value than yet another uncritical overview and homage to the advantages 
of visualization. 
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2 Visual Representations and 
Interaction Techniques 

Translating data into a visual representation that helps the user understand and 
explore the data content is one of the main challenges in visualization. In visual 
analytics the interaction with such representations is another important aspect, 
often vital to the exploratory process. The foremost aim for this chapter of the 
present report is to survey the most recent developments in visual data 
representations and interaction techniques, mainly within the last three years, to 
find novel techniques that create modes of visualization and interaction that go 
beyond scatter plots and drop-down selection boxes. Some old examples are 
provided for completeness and to put the reported findings into a context. 

This chapter is also written as an attempt to inspire those looking for new ways 
to visualize their data. To this end, given the aim to inspire, all publications 
referenced have not been scrutinized to the level of a peer-review, meaning that 
publications providing interesting examples of visualizations have been included 
even if there might be issues of concern, such as lacking evaluation. 

A secondary question for this survey, next to finding research of novel data 
representations, is to qualitatively assess how inventive the visualization 
community is when it comes to evolving data representations. Where is the 
visualization research focus put when striving to improve the ability to reach 
conclusions about information/data at hand? Is it: 1) To use existing visualization 
techniques such as tree maps, scatter plots, matrices etc. and how they can be 
combined, or, 2) To put emphasis on developing entirely new visualization 
techniques? Likely it is a trade-off between risk and award as the latter probably 
has a greater potential to become ground-breaking, but is harder to invent and 
certainly comes with a risk for failure. 

2.1 Making a Visualization Appealing and 
Memorable 

Edward Tufte is a recognized visualization researcher and has written some of 
the seminal books in the field, for example (Tufte, 1990; 2001). Many of the 
guidelines presented by Tufte are taught as good rules of practice in the majority 
of visualization courses around the World and cover, for example, how to avoid 
clutter or how to use glyphs and color. Although some of his guidelines are not 
proven effective through research, they often make sense intuitively, which is the 
likely reason for the wide acceptance in the visualization community. 
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One of the guidelines promoted by Tufte is the principle to avoid chart junk, that 
is, to avoid decorations, excessive annotations and similar visual elements. If not 
avoided, it is argued that such abundance of graphical elements might distract the 
reader from the data that should be shown as clearly as possible. At the same 
time it can be argued, from an intuitive view, that a more engaging visualization 
is also more effective as the user becomes more involved in understanding the 
data it represents. The use of chart junk is discussed by Borkin et al. (2013) in the 
context of existing psychology lab research supporting the traditional view, and 
other research showing improved retention from increased chart junk. This is 
relevant to the research of Borkin et al. (2013) as they focus on finding out what 
makes a visualization memorable. 

The aim of the research presented by Borkin et al. (2013) is to investigate what 
factors make some visualizations intrinsically more memorable than others. They 
make a parallel to previous research on images of natural scenes, where some 
images have been found to be more memorable, independent of an individual’s 
bias. Borkin et al. (2013) acknowledge that memorability does not necessarily 
have anything to do with comprehensibility of a visualization, but argue that it is 
a step towards finding out what makes visualizations engaging and/or effective. 
It should be noted that the experiments conducted include static images and not 
the type of interactive data analysis tools that are the main focus for this report. 

Very briefly summarized, Borkin et al. (2013) identified properties that make 
some visualizations intrinsically more memorable. Perhaps not surprising, 
visualizations including photographs or other images of human recognizable 
objects were more memorable than those without. In addition, a higher number 
of colors increased memorability, especially compared to black and white. 
Furthermore, and very interesting when relating to the predominant views on 
chart junk, high visual density and low data-to-ink ratios increased 
memorability. Similar to chart junk, the data-to-ink ratio has been considered a 
measure of how effective a representation is, promoting minimal use of graphical 
elements (minimal amount of ink) to represent a dataset. In addition, despite our 
training to read bar charts and line graphs, such representations are also less 
memorable than tree-views or grid/matrix representations. 

What are the implications of the study by Borkin et al. (2013)? The facts that 
comprehensibility was not part of the study, and that the focus of the report was 
on static representations rather than the interactive analysis tools, makes it 
difficult to answer the question. Even so, if designers of tools for Visual 
Analytics want the representations to be memorable, perhaps the findings 
indicate that pictograms such as icons should be used instead of text when an 
exchange is possible. Also, instead of using shades of a single color a more 
extensive palette could be applied, and the designers should perhaps not be too 
afraid of adding supporting elements to the representations simply by the 
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argument of keeping visual density low and the data-to-ink ratio high. However, 
caution has to be taken both regarding the properties of colors and how they are 
perceived, and regarding cognitive aspects of load and attention. Further studies 
on these topics are required, and it would be interesting to see how such research 
could guide invention of novel data representations and creative means for 
interaction. 

2.2 Fundamental Types of Representations in 
Visual Analytics 

Browsing through visualization textbooks and other resources, it soon becomes 
clear that almost all modern tools for visual data analysis share a common set of 
representations, forming what can be seen as the base-line of data 
representations. This base-line is often extended to fit the intended application of 
each tool, a specialization normally required to make VA reach its full potential 
for a specific application or type of data. However, for many purposes, especially 
when beginning to use Visual Analytics, a little goes a long way. Except for the 
universal line charts and bar charts, what representations that constitute the 
common base-line set is not established, but a few are very common and 
therefore presented here as examples. 

• Parallel Coordinates Plot (PCP), described in section 3.1.3 and Figure 
23, is a major player in Visual Analytics and a part of every serious VA 
toolkit. A properly designed PCP makes it possible to rapidly see trends 
in the data, detect correlations between variables and filter data. 

• Scatter Plot, described in 3.1.1 and seen in Figure 5, can combine 
location, color and point size, making it possible to map four dimensions 
of the data into one plot, and to see trends and detect outliers. With a 3D 
scatter plot, as seen in Figure 15, the plot can show five dimensions, 
although requiring more interactivity to explore the data. 
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• Scatter Plot Matrix. By setting up a matrix with scatter plots for different 
variables it becomes possible to quickly analyze correlations between 
multiple variable pairs. The scatter plot matrix is often rendered using 
two variables for each matrix element, showing the relation between 
those two variables, ignoring the rest, see Figure 5. 

• Table Lens. A way to graphically represent the values in each cell in a 
table, see Figure 6. 

• Tree Map. Shows the data in a hierarchical manner where both structure 
and the size of each level is represented through size and/or color, see 
Figure 7. 

Figure 5. An example of a scatter plot matrix (left) and a scatter plot (right) providing 
a detailed view of the selected matrix element. 
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It is not necessary to go to the very latest in visualization research to find creative 
data representations. The gallery for the D3 JavaScript library (Bostock, 2015) 
provides many examples of innovative ways to visualize data, some of which are 
shown in Figure 8 and Figure 9. The D3 library is one of several JavaScript-
based libraries or toolkits that have emerged to enable use of interactive (or 
static) visualization on websites. Both commercial and free libraries are 
available, some provide specific visual data representations such as a 3D scatter 
plot, others are more generic for rendering of graphical components and handling 
of data structures. As previously pointed out, achieving the most efficient 

Figure 6. Example of a table lens representation. 

Figure 7. Tree Map picture. Generated by a D3-example found at 
http://bl.ocks.org/mbostock/raw/4063582/, accessed through the D3 gallery at 
https://github.com/mbostock/d3/wiki/Gallery. 
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visualization tools for a specific application normally requires customization of 
software. The JavaScript libraries can be recommended as a starting point, at 
least for prototyping. With a wide range of online resources and user 
communities, the libraries can generally be considered to have a fairly low entry 
threshold for someone with programming skills. 

2.3 Representations Beyond the Basics 
In VA, as in most fields of science, the corpus of knowledge grows slowly by 
small increments on previous work. Most representations found in the survey 
presented in this chapter are small but inventive extensions to their more basic 
counterparts, or clever combinations of existing techniques that enable novel 
ways to perform VA. 

Figure 8. A word cloud based on a FOI report (Norberg & Westerlund, 2014). The size 
of a word represents how frequently it appears in the text relative to the other words. 
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The fact that the parallel coordinates plot and the scatter plot are brought up in 
three chapters of this report (see sections 3.1.1, 3.1.3 and 5.3.8 apart from this 
chapter) is an indicator of the roles PCP and scatter plots play in Visual 
Analytics. Therefore, the overview of recently published research will start with 
variants on those two representations. Johansson and Forsell (2016) present a 
survey on research with user-centered evaluation of parallel coordinate plots, a 
publication which also includes a wide range of different PCP examples, 
although those are left for the interested reader. 

Figure 9. Examples of representations created with the D3 library, all different 
representations of hierarchical structures. Upper left: Sunburst, similar to a tree map 
but with a radial layout. Upper right: Force tree. Lower: A Sankey diagram. 
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One development of PCP is the Orientation-enhanced Parallel Coordinates 
(OPCPs) presented in the work by Raidou, Eisemann, Breeuwer, Eisemann and 
Vilanova (2016). The OPCPs was developed to improve pattern discernibility in 
cluttered PCPs and at the same time enhance outliers that might otherwise be 
undetectable in areas with sparse data, see Figure 10. They also present a 
customized interaction technique described in more detail in section 2.4. 
Increased clarity in the OPCPs is achieved by enhancing parts of each PCP line 
with respect to its slope.  

Although inventive, the PCP version presented in the work by Zhou, Xu, Ming 
and Qu (2014) does not seem as promising as the OPCPs, at least not for large 
datasets. In their PCP the lines between the axes are made from text, making the 
lines act as their own labels. Despite applying a technique to minimize overlaps 
between lines by using different line curvature, which seems to be a good 
feature, the text soon becomes unreadable and clutter appears even worse than 
for the standard PCP. 

Looking instead at scatter plots the work by Chen et al. (2014) addresses the 
relevant problem of over-drawing in scatter plots. This can be an issue when 
working with a single class of data, and potentially even worse when 
simultaneously presenting data of multiple classes in the same scatter plot. If 
using color to separate classes in a conventional scatter plot, occlusion can occur 
due to data from different classes being drawn on top of each other, see Figure 
11. Manual reordering is required to see patterns from all classes, although such 
work is tedious and it can still be difficult to compare the patterns. The approach 
proposed by Chen et al. (2014) is to process the data and plot the scatter plot in a 
manner that keeps the point-distribution and relative density between the data 

Figure 10. The OPCPs (red). (a) Visual enhancement of small patterns between the 
first two dimensions of the data, i.e., small structures obstructed by a strong pattern. 
(b) Facilitated identification of distinct patterns between the second and third data 
dimension. (c) Improved readability of outliers, i.e., low density information areas, in 
the representation. (d) Efficient and accurate selection (blue) of a specific data 
structure, using the proposed O-Brushing technique (dark line). © 2016 IEEE. 
Reprinted with permission, from Raidou et al. (2016). 
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classes, see Figure 12. The claim is that quantitative analysis can still be 
performed efficiently, although it would be interesting to study how the 
quantitative properties are conveyed in the processed version as compared to 
viewing the original data. However, it might not be possible to perform such a 
comparison on multiple classes of data. 

It can be noted that Kay and Heer (2016) show that the scatter plot outperforms 
several other representations in the ability to convey correlation, both positive 
and negative. The result is also very consistent between the individuals 
participating in their study. 

Figure 11. Manually changing drawing orders for the conventional multi-class scatter 
plot can reveal otherwise occluded patterns in the data. © 2014 IEEE. Reprinted with 
permission, from Chen et al. (2014). 

Figure 12. Figure from Chen et al. (2014). Different scatter plot techniques showing 
basketball (NBA) shooting data for three teams. (a) A conventional scatter plot. (b) 
Using the Splatterplot technique. (c) Using color weaving to enhance the perception of 
the data classes in dense regions. (d) The proposed method which should preserve 
the point distributions and the relative density orders among classes, and possible to 
use for quantitative analysis. © 2016 IEEE. Reprinted with permission. 
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If the aim is to represent not only the same type of data for multiple classes, but 
also to include multiple attributes to be visualized simultaneously, another set of 
challenges arise. Cheng and Mueller (2016) approach those challenges by 
calculating similarity and correlation data to visualize the relationships between 
both data and attributes. This relates to the issues discussed in chapter 3, 
although here we focus more on the representation, the visual Data Context Map. 
To explain how the representation can be applied we provide an adaptation of the 
use case presented by Cheng and Mueller (2016), to be read while viewing 
Figure 13. 

Tom is looking for a university and investigates his university data as he aims for 
a school that has high athletics (>9), high academics (>9), but low tuition 
(<$18,000). He begins by generating the decision boundaries based on these 
three criteria, shown in Figure 13 (a)-(d), after which he merges and gets (e). 
Unfortunately, there is no university that can satisfy all three criteria at the same 
time, easily detectable as the three regions do not overlap simultaneously. In the 
figure the red points with labels represent the attributes, while the small blue 
points represent the universities. Universities that locate close to a given attribute 
node have high values for the attribute, and correspondingly, those that locate far 
away have a low value. This leads to the process of selecting candidates in the 
areas where two regions overlap, and as close as possible to the attribute node 
from the third region, these are marked with A, B, and C in Figure 13 (e). 

Interestingly, the final choice is up to the user, Tom, demonstrating the high 
degree of influence from the human in the loop in Visual Analytics. 

Figure 13. Example of the Data Context Map showing university data. (a) good 
academics region (>9). (b) good athletic region (>9). (c) combined region by (a) and 
(b). (d) low tuition region(<$18,000). (e) combined region by region (c) and (d). © 
2016 IEEE. Reprinted with permission, from Cheng and Mueller (2016). 
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Visually the Data Context Map developed by Cheng and Mueller (2016) looks 
like a scatter plot, and while sharing a lot of features the Data Context Map still 
brings novelty into the representation. However, not all problems require 
development of new visual representations. Sometimes solutions are found by 
using inventive and creative combinations of existing methods for visualization 
and/or data processing. This is the case for AggreSet by Yalçin, Elmqvist and 
Bederson (2016) where a combined set of visual representations is applied to 
allow for exploration of sets and their relations using multi-valued attributes, 
such as genres per movie or courses per student, see Figure 14. Data in the sets 
are aggregated with the aim to allow for easier investigations of relations 
between the sets. One argument for the presented approach is to achieve 
consistency in user interface design, thereby avoiding separate ways of 
interaction when exploring sets as compared to exploration of non-set data. 

Events that occur over time is a 
topic for study in different areas, 
making VA tools with support for 
exploration of time stamped data 
potentially applicable in many fields 
of research. Although challenging, 
techniques for visual analysis of 
time-stamped data have been 

Figure 14. Interface for exploration of a movie dataset with multiple genres (sets) and 
ratings using AggreSet. Aggregate histograms are used for set-list and set-degrees, 
whereas the aggregate matrix (left) is used for set-pair intersections. The gray 
distributions visualize the number of elements per aggregate. © 2016 IEEE. Reprinted 
with permission, from Yalçin et al. (2016). 

Figure 15. A 3D-scatterplot generated 
from time-stamped user interaction log 
files. Time is mapped to the color 
density (black to white) and position is 
based on the user’s location in virtual 
space. From Bivall (2010).
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developed, see for example the straight forward 3D-scatter plot in Figure 15, and 
Figure 16 from the more extensive event sequence visualization work by Vrotsou 
(2010) in the field of time geography. 

Time Curves, shown in Figure 17, is another representation considering the time-
domain. It is developed by Bach et al. (2016) for analysis of temporal events and 
their similarity. The method is fairly generic in that it can be applied to any data 
with time-stamped entries, as long as a similarity metric can be determined to 
compare the entries. One example presented by Bach et al. is the evolvement of 
an article on Wikipedia, where similarity metrics can be calculated based on how 
much the text has changed between entries. 

Figure 16. Representation showing the distribution of categorized activities as they 
occur during a day for 463 individuals. Used under permission from Katerina Vrotsou. 
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2.4 Interaction Techniques 
Interactivity is a cornerstone in the process of Visual Analytics, and interactivity 
requires some form of interaction technique to put the human in the loop (see 
section 1.3). In this section, we provide examples of interaction techniques such 
as different ways to perform selections or navigating and comparing data. In 
addition to the normal modes of interaction we also report on some examples that 
go beyond keyboard and mouse. 

Selection might seem rudimentary; however, the operation of selection must be 
put into the context of the data and the visual representation. For researchers 
working with point- or particle-based data, such as some astronomical 
measurements, the selection and segmentation of structures are tedious tasks. 
This is partly due to the size of the data, and partly due to its complexity with 
occlusion of structures. Visually the situation can be compared to the multi-class 
scatter plot shown in Figure 11, with the complications that the data is in 3D and 
has not yet been assigned its classes. To support the selection process Yu, 
Efstathiou, Isenberg and Isenberg (2016) developed the Context-Aware Selection 
Techniques (CAST) for analysis of large particle datasets. CAST consists of 
lasso-style selection, line drawing selection and point-click selection, and 
corresponding supporting algorithms, see Figure 18. The selection algorithms 
can help in selecting the appropriate parts of the point cloud, including partially 

Figure 17. (a) The principle of the Time Curve representation. (b) A specific example 
showing the Time Curve for an article from Wikipedia. © 2016 IEEE. Reprinted with 
permission, from Bach et al. (2016). 
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obscured structures. Yu et al. (2016) show that the CAST methods are both 
effective in that the selection goals are achieved, and efficient as they are faster 
than the other tested techniques. 

Although the CAST methods might work for selections in some situations with 
3D-scatter plots, they are not likely to work with PCPs. The current state of the 
art in selection (or brushing) for PCPs is reported by Raidou et al. (2016) and is 
shown in Figure 19. In their work with OPCPs (see section 2.3) they also 
developed Orientation-enhanced Brushing (O-Brushing), where the selection 
tools utilize additional data generated for the OPCPs. It is claimed that using 
O-Brushing reduces the need for user interaction, making selection more 
efficient, but their tests also show that the use of OPCPs requires more training 
compared to the normal PCP. 

Figure 19. Brushing (selection) techniques for interaction with a PCP, from Raidou 
et al. (2016). Red denotes the resulting selections in each case, blue denotes the 
operation. © 2016 IEEE. Reprinted with permission.

Figure 18. Selection techniques from Yu et al. (2016). (a) Lasso-style selection 
(named SpaceCast). (b) Selection by line-drawing (named TraceCast). (c) Selection 
by point-click (named PointCast). © 2016 IEEE. Reprinted with permission. 
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A common approach in graphical user interfaces is to create interaction 
metaphors based on a real world tool or process. One example is the looking 
glass metaphor often used for zooming. Mimicking real world interaction 
behavior was the foundation for the work by Tominski, Forsell and Johansson 
(2012) when they designed representations and interaction techniques. By 
studying how a type of data used to be examined when printed on paper they 
created corresponding ways to interact with the representation, and also explored 
some additional features becoming available in the virtual form. The real-world 
paper interaction techniques and illustrations of their virtual counterparts are 
presented in Figure 20. 

2.5 Physical Representations and Interfaces 
Today’s human-computer interactions, which are beyond the visual and 
keyboard/mouse interface, have become possible partly because of the 
development and drop in price of technology such as touch-screens, sensors, and 
equipment like actuators and other hardware providing force feedback. These 

Figure 20. The physical (top) and virtual (bottom) versions of the interaction 
techniques proposed in the work by Tominski, Forsell and Johansson (2012). © 2012 
IEEE. Reprinted with permission. 



FOI-R--4200--SE 

34 

developments have enabled implementation of more physical interaction and 
representations at a reasonable price, even in public environments such as 
museums. 

The magnifying glass analogy is a fairly common technique when adhering to the 
principle of providing the user with simultaneous focus and context (or details 
and overview). Using this analogy, an overview of the data can be examined by 
moving the magnifying glass across the representation, thereby getting a view 
that zooms in on a part of the data and providing details. 

In the exhibit Plankton Populations5 at the Exploratorium in San Francisco, the 
virtual magnifying glass is moved (back) into the physical world to present an 
alternative way of exploring data, while maintaining the principle of focus and 
context (see Figure 21). The exhibit uses a table-top screen showing a global map 
onto which the distributions of planktons in the sea are rendered as colored areas 
and streams. A visitor can explore the details of a particular area of the sea by 
moving a physical magnifying glass over the table-top screen. Tracking of the 
magnifying glass is applied and a schematic representation of different planktons 
is rendered within the area of the magnifying glass, with the ratio of different 
plankton types in the rendering retrieved from the original data. 

In contrast to the common information visualization technique of “simply” 
zooming in on the data, using the same representation as in the overview, the 
plankton example shows the potential benefit of presenting the zoomed data 
using a representation that differs from the representation of the overview. The 

 
5 http://www.exploratorium.edu/visit/east-gallery/plankton-population 

Figure 21. The magnifying glass used as a physical user interface in an exhibit at the 
Exploratorium in San Francisco. The magnified view shows the amount and type of 
plankton underneath. Used under permission, photo by Amy Snyder/Exploratorium. 
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example provided here is intended for a public exhibition and the perception of 
the exact amounts of different planktons was not crucial, whereas a more 
research-focused data representation might have to provide more accurate 
quantitative measures. 

It is not only the user interface that can be made physical, the data can also be 
presented/rendered in physical form. This is sometimes referred to as data 
physicalization. A definition of data physicalization is suggested by 
Jansen et al. (2015) as: A data physicalization (or simply physicalization) is a 
physical artifact whose geometry or material properties encode data. This is 
closely related to the research field of tangible user interfaces, although there 
seems to be a distinction between the data representation (the physicalization) 
and the user interface. However, sometimes these are hard to separate if the 
physical data representation is also manipulated. 

Many physicalizations seem to be fairly rudimentary ways of representing data, 
such as strings stretched over nails or pieces of plastic, like the case of the work 
in progress reported by Stusak and Aslan (2014). At the same time there are 
examples of technically advanced physicalization research, like development of 
interactive physical displays. Some such displays, lacking a better word, are 
constructed using a grid/matrix of dynamically moving bars, where the bars form 
a surface by being elevated to a height that is dependent on the data being 
represented. The elevated bar becomes a physical pixel. These physical displays 
are often combined with an image projected onto the formed surface, thereby 
enhancing the representation of the data or acting as a support to the interaction 
interface. These techniques are interesting from a research perspective, both as 
tangible interaction interfaces and as data representations, although the 
implications to visual/physical analytics remain to be determined. 

In summary, if being inventive the use of simple artifacts, such as a magnifying 
glass, and well-designed tracking, can lead to very efficient and intuitive ways of 
physically interacting with a data representation. 
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3 Interactive Visualization of 
Multidimensional Data 

Visualizing and interacting with large data sets can be challenging from two 
perspectives, visualizing the high dimensionality of each data element, and 
presenting and working with the large number of data elements. This chapter will 
summarize a few strategies and viewpoints on this subject, focusing on the high 
dimensionality.  

In a military context, comparisons of plans and strategies could be examples of 
multidimensional problems. Complex multidimensional problems also arise in 
procurement and administration. 

There are generally two approaches for dealing with high dimensionality. One 
approach is to treat all dimensions uniformly. This is useful for exploration tasks, 
where the analyst has no prior knowledge of the data, such as knowing what is 
more important and what is less important. The other approach is to reduce the 
number of dimensions, which is done by projecting the data onto a subspace of 
lower dimensionality. Methods using this approach can identify important 
dimensions, but the dimensionality reduction will always lead to a loss of 
information. In the case of treating all dimensions equally, data is generally not 
lost, but the vast amount of information can nonetheless hide the information that 
is sought for. 

Making visualization interactive adds an extra constraint to the problem: the 
computational cost for producing visualization must be affordable within the 
timeframe that an analyst/observer can wait for an update of the presentation. 
Dealing with large data sets, puts limitations on what methods are practically 
useful. 

3.1 Treating Dimensions Equally 
Aiming at treating all dimensions of a high-dimensional data set uniformly can 
be seen as one general approach to visualizing the data. Without prior knowledge 
of what dimensions are more interesting or important for the analysis at hand, a 
manual selection of dimensions to visualize cannot be done. Many techniques are 
designed to help finding relevant dimensions, as well as identifying correlations 
between the dimensions. 

This section does not intend to give an exhaustive portrayal of available methods, 
but rather to describe a few in order to provide an impression of the techniques. 
This will be exemplified by four methods: (i) scatter plots, (ii) parallel axes, (iii) 
tabular visualization, and (iv) iconic techniques. 
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3.1.1 Scatter Plots 

One of the most well used ways of presenting numerical data is a scatter plot, 
where two axes (x and y) are drawn perpendicular to each other, and a data 
element is depicted as a point with a location corresponding to the value the data 
takes on each axis. By adding interaction such as rotation of view or holographic 
techniques, even a third axis/dimension can be added. The application of this 
technique to higher dimensional data is done by constructing the whole set of 
scatter plots corresponding to each possible pair of dimensions. The pairwise 
plots are often collected in a scatter plot matrix, where each dimension is 
assigned both a row and a column, and each matrix element (except the diagonal) 
is a 2D scatter plot (Schubert & Hinshaw, 2011). 

3.1.2 Tabular Visualization 

A straightforward way of gathering data is in the form of a matrix, such as to 
have each data element presented on a row with the respective data value for 
each dimension in different columns. As a visualization technique, called tabular 
visualization, the data value in each matrix cell is displayed in some graphical 
form, for example a rectangle where the size maps to the numerical value of the 
cell. 

The main limitation to tabular visualization is the ability to simultaneously view 
a huge matrix. Interaction is a way of approaching this. The overall idea of 
interacting with such a matrix graphical representation is to filter and rearrange 
items and part of the matrix to aid visual recognition of patterns in the data. A 
problem here is that the number of possible rearrangements, such as permutations 
of dimensions and elements is intractably large (the product of the factorials of 
number of dimensions and data items), thus requiring computer supported 
automation in order to be manageable. (Siirtola, 2007), and references therein, 
discuss this further. 
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3.1.3 Parallel Coordinates 

In parallel coordinates plots (PCP), each dimension is visualized by a vertical 
axis, see Figure 22 and Figure 23. All axes are of the same size and placed in 
parallel, and the values of each dimension are mapped onto the size of its axis. 
Lines drawn in the PCP intersect each axis at a point corresponding to the value, 
or category, of the particular dimension the axis represents. The resulting plot 
with all data points will thus consist of a large number of lines. This makes it 
possible to detect patterns and analyze correlations between variables. Although 
fairly complex to describe in words, the principle is more clearly outlined in 
Figure 22. The figure does not include the interactive elements of a well-
designed PCP which include, among other things, the possibility to filter the data 
along each axis, selection of individual lines or sets of lines, and rearrangement 
of the axis order to investigate correlations. 

Dealer Cost Engine Size (l) Cyl HP City MPG

39014 3.5 6 225 18

17878 2 4 170 21

39014

3.5
6

225

18

Figure 22. Construction of a Parallel Coordinates Plot from tabular data. 
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Parallel coordinates suffer from being hard to read if there are many data 
elements, where the lines from the data elements clutter and also prevent the 
ability to follow a single line (comprehend a single data element). Siirtola (2007) 
discusses a few redemptions to this. As such the method is better suited for 
observing trends rather than seeing details. Analysis is mainly based on 
identifying clusters of lines that share one or several features; when a large 
number of data points fall within a short range in one of the axes, this can be 
spotted as an increased density of lines, or even seen as a bottleneck in the 
diagram. Correlations between dimensions are identified by observing how such 
densities vary between the axes. Such direct comparisons between data points or 
for the whole data set are easy for two adjacent axes, but given a high 
dimensional data set the ordering can be crucial to get an understanding of the 
data. Interaction is a remedy for this, by allowing the user to change the ordering 
of the axes, although the analysis is still limited by the user’s ability to assess a 
potentially huge number of permutations. Another important way of interaction 
with parallel coordinate plots is accomplished by sorting and filtering techniques 
such as displaying only data elements within a certain range on one or more axes. 

A lot of visualization research has gone into the development of different PCP 
versions aimed at enabling analysis of large, sometimes time-variate, data sets. In 
Sweden the work by Jimmy Johansson (2008; 2014) has been aimed at 
improving usability of Parallel Coordinates and inventing ways to increase 
clarity of the data represented, including the use of three dimensional PCP. 

Figure 23. Screen shot showing a population data PCP with one line 
selected, handles for filtering the data and a color legend. 
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3.1.4 Iconic Techniques, Glyphs 

With icons techniques, small images often also called glyphs, are used for 
representing data, so that the visual features (shape, size, color, texture, etc.) of 
the icons reflect features in the data displayed. Each glyph corresponds to a data 
point, or for example an average of a set of data points. The idea is that 
differences and similarities in the underlying data should become visible by 
comparing the glyphs. Chernoff faces are one of the most common examples of 
glyphs, where data is encoded in size and shape of features of a stylized face, the 
idea stemming from the observation that humans in general are good at 
recognizing faces. Another iconic technique is star plots, where axes are laid out 
with equal angular distance in all directions radiating from an origin, and the 
each data point is represented by one such star where a line is connecting the 
values on each axis. Glyphs can be effective for identifying data points that differ 
from the majority (Borgo, et al., 2013), (Schubert & Hinshaw, 2011) and 
(Siirtola, 2007). 

3.2 Projection Methods 
This section presents a few ways of visualizing high-dimensional data by 
reducing the number of dimensions. 

3.2.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a non-parametric method to visualize 
high dimensional data sets. The assumption is that the data set is expressed in a 
number at least partly correlated variables. Variation in data along the different 
dimensions are assembled and the output is a number of new dimensions that are 
uncorrelated. The data set is thus linearly transformed into the base that best 
describes the data set. The goal is to reduce the dimensionality to a number that 
can be visualized (2 or 3), by displaying only the dimensions that captures the 
highest variation in data (see Figure 24). Dimensions that have a low variance 
carry little information as to distinguish the data elements from each other, which 
motivates not visualizing these. The best description in terms of PCA is one that 
sums up as much variance as possible in a small number of components. Once 
the new base is found and the problem visualized, there remains the task of 
understanding the new dimensions in terms of the old dimensions (Schubert & 
Hinshaw, 2011). 
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Figure 24. PCA. Left: A high dimensional data set. Right: The dataset visualized by 
the two first principal components. 

3.2.2 Linear Discriminant Analysis 

The Linear Discriminant Analysis (LDA) method uses some a-priori information 
regarding the data set, such as a division of the data into separate classes. The 
idea is then to maximize the separability between items belonging to the different 
classes, and uses similar transformation techniques as PCA. LDA is mostly used 
for data classification. As such, the starting point is a dataset where each data 
item is labelled with a class. LDA aims at finding a transformation such that the 
difference in variance between the classes (or, alternatively the overall variance) 
and the variance within each class is maximized. Classification of new data 
elements is done by comparing, for each class, the (Euclidean or other) distance 
between the transformation of the new data element and the mean of the class 
(Dzemyda, Kurasova, & Žilinskas, 2013). LDA is illustrated in Figure 25. 
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Figure 25. LDA. Left: A high dimensional data set belonging to two beforehand known 
classes. Right: The dataset visualized by LDA. 

3.2.3 Manifold Based Visualization 

A lot of data pertaining to the real world tends to lie on a manifold of low 
dimension as compared to the full dimensionality of the data. In a manifold the 
local structure is well described by the Euclidean space, although the overall 
structure is not. For example the planet can locally be mapped on a 2D map with 
high accuracy although on a global scale that does not hold. Visualization 
principles based on manifolds aims at keeping neighboring relationships such 
that elements that are close in the full dimensional space (on the manifold) are 
also close in the dimensionality reduced space. See (Dzemyda, Kurasova, & 
Žilinskas, 2013) for references. Isometric Feature Mapping and Locally Linear 
Embedding are examples of manifold based visualizations. Unfolding of a 
manifold is illustrated in Figure 26. 

 

Figure 26. Manifold based visualization. Left: data points on a manifold in 3D. Right: 
2D projection of the data. 
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3.2.4 Multidimensional Scaling 

Multidimensional Scaling (MDS) is one of the most employed techniques in 
multidimensional data visualization. MDS is based on the concept of retaining 
the pairwise proximities between items, so that the distances between data points 
in a low dimension space are as close as possible to the distances between the 
points in the full dimension space (see Figure 27). The data objects to be 
visualized need not be points in a multidimensional space, what is needed is a 
measure of pairwise similarity/dissimilarity between the objects. A common case 
is however data points in a multidimensional space, where the dissimilarity is 
defined as a distance measure in that space. 

The transformation is done by minimizing a stress function, a weighted linear or 
nonlinear sum of all deviations between dissimilarities or distances (for example 
Euclidian) in the high-dimensional space. The task is to optimize the positions of 
the images of the data points on the projection plane such that the stress function 
is minimized. The dissimilarities of objects in the full dimensional space can be 
of arbitrary type, the MDS method only requires a scalar dissimilarity measure. 
Multidimensional scaling is thus cast as an optimization problem. Dzemyda, 
Kurasova and Žilinskas (2013) present a number of optimization algorithms as 
well as thorough discussion of other technical issues of the method. France and 
Carroll (2011) also present a review of MDS techniques. 

 

Figure 27. MDS. Left: Pairwise distance measures δ for objects A, B and C. Right: 
MDS mapping, differences between (Euclidean) distances d in the projection space 
and distances δ in the high-dimensional space. 

A general problem is that there are often many local minima, and certain 
problems gets different interpretations depending on which local minimum is 
visualized. Finding a global minimum is often very difficult. The high 
dimensionality of the problem (number of data points and dimensions in the 
projection space) can make it computationally intractable, and global 
optimization problems have high algorithmic complexity. The differentiability of 
the stress function might be a theoretical hindrance. 

By using different distance measures, the projected image will differ. The 
distance measure used in the projection space is in general of greater importance 
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than the distance measure chosen for the full dimensionality space (Dzemyda, 
Kurasova, & Žilinskas, 2013). Although the images are different, thus opening 
up for different interpretation of the data visualized, it is difficult to say what 
image gives the best picture for the analysis task at hand. 

The quality of the projection can be measured by the smallest relative error 
(calculated for example as the square root of a normalized stress function). The 
dimensionality of the projection space influences the visualization error, and 
higher dimensionality gives a lower error, with a significant decrease in error 
going from one dimension to two dimensions, and again from two to three 
dimensions. Going to higher dimensionality than three further decreases the 
error, but it is unclear how such a projection space could be visualized. The 
ability of having stereo screens interactively displaying three-dimensional 
visualizations is a clear benefit of Visual Analytics as compared to printed 
images on paper. 

3.2.5 Artificial Neural Networks Applied to MDS 

This section discusses the application of Artificial Neural Networks (ANN) to 
the task of visualization of multidimensional data. A problem with 
Multidimensional Scaling is that the computational complexity scales 
quadratically with number of data points, thus limiting the usability in interactive 
visualization since the visualization tends to take longer time than a user is 
willing to wait. To overcome this problem a lot of research has been devoted to 
alternative optimization techniques, of which Artificial Neural Networks is one 
of the most studied. An advantage of the ANN approaches is that these 
algorithms scale at most linearly, thus enabling interactive analysis. 

Artificial Neural Networks are computational constructs inspired by biological 
neurons and networks of neurons. Outside the scope discussed here, they are 
employed in machine learning applications such as clustering, classification and 
function approximation. The function of an artificial neuron is to map a 
multidimensional input signal to a unidimensional output signal. Typically this is 
done by forming a linear weighted sum of the input and then apply some 
nonlinear function (the simplest being a threshold) to the attained sum in order to 
form an output signal. Letting a number of artificial neurons work in parallel 
creates a multidimensional output space (of arbitrary dimensionality, 
independent on the input dimensionality), and such a many-to-many 
transformation is called a layer of neuron. Several layers can then be stacked on 
top of each other to form an artificial neural network. 

Once the structure of the ANN is chosen (which is not a straight forward task), 
the task of constructing the mapping from the input space (input signals) to the 
output space (desired output signals) is a matter of finding the weights in the 
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summations. In the application to visualization of multidimensional data, the 
input signals is the original data to be visualized, each dimension being one input 
signal, and the output signals of the network is the two dimensions of the 
projection. The basic principle of finding the weights is called learning, and is an 
iterative step where the network is applied to each data point and the weights are 
incrementally updated according to the error in output as compared to a wanted 
output. In the case where the wanted output for each input data point is known 
the learning is labelled supervised. There are also techniques for an ANN to learn 
a meaningful mapping also in the case when there is no predefined correct 
output. This is called unsupervised learning. Once the learning is done, the 
network can be used to map unknown input to the output space. 

Since the network is adopted to the data presented in the learning phase, there is 
an issue of overfitting: if the training (learning) is done too well the network can 
learn the individual data points and thus lose the ability to generalize to produce 
meaningful output also for data points not used in the training. If there is labelled 
data, for example classifications, supervised learning can be applied to a network 
in order to create a mapping that projects input data into clusters in the output 
plane corresponding to the classes. 

The idea of using neural networks for visualization of multidimensional data is to 
design a network that takes a data point in the high dimensional space as input 
and outputs a coordinate in the projection space. A benefit of ANN approaches is 
that the computational cost is very low once the training of the network is done, 
as opposed to many other multidimensional scaling methods where the setup has 
to be regenerated for every new data point. Thus, it is applicable to huge data 
sets. There is a vast number of different techniques employing ANN to create 
projections for visualization. Here, we mention just a few to give a taste. 

Auto-associative neural networks. In auto-associative neural networks, also 
called autoencoders, a mapping to the projection space is created without any 
labels for the data used in the learning. The principle is to place a layer with the 
same dimensionality as the projection space in the middle of the network, and 
same dimension for the output as the input, see Figure 28. The network is then 
trained with supervised learning using the same data point as output target as the 
input. The projection is found in the layer in the middle. (Dzemyda, Kurasova, & 
Žilinskas, 2013) 

Neuro scale. Neuro scale employs radial basis functions as the nonlinear part of 
the network, and optimizes the network according to errors between explicitly 
calculated pairwise distance measures in input and output spaces to achieve a 
mapping where adjacent points are kept together in the projection. (Dzemyda, 
Kurasova, & Žilinskas, 2013) 
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Figure 28. Above: Auto-associative neural network. A symmetric mapping is optimized 
by neural network training such that a low dimensional (2D) image is obtained in the 
middle of the training network. The training aims at replicating the input vector (to the 
very right) into the output vector (to the very right), requiring that the low dimension 
bottleneck captures the relevant information. Below: Self-organizing maps. Weights in 
a neural network determines the connections between a high-dimensional data input 
vector and an output positioned on a grid forming a 2D visualization. 

Self-Organizing Maps, SOM. Self-organizing maps is an unsupervised learning 
neural network approach that is used to cluster the data element, and 
subsequently present them on a 2D-grid. The output from the neural network is 
laid out in a grid structure (“map”), so that each neuron corresponds to one 
location on the output grid. It uses a local topological preserving model that 
places similar data in neighboring clusters, by employing a connectivity between 
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neurons that are nearby on the grid (Flexer, 2001). SOM is illustrated in Figure 
28. 

As a general remark, it is worth noting that the projection techniques presented 
here are in most cases not mainly developed and used for data visualization, but 
rather for other data processing and analysis purposes such as clustering. As such 
the majority of the research regarding these techniques deals with algorithmic 
and technical issues rather than exploring the applicability to visualization. 
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4 Effective Visualization of Multiple 
Options 

In various situations, users are considering a large number of options concerning 
a system of interest (e.g. a business, production line, battle space, or vehicle). We 
consider options to be possible actions at hand (e.g., business transactions, or 
troop movements) or alternative state hypotheses consistent with stored uncertain 
data.6 In the former case, possible decisions under consideration may be 
combinations of actions or system parameter values, and the latter set of 
hypotheses may result from multiple alternative associations between uncertain 
observational data and hypotheses. To limit the complexity of this problem in 
this discussion, we in most cases assume that the underlying data and set of 
options are static during a presentation session. Hence, for instance, dealing with 
dynamically changing data and re-evaluation of options is thus beyond the scope 
of this chapter. 

 

Figure 29. Three alternative certain plots (options) of the same underlying uncertain 
data 

One main feature of this visualization problem is that it does not concern 
“ordinary” data, such as collected from sensors, or a catalogue of employee data. 
Instead, if the options represent actions, the visualization is primarily dependent 
on the available set of actions and their parameters, indirectly affected by 
underlying system data. Compared to actions, state hypothesis options are similar 
to “ordinary” data but transformations or expansion thereof. A simple example is 
that of probabilistic databases (Suciu, Olteanu, Ré, & Koch, 2011), (Johansson, 
Nilsson, & Pelzer, 2014) where a database of uncertain data is interpreted to be 
consistent with a number of alternative certain (i.e. standard) databases. Hence, if 
the represented data in the probabilistic database is a set of uncertain points, the 

 
6 To the latter case, we can also add candidate machine learning models as options. 
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multiple options visualization might be a set of alternative point clouds, as 
illustrated in Figure 29 where three certain (but alternative) plots are shown.7 

The illustration in Figure 29 serves primarily to describe to the reader of this 
report how an uncertain dataset may relate to certain ones (not as a visualization 
for a user). However, the same illustration could possibly be used to visualize the 
(uncertain) data to a user.  

Another example of state hypotheses is state estimation in the battle field 
(including positions and states of enemy resources). In this case, observed 
uncertain data can be associated in different ways leading to alternative state 
estimates.8  

When the number of action parameters or available data for data association 
grows, the number of options grows exponentially. Hence, another feature, and 
challenge, of the visualization problem of multiple options is when the number of 
options to present is too many. By “too many”, we mean that the full set of 
options is hard (if not impossible) to visualize in one view for a human user to 
comprehend effectively.  

There are various ways interaction enters into multiple option visualization, most 
pertinent perhaps being “navigation” by “zooming in” on subsets of the large set 
of options, or selecting evaluation metrics. Additionally, related interaction 
involves creating an overview over the set of options by aggregation or filtering, 
and, in some cases, changing the type of admissible options (e.g., pruning the set 
of hypotheses, or increasing or decreasing the set of action parameters).  

In the remaining sections of this chapter, we further discuss this Visual Analytics 
problem and variations thereof. 

4.1 Work Process 
As far as we know, there is no well-established multiple options subfield (as 
coined and outlined in this chapter) of Visual Analytics, and hence no dedicated 
literature. A sub problem focusing on options as machine learning models is 
identified and briefly addressed in (Johnston, 2002). There, evaluating multiple 
different models (i.e. different model parameters) with respect to training data is 
discussed. 

 
7 Probabilistic databases contain uncertain data, but can instead be interpreted as a probabilistic 

uncertainty over certain (standard) databases. One advantage with “expanding” uncertain data to 
alternative certain datasets is that standard analysis methods can typically be applied to each of the 
latter. 

8 These two views on options, i.e. as actions and hypotheses, may be integrated in a common system 
by using the set of alternative state estimates to evaluate or rank alternative actions.  
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Since we lack previous work to relate to, we first attempt to characterize the 
problem by its pertinent features and then address the different parts by providing 
own ideas and references to previously developed visualization techniques.  

4.2 Characterization 
Already in the introduction, we described two features of visualizing multiple 
options: i) options is a special kind of data, and ii) “too many” options to 
visualize. We here dive further into the details of these two features. 

Options as a special kind of data means that we need to consider how to 
represent and visualize actions as that, rather than underlying raw data. This is 
further discussed in section 4.3 below. 

Managing too much information to visualize is not an unknown problem to the 
visualization community. In section 4.4, we discuss ideas about how to address 
that problem for multiple options. 

Naturally, following from the “too many” feature, user interaction is useful to 
facilitate navigation of the set of options, including selection of option evaluation 
metrics. There is also an opportunity for the user to contribute with its expertise 
to the processing of options. In the case of a growing set of system state 
hypotheses, the user may be allowed to “prune” unreasonable hypotheses to 
simplify the further processing of state hypotheses. How the computer and 
human can collaborate concerning multiple options is discussed in section 4.5. 

4.3 Option Representation 
One important issue to solve is how to represent options appropriately. By 
representation, we mean the type of data and meta-data of individual options and 
its type of manifestation in the presentation interface (the presentation modality 
we focus on in this chapter is only visual). For instance, if the options are actions, 
their representation should, as a minimum, convey an accurate understanding of 
the range of actions available to the user, preferably combined with expected 
impact of actions. As an example, in Figure 30, we imagine a single action 
parameter controls the speed of a production line. The visual manifestation of the 
speed parameter control is a turn dial, which in the current discussion is a 
depiction on a screen, but could as well be a physical dial instead. The parameter 
has a few possible values (i.e., data) indicated by the small lines that extend from 
the black circle (representing increasing speed in a clock-wise order). A part of 
the manifestation is also the meta-data including the current state of the 
production line (i.e. the estimated risk of failure, shown on the left), and 
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performance values associated with each action value (i.e., updated estimated 
risk, and estimated productivity increase, shown on the right). 

 

Figure 30. A single action parameter (speed of a hypothetical production line) with a 
discrete number of possible values. The illustration is based on a figure from 
http://openclipart.org. 

The actual representation to select, is of course heavily dependent on the 
application in question, but we can discern a few common issues: 

1. If options are actions, the degrees of available freedom should be clearly 
conveyed to the user. One thing to consider is that the set of feasible 
actions may change dynamically depending on context with each new 
presentation session. The action parameters that correspond to physical 
actuators may be truthfully visualized. In other cases, appropriate 
metaphors capture the set of options efficiently, e.g. the turn dial in 
Figure 30 which here is discrete but could in principle capture an infinite 
number of action values. 

2. Meta-data of options could opportunistically be taken into consideration 
to guide the visualization (e.g., by ordering options based on evaluation 
metrics). An example is provided in the text following this list. 

3. Options are typically similar (even overlapping in structure sometimes). 
For instance, complex actions involving multiple parameters, may have 
the same values for some parameters, differing only in a few parameters. 
In that case, some kind of simplified succinct representation of the 
action options might be possible. For instance, consider a gardening 
system where one parameter concerns regulating a water sprinkler. In a 
decision situation where there is rain, the water sprinkler parameter can 
be excluded from the visualization. A further example is provided in the 
text following this list. 

Concerning issue 2 above, as an example, if meta-data such as the expected 
performance of candidate actions is measured, or the likelihood of state 
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hypotheses, the options could be ordered to promote the most valuable ones and 
suppress the others. 

In cases where options are evaluated with respect to multiple metrics (e.g. low 
cost and low risk of failure, similar to the example in Figure 30), visualizing 
multiple options is largely equivalent to visualizing multidimensional data as 
discussed in chapter 3. 

Figure 31 provides an example with a set of options (each denoted by a ‘*’) 
plotted with respect to the two aforementioned metrics. For each metric, an 
action which leads to a low value is preferred. If these two metrics are the only 
basis for decision, the visualization should primarily concern the options 
belonging to the so called Pareto front, as for each of the remaining options, they 
should be suppressed as there is at least one option belonging to the front which 
is better in all metrics.  

 

Figure 31. The values of a number of options (‘*’) are evaluated and plotted with 
respect to two metrics. The visualization can focus solely on visualizing the options in 
the Pareto-optimal set. 

Concerning issue 3 above, occasionally, strong structural similarity between 
options correlates with their value and options can be grouped based on similar 
value to facilitate aggregated views of options. In Figure 32, a set of alternative 
sequences of associations are considered. As many of the sequences are 
overlapping, the sequences (i.e. options) can be collapsed into a compact tree-
representation of options, where each path (from root node to leaf) is an option.  
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Figure 32. A tree representation of alternative options. Each path in the tree (from root 
node to leaf node) represents an option. (Published with courtesy of Andreas 
Horndahl.) 

4.4 Dealing with Multiple Options 
In section 4.3, we discussed the visualization of a single option. Here, we further 
discuss the visualization of the whole set of options at hand.  

First consider the special case where there is no option to select, instead the focus 
is to describe the whole set of options. As a concrete example, imagine a set of 
likelihood-weighted state hypotheses concerning a target state. The set can be 
integrated to create a single estimate of the target state, if that is what the 
application requires. One could also extract extreme values (such as upper and 
lower bounds) on the target state. Here, various types of descriptive data mining 
techniques such as clustering, and rule extraction can be applied (see for instance 
Hand et al. (2001)). 

In many applications, however, a summary or aggregate of the set of options is 
not requested, but the user is required to select one or a subset of options from 
the set. Then the challenge appears to visualize the individual options, and 
sometimes they are too many to fit the presentation interface.  

A few obvious means to reduce the set of visualized options are to exploit 

1. meta-data to rank the options and only display the highest ranked ones; 

2. structural similarities between options. 

With respect to 1, evaluation of options can be considered to be meta-data; 
hypotheses can be ordered (prioritized) according to likelihood, machine learning 
models according to how well they fit data, and actions according to expected 
utility. In the previous section, we gave an example of how multiple metrics can 
be used to select which options to show (i.e., the Pareto set in Figure 31). 
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With respect to 2, we also gave an example in the previous section of how 
structural similarity between sequences of associations can be presented 
succinctly by a tree (Figure 32). 

What to do then if, after reduction of the set of options, the set is still too large to 
visualize immediately? We have not found any scientific publications on the 
subject, but practitioners share their personal experience. A compilation of two 
of those sources (Bertini, 2011; Scheidegger, 2015) are in the following list: 

• Sampling – selecting random subset of the full set, whose size is suitable 
for the presentation interface 
 

• Filtering/segmentation – similar to sampling, but the selection is not 
random but based on a set of rules (for instance only selecting options 
with high likelihood or high expected utility, or only studying the subset 
where one parameter is fixed such as only data on males) 
 

• Aggregation – summarize subsets of the options, for instance finding 
cluster centers. For instance, one might cluster actions with similar 
performance, let the user choose a cluster, and then select an option 
randomly from the cluster to implement. 
 

• Interaction – unlike the methods above, the interaction approach does 
not lose data and instead lets the user navigate the full set of options by, 
for instance, restricting allowable values, parameter ranges (“zooming 
in”), metrics to consider, alternative visualization (e.g., 2-D or 3-D), etc. 
Make sure that the user knows the context of the current view (e.g. the 
current range selection).  

It might seem disappointing to have to resort to the approximation methods of 
sampling, filtering, and aggregation mentioned above. However, if there is a 
large number of options, a large subset of options may, in practice, be roughly 
equally good. So a lengthy manual search for a best option can sometimes be 
replaced by a (hopefully negligibly) suboptimal but fast one. 

4.5 Interaction and Collaboration 
Interaction is an important part of visualization of multiple options. Already in 
the previous section, we discussed interaction as a means to manage the option 
selection from a huge set of options. Furthermore, in some cases, the 
effectiveness of the visualization can be improved by prompting the user to apply 
its expert knowledge to suppress unlikely or otherwise unwanted options. 
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A typical example is where options are state hypotheses (based on sensor to 
target associations) and the number grows over time. In this case, for 
computational efficiency, it is important to prune the growing tree of possible 
hypotheses. Hence, if the presentation interface provides user input on more or 
less likely hypotheses, this can be important feedback to the algorithm that 
manages the set of options. 

An additional example of computer-human collaboration is described in (Karami 
& Johansson, 2014). Here, a user is considering different sensor control options 
to acquire new relevant information to support an intelligence analysis problem 
at hand. At the bottom of the image is a computer which ranks configuration 
options based on the evidence collected by sensors. However, the evidence does 
not cover all aspects that could be included when taking a decision about 
configuration option. The user has important experience with, for instance, cost 
and risks with different configuration options. The computer’s ranking acts as 
input to a multi-attribute decision making (MADM) module which also 
integrates the human’s inputs. The result is a ranking of the options which 
considers both the human and computer aspects. 

 

Figure 33. A system which supports a user to make decision about sensor 
configuration options.  
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4.6 Summary and Discussion 
In this chapter, we outlined a Visual Analytics problem which involves 
presenting a large number of options to a user (for instance system action 
configurations, state hypotheses, or machine learning models). A concrete 
example is provided in section 7.3.2. 

Our study did not discover a research subfield dedicated to the visualization of 
multiple options. Instead we approach the issue from different perspectives: 
representation (section 4.3), multiplicity (section 4.4), and human-computer 
collaboration (section 4.5), and describe how current result can contribute to deal 
with these perspectives. 

The most important findings of this study are: 

1. Options to visualize are not the same as the underlying data (which is 
what is visualized in most applications), instead options merely reflect 
the underlying data and meta-data. This fact can either simplify 
visualization or make it more complex. For instance, if the number of 
actions is fixed, the number of data points in the underlying dataset will 
have little impact on the visualization of the fixed set of options. 

2. There are basically two different ways to deal with the visualization of 
too many options: i) “destructive” simplification (sample, filter, or 
aggregate) or ii) let the user iteratively zoom in and navigate through the 
set of options. 
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5 Uncertainty in Visual Analytics 
This chapter is mainly influenced by the reviews performed by Brodlie, Allendes 
Osorio and Lopes (2012) and Bonneau, et al. (2014). 

All data are intrinsically associated with uncertainty, ambiguity and imprecision. 
Yet, most visualization techniques do not reflect this fact and assume that the 
displayed data are exact. Too often, the uncertainty remain overlooked in 
visualization, mostly due to difficulties in applying existing visualization 
approaches, increasing visual complexity of addition of uncertainty, and the lack 
of obvious visualization techniques (Bonneau, et al., 2014). Even though, error 
bars and boxplots are frequently used in representation of uncertainty in 
scientific publications, in other contexts, usually the concept of uncertainty in 
representation of data is omitted, especially when visualizations are used in 
decision making. For instance, contour maps rarely incorporate any notion of 
uncertainty, furthermore, the very crispness of a contour line conveys the 
impression of confidence that is frankly an illusion (Brodlie, Allendes Osorio, & 
Lopes, 2012). However, in recent years, the awareness of the uncertainty 
problem within the visualization community has grown (e.g. see 
recommendations by Thomas and Cook (2005)), and many traditional methods 
have been extended to embrace the concept of uncertainty.  

5.1 Sources of Uncertainty 
Visual analytics is a means through which scientists and decision makers, 
investigate, evaluate and explore available or simulated data in order to identify 
patterns and generate hypotheses. Uncertainty in Visual Analytics may refer to 
the lack of certainty in all different stages of this process and be originated from 
different sources, ranged from uncertainty observed in sampled data, uncertainty 
measures generated by models or simulations, and uncertainty introduced by the 
data processing or visualization process (Bonneau, et al., 2014). We follow the 
taxonomy presented by Brodlie, Allendes Osorio and Lopes (2012) and 
distinguish between the two broad classes of uncertainty: visualization of 
uncertainty and uncertainty of visualization.  

While visualization of uncertainty deals with the problem of depicting the 
uncertainty of data, the uncertainty of visualization considers how much 
uncertainty is added to the data as they are processed through the visualization 
pipeline. To understand types and sources of uncertainty consider the 
visualization reference model presented by Haber and McNabb (1990) in Figure 
34, adapted by Brodlie, Allendes Osorio and Lopes (2012). The data from 
measurement or simulation are pre-processed and filtered. This step often 
includes approximation and interpolation. The filtered data is then passed 
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through mapping stage, that is, some visualization algorithm that produces 
geometrical objects. In the final stage, the geometry is rendered to an image, 
which is presented to the user. All these stages encompass uncertainty. While 
visualization of uncertainty concerns with uncertainty in data itself, uncertainty 
of visualization refers to the uncertainty that is added to the data through the 
visualization pipeline. 

 

Figure 34. Visualization of uncertainty and uncertainty of visualization (Brodlie, 
Allendes Osorio, & Lopes, 2012). 

5.1.1 Visualization of Uncertainty 

The data, either measured in experiments or being result of the simulation, are 
seldom exact and are associated with some uncertainty. The visualization of 
uncertainty focuses on how to visualize the uncertainty, which is associated with 
the data. 

5.1.2 Uncertainty of Visualization 

Several operation during the filtering stage may increase the uncertainty of the 
data. For instance, approximation and rounding of the data, or interpolation to 
infer incomplete data. The mapping process involves some visualization 
algorithm that produces a geometrical object. These algorithms may introduce or 
increase the uncertainty of the data, for example, numerical solutions of 
equations, or approximation of curved surfaces by polygons. Rendering stage 
involves discretization, which may obscure information whenever the resolution 
of the output image is lower than the resolution of the data. As the data are 
processed through the visualization pipeline, these uncertainties are accumulated 
and may be amplified. Thus, it is of utmost importance that visualization 
methods have proper facilities to manage and represent uncertainty. 
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5.2 Approaches to Visualization of Uncertainty 
One of the main reasons that makes visualization of the uncertainty a difficult 
topic, is that one needs at least an extra dimension to visualize it. For instance, 
consider the simple example of plotting a zero-dimensional point in Figure 35. If 
the value of a data point in the 2-dimeonsional plan is exact for example	ሺݔ, ሻݕ ൌሺ3,5ሻ, it can be illustrated using a point marker having no dimensions. However, 
if there is uncertainty in the ݕ-value (e.g.ݕ ൌ 5 ± 0.5), we need an extra 
dimension to visualize the uncertainty as an error bar (the marker becomes a 
line). The dimension of the data is unchanged and still zero, but the extra 
dimension is required in the visualization to display uncertainty. In the same 
manner, isolines and isosurfaces become areas and volumes in the presence of 
uncertainty. Adding a new dimension will especially be difficult for 3ܦ and 
higher dimensions, where we already have trouble with visualization for the 
exact values.  

Incorporating uncertainty, implies increasing the complexity of the visualization. 
One way to avoid cluttered visualization, is to let the user interactively choose 
between adding and removing an overlay indicating the uncertainty (e.g. standard 
deviation) to the crisp representation of the data. 

 

Figure 35. Uncertainty increases the dimension of a point from 0 to 1: point becomes 
a line. 
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When it is not possible to add more spatial dimensions, we have to create a visual 
‘dimension’ using different means. Examples of such solutions are the following: 

• Juxtaposition: providing the visualization of uncertainty in a separate 
pictures, for example plotting standard deviation alongside a mean value 
plot. 

• Animation: using time as an extra dimension, for example by 
displaying a sequence of possible instances of a model.  

• Overly: Superimposing the visualization of uncertainty over the normal 
visualization, for example overlaying a counter map of standard 
deviation on top of a heat map of the mean values. 

• Color: using the hue, saturation and the value of colors as an extra 
dimension to encode uncertainty. 

5.3 Methods for Visualization of Uncertainty 
In the following some of the efforts used in visualization of uncertainty are 
presented. The sample is far from exhaustive and serves only to demonstrate the 
variety of the used methods. Interested readers are referred to more 
comprehensive reviews of this topic, e.g. (Pang, Wittenbrink, & Lodh, 1996) and 
(Brodlie, Allendes Osorio, & Lopes, 2012). 

5.3.1 Points in 2D or 3D 

In visualization of a collection of points in a 3D space, for example positions of 
astronomical objects in the universe, which are described by their distance (from 
earth) and equatorial coordinates, right ascension (RA) and declination (Dec), the 
positional uncertainty of the objects can be decomposed into two components: a 
radial component along the sight (from earth to the object) and a spherical 
coordinate (RA/Dec). This positional uncertainty can be visualized by plotting a 
line segment (error bars) along the line of sight from earth, ignoring the 
uncertainty in RA/Dec, since the uncertainty in distance is usually of a larger 
orders of magnitude than the uncertainty in RA/Dec. The uncertainty can instead 
be visualized using ellipsoids centered on the objects, to visualize all uncertainty 
terms simultaneously, if the RA/Dec component is not negligible (Li, Fu, Li, & 
Hanson, 2007). 



 FOI-R--4200--SE 

63 

 

Figure 36. At the left, boxplots visualizing uncertainty of 3 datasets randomly 
generated, at the right violin plots for the same data. While the interquartile range is 
shown by a blue rectangle in boxplots, in the violin plots the median and the 
interquartile range are marked by red lines. 

5.3.2 Boxplots 

For visualizing uncertainty of the value of a data point (or several data points) 
that is presented by different observations of a scalar variable, the standard 
method is the boxplot (Tukey, 1977), which depicts upper and lower bounds, 
upper and lower quartiles, median and possible outliers. The upper and lower 
bounds may represent different values, for example, minimum and maximum of 
the data, or one standard deviation above and below the mean of the data. 
Different extensions have been suggested to include higher-order statistics such 
as skewness, kurtosis and tailing into the boxplot (Potter, Kniss, Riesenfeld, & 
Johnson, 2010). Violin plots (Hintze & Nelson, 1998) add the information 
available from probability density of the data at different values (density shape) 
to the boxplot. Figure 36 shows boxplots and violin plots for 3 randomly 
generated uncertain datasets. While the boxplots for the first and the third 
datasets seem almost identical, the violin plots for the same datasets reveal that 
they are distributed quite differently. 

5.3.3 Two-dimensional Graphs 

One of the most common visualization objects is two-dimensional graph. The 
uncertainty of the underlying points that constitute the graph can be added by 
different means. For instance, one can choose to add error bars to the data point 
markers or use size or color of the point markers to encode the uncertainty. For a 
continuous graph, the graph itself can be color coded using an uncertainty color 
map. Figure 37 illustrates two-dimensional graphs visualizing uncertainty with 
size and colors. 
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Figure 37. Two-dimensional graphs visualizing uncertainty. In (a), the uncertainty is 
added by the point marker size (the larger, the more certain), and in (b) the 
uncertainty of the continuous model is visualized by different saturation of the graph 
color (the sharper, the more certain). 

5.3.4 Three-dimensional Surface Plots 

In three-dimensional surface plots, akin to the two-dimensional graphs, adding 
glyphs at data points on the surface with varying size and color, error bars, and 
color mapping of the surface are frequently used. Another common method is 
adding time dimension and animation effects (Ehlschlaeger, Shortridge, & 
Goodchild, 1997). Uncertainty in the data is transmitted from the spatial to the 
temporal domain, and visual vibrations are used to indicate the level of 
imprecision at visualized data points (Brown, 2004).  

5.3.5 Contour Lines 

Visualization of uncertainty in contour lines can be distinguished into two 
categories. In the first category, the uncertainty in isolines is produced as a result 
of the uncertainty in the constant value (evaluation). In the second category, the 
uncertainty is in the space of the independent variable. The first is called value 
uncertainty, and the second positional uncertainty (Brodlie, Allendes Osorio, & 
Lopes, 2012). Value uncertainty is visualized by a crisp isoline depicting the 
mean value and an overlay that indicates the uncertainty of the value, for 
example by a standard deviation. Positional uncertainty is usually visualized by 
using a spaghetti plot, in which an isoline is drawn for each model in an 
ensemble (see Figure 38). There are other methods that do not fall into either 
category; for a thorough discussion of value uncertainty, positional uncertainty 
and other approaches see (Brodlie, Allendes Osorio, & Lopes, 2012) and 
references therein, especially (Sanyal, et al., 2010; Potter, et al., 2009; Juang, 
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Chen, & Lee, 2004; Allendes Osorio & Brodlie, 2008; Pöthkow, Weber, & Hege, 
2011). 

 

 

Figure 38. Uncertainty in contour lines. (a) The Matlab’s “peaks” function. (b) 
Visualization of value of uncertainty; points on the peaks function having a value	3 ±05. (c) Positional uncertainty; spaghetti plot for isolines for 5 instances of the peaks 
function with added noise. 

5.3.6 Heatmaps 

A heatmap is a color mapping used for visualizing a scalar field, which 
associates a scalar value (e.g. temperature) to each point of a two-dimensional 
space. Different methods have been suggested to embrace uncertainty in 
heatmaps, among others, providing heatmaps of mean and standard deviation and 
adding whiteness to uncertain areas. For more examples and discussion over 
these methods see (Love, Pang, & Kao, 2005; Hengl, 2003; Cedilnik & 
Rheingans, 2000; Coninx, Bonneau, Droulez, & Thibault, 2011).  
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5.3.7 Isosurface 

An isosurface is a three-dimensional equivalent of the two-dimensional isoline 
(contour line) that is a surface representing points in a three-dimensional space 
having a constant value (e.g. temperature, pressure). In the presence of the 
uncertainty the situation becomes difficult, since the three space dimensions are 
used for visualizing the surface. Similar to an isoline, two types of uncertainties 
may exist: visualization of value uncertainty and positional uncertainty. For 
value uncertainty, the isosurface of the mean value alongside with an indication 
of the uncertainty in data (using either color or glyphs) can be used, for example 
see (Johnson & Sanderson, 2003; Rhodes, Laramee, & Bergeron, 2003; Newman 
& Lee, 2004; Grigoryan & Rheingans, 2004). An illustration of an isosurface 
with value uncertainty is found in Figure 39. For positional uncertainty of an 
isosurface see (Pöthkow & Hege, 2010; Pöthkow, Weber, & Hege, 2011). Both 
value and positional uncertainties for isosurfaces are studied by Zehnera, 
Watanabea & Kolditz (2010) and Love, Pang & Kao (2005).  

 

 

Figure 39. Isosurface of a synthetic data set indicating value uncertainty around the 
isovalue (Johnson & Sanderson, 2003). © 2003 IEEE. Reprinted with permission. 

5.3.8 Scatter Plot and Parallel Coordinates 

Multivariate data without specific dependency on space, time or other physical 
values (which is common in scientific visualization), are often visualized using 
scatter plot (matrices) or parallel coordinates. Xie, Huang, Ward & 
Rundensteiner (2006) and Feng, Kwock, Lee & Taylor (2010) augment scatter 



 FOI-R--4200--SE 

67 

plots and parallel coordinates plots to incorporate uncertainty and integrate them 
with existing multivariate analysis techniques. However, generalizing these 
methods to cases where the multivariate data depend on some variables (e.g. 
space and time) is challenging. Example of methods that address challenges in 
unsteady multi-field visualization can be found in (Jänicke, Wiebel, 
Scheuermann, & Kollmann, 2007). 

5.3.9 Arrow Plots 

In visualizing an overall picture of a flow vector field, a common approach is to 
position glyphs at grid points (or superimposed on contour lines) to convey 
properties such as direction or velocity. An example is the arrow plot where the 
direction in which the arrow points is the direction of the vector and the length of 
the arrow is its magnitude. To incorporate uncertainty Wittenbrink, Pang & 
Lodha (2006) and Zuk, Downton, Gray, Carpendale & Liang (2008) use varying 
arrow shapes to indicate uncertainty in bearing and magnitude of the vectors in 
steady flows. 

5.4 Uncertainty of Visualization 
Even if the data is precise, the visualization process itself may generate 
uncertainty. Two main sources for introducing errors are: (i) filtering stage, while 
we create a model of the data by interpolating the available data, and (ii) 
mapping and rendering stage, when we represent the model by a graphical object. 

The uncertainty introduced to the representation can be of such magnitude that 
scientists’ efforts to generate data using higher order approximation appear 
meaningless. Methods such as ray tracing, which are able to pass higher order 
data through the visualization pipeline usually suffer from poor performance and 
depend heavily on high computational power. However, Nelson & Kirby (2006) 
and Nelson, Haimes & Kirby (2011) show that for high accuracy, direct ray 
tracing of high order finite element is superior to marching cubes (one of the 
most used algorithms in computer graphics) for drawing isosurfaces. 

5.5 Conclusion 
As challenging it is to incorporate the uncertainty in visualization, as easy it is to 
ignore it. However, the uncertainty in the ground truth does not disappear just 
because we overlook it.  

Fred Brook in his keynote speech at the IEEE Visualization ’93 conference 
reminded the audience the obligation of truthfulness in scientific presentations 
and stated “Scientific visualization surpasses all other computer graphics in the 
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pre-eminent obligation for truthfulness in what it conveys” (Brooks, 1993). 
Increasing the expressive power of visualization techniques has not rendered 
these recommendations obsolete, and we still rely on the integrity of the 
visualization scientist. It is the responsibility of the scientist to create an honest 
visual representation of the data and provide the user with an indication of how 
reliable the representation is (Brodlie, Allendes Osorio, & Lopes, 2012).  
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6 Visual Analytics in Computational 
Fluid Dynamics 

Visual Analytics plays an important role when managing search and exploration 
of data during analysis work. Due to ever increasing capabilities in data 
harvesting for analysis purpose and decision making, the methodology becomes 
interesting for more and more applications. The ability to interact with the data 
sets through data extraction/reduction and visualization is often vital for the 
understanding of complex problems. For the intelligence gathering done by the 
security agencies, VA is imperative since the security agencies around the world 
nowadays work more and more with analysis of huge disparate data streams 
(Thomas & Cook, 2005). Other fields such as general law enforcement, 
infrastructure protection and financial fraud analytics are today using tailored 
methods to deal with large quantities of data, see e.g. (Kielman, Thomas, & May, 
2009). 

The scope of VA is, as argued in (Keim, Mansmann, Schneidewind, Thomas, & 
Ziegler, 2008), to employ intelligent algorithms and user interfaces in order for 
the human to visualize and directly interact with the information; to take the 
analysis process to the next level. “A science of analytical reasoning facilitated 
by interactive visual interfaces” as proposed in (Thomas & Cook, 2005). In 
(Keim, Mansmann, Schneidewind, Thomas, & Ziegler, 2008), a formal model of 
this process is presented with the key concepts explained. As mentioned in e.g. 
(Simoff, Böhlen, & Mazeika, 2008) visual data mining by use of more 
sophisticated software and procedures that moves the analyst in close contact 
with the data sets and provides the ability to interactively explore the data is not, 
however, being widely enough used. Several reasons for this exist. In (Simoff, 
Böhlen, & Mazeika, 2008) it is argued that, amongst other things, the field is new 
and that, in order to deploy the methods, the analyst needs to be proficient in 
both data mining and visualization. Furthermore, the focus is very often on the 
results of the analysis rather than the justification of the analysis procedure as 
such. 

Within the field of Computational Fluid Dynamics (CFD), Visual Analytics 
plays a highly important role and has done so for many years. In fact, the ability 
of being able to, sometimes on the fly, visualize and interact with the data is of 
fundamental importance for the understanding of fluid flow. This is due to the 
complex nature of flow physics that makes it extremely hard to predict 
intuitively. In Figure 40, examples of visualization of different types of fluid 
flow are shown. 
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Figure 40. Examples of Computational Fluid Dynamics visualization. Upper left: 
Contaminant transport in Old Town, Stockholm (Parmhed, Svennberg, Burman, & 
Thaning, 2004). Iso-surface colored with contaminant mass fraction. Upper right: 
Explosives blast close to ground (Fedina, 2014). Post explosion after burning with 
burning coal particles. Shock waves reflecting on ground. Lower: Vorticity 
visualization from fuel injection nozzle in HYSHOT Scram-jet engine (Chapuis, et al., 
2013). Iso-surface of vorticity colored by temperature.  
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The engineering terms used within the CFD community to describe these 
activities are pre- and post processing rather than Visual Analytics. When 
working with CFD, many of the operations conducted in order to setup the 
problem and to get a better understanding of the governing flow physics are 
based on VA. Even the analysis step including the pure number crunching of the 
numerical approximations of the governing physics equations, the solve or 
solution phase, is of interest both to monitor and analyze visually. Since the 
simulation is often performed on large High Performance Computing (HPC) 
systems, both flow physics variables, numerical convergence related variables as 
well as more computer related variables such as storage capacity/usage and 
compute cluster performance are targeted. In Figure 41, a general schematic of 
the typical analysis workflow is shown (Fureby, 2015). 

The procedures developed to analyze different parts of the flow are highly 
tailored by the analyst. There exist numerous, readily available tools, for example 
statistics toolboxes, graph plotters, visualization environments, movie making 
software etc., but, in general, a significant part of the overview of the analysis 
toolbox is created, set up and maintained by the analyst. Thus, there is always a 
risk of inventing the wheel over and over again. In Figure 42, typical analysis 
output are shown: the numerical solutions are compared with experimental 
results. 

The CFD software vendor list ranges from large software companies listed on the 
stock market, to small companies and groups usually distributing their free 
software through the GNU licensing format. Common for many of these 
programs is that they are targeted specifically for CFD application. Most of these 
are sold or distributed as pre-processing or post-processing tools rather than VA 
tools. Today, many of the larger companies provide software that are, in essence, 
VA tools tailored for the CFD application, with all the functionality within the 
native, fully-integrated product suite. 

For a VA environment also working as a wrapper tool, a portal that merges 
output from different software, the utilization for CFD work should be high since 
many analysts work with software of different origin for pre- and post processing 
as well as for the numerical solver. There should thus exist a natural interest in a 
platform to filter, control and display data from these different sources. 
Furthermore, due to the ever increasing challenge with handling extremely large 
data sets, the structure and analysis framework making it possible to extract 
specific data fast is becoming more important. 
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Figure 42. Surface ship hydrodynamics. Transient simulation including water surface 
and surface waves. Detailed comparison versus experimental data with respect to 
wave height, velocities, forces and moments (Svennberg, Fureby, Liefvendahl, & Alin, 
2011). Upper left: Model of ship hull. Upper right: Instantaneous vorticity on bottom 
side of hull colored by velocity. Velocity contour plots in cross sections along the hull 
showing boundary layer profile. Lower left: Simulation vs. experiment. Surface 
capturing. Lower right: Cross-sectional comparison of experimental and simulated 
axial velocity fields. 

  

Figure 41. CFD analysis work flow. Problem formulation and setup in the pre-
processing stage with a CAD representation of the physical domain and the 
subsequent generation of the computational grid used by the numerical method. This 
is followed by number crunching with help of physics models and numerical methods 
on large HPC compute resources in the solve phase. For the converged solution, 
visualization and interpretation of simulation final output is done during the post 
processing stage (Fureby, 2015). 
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Within the CFD community there is a large difference with respect to what type 
of analyzes are performed. The community ranges from mechanical engineers 
working close to production, to research groups. In production industry the lead 
time could be short which means that the methods and software used are 
designed to produce results fast. Within the research community, the focus could 
be to improve and use the state-of-the-art. 

As mentioned earlier, many types of data is of interest to monitor and analyze 
during a typical CFD analysis. Primary solved physical variables (velocity, 
pressure, density, temperature etc.), numerical convergence data but also more 
computer related data such as storage consumption, cluster performance and job 
queueing. Complete integration of such data is often not available within typical 
CFD dedicated software and complete automation of this may be hard to obtain. 
A tool that makes this work fast and easy should, however, be most valuable. 
Furthermore, increased capability to access data for comparison is also in general 
of interest. This data could come from previous simulations, from experiments or 
elsewhere. Using a more advanced, dynamic, VA platform could improve overall 
quality with better macroscopic view of the project and thus, improved analysis 
capability. 

As argued in (Keim, Mansmann, Schneidewind, Thomas, & Ziegler, 2008) user 
acceptability and development of a thorough understanding of what these VA 
tools can do remains a challenge. Although many techniques have been 
presented, they are still not used widely outside the VA community. For the 
specific CFD community, VA tools are already well developed and used. 
Furthermore, fluid dynamics specialists are often skilled in both data mining and 
visualization. There is thus a good chance of future VA tools developed within 
the body of other research environments to be deployed and used with CFD as 
well. The computational fluid dynamics community would therefore most likely 
benefit a lot from the fact that VA is becoming widely used. To give a few 
references to more in-depth material, in e.g. (Hansen & Johnson, 2005), common 
techniques used to visualize fluid flow are presented. Streamlines, particle 
tracking, volume rendering etc. are discussed as well as a several suggestions on 
how to visualize vorticity for time resolved data. Several good references on 
visualization are also available in chapter 5. At present, there are several research 
and science centers focused on VA, e.g. the groups Information Visualization, 
Interactive Visualization, and Medical Visualization at Linköping University 
(http://www.itn.liu.se/mit/research?l=en), Visual Arena Research in Gothenburg 
(http://visualisering.gu.se/) and the HPCViz (www.kth.se/en/csc/forskning/hpc-
viz) at the Royal Institute of Technology, KTH to name a few residing in 
Sweden. 
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7 Discussion and Conclusions 

7.1 Reflections 
Visual Analytics is a process that is heavily dependent on a human in the loop, as 
can be noted in Figure 4 where the human is controlling the processing occurring 
in the visualization pipeline. Expert knowledge and well-designed human-
computer interaction are therefore required to fully exploit the power of VA. 
However, using freely available visualization tools is a low threshold entry point 
for anyone who wishes to perform an initial visual data analysis, which has the 
potential to lead to new insights. 

As large quantity data analysis and management is becoming a more thoroughly 
integrated part of many disciplines, e.g. business, environmental monitoring, 
security, disaster and emergency management, software analytics and 
engineering physics to name a few (Keim, Mansmann, Schneidewind, Thomas, 
& Ziegler, 2008), the methods and tools for VA are now rapidly developing as 
well. Related research fields may, provided that this is migrated across and 
implemented properly, have a huge advantage of these developments. This 
should definitely be true within the field of CFD, where the increased attention 
for VA in other research areas should contribute to the overall development of 
new visualization techniques for fluid dynamics purposes as well. 

Visual analytics is a powerful tool for understanding data, however, it is a 
double-edged sword. At the same time that it provides the ability to come to 
conclusions quickly, it may tempt to bypass the requirements for data analysts 
and lead to unreliable and inaccurate decisions. Despite huge progresses in 
techniques and methods in visualizations, many of challenges that were stated by 
the pioneers in the field remain the same, one of the most crucial being 
“visualization and scientific truth”. Maybe as relevant it is to discuss how VA 
can lead us to new insights and understanding the data, equally vital it is to ask 
“how can we avoid misleading our viewers?” (Brooks, 1993). 

A trend in VA is to move the analysis and control from the data analyst to the 
decision maker (who, with the help of VA can “understand” the data 
independently of a trained and experienced analyst). However, we argue that this 
might be an unsafe move, since a trained analyst have greater knowledge of 
interpreting data, for example in terms of understanding statistics and limitations, 
and thus there is a risk that the data will be interpreted incorrectly. 

Especially in a commercial context the Visual Analytics tools are too often 
presented as intelligent assistants to the decision-maker. Tools that seemingly 
automatically process and adapt the visual content to the needs of the user. See 
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for example http://vis.pnnl.gov/ “We take into consideration the application of 
human judgment to make the best possible use of incomplete, inconsistent, and 
potentially deceptive information in the face of rapidly changing situations”. 

If VA is used wisely the visual analytic tools can help decision-makers to make 
sense of a situation, and based on that take correct decisions. However, it should 
be emphasized that focus is on humans involved in the decision process, and 
humans choosing how to view and analyze the data.  

Proponents of Visual Analytics often claim that the Visual Analytics process is 
data-centric i.e. discovers hypotheses directly from data. As with the claims of 
intelligent VA tools, such statements must be handled carefully. A hypothesis 
can be formed based on what is found in the data during the VA process, but if 
the data is also used to confirm the hypothesis there is a prevalent risk of self-
fulfillment as the data might confirm itself. In addition, there might be concerns 
with multiple layers of theory since hypotheses are also needed for transforming 
sensor signals to ‘data’, be it sensors measuring physical phenomena or, even 
worse, sensors in the form of complex algorithms scanning vast amounts of texts 
or financial data. 

Two main fallacies can occur in attempts of working with discoveries of 
hypotheses directly from data, be it through VA or through correlation-finding 
algorithms for Big Data. These are 1) that causality cannot be concluded from 
correlations and 2) sampling bias. A hypothesis that is useful for real-world 
decisions must say something about causation e.g. Ebola is spread from fruit bats 
to humans. This means presumably that the prevalence of Ebola infections in 
fruit bats and in humans are correlated although the hypothesis cannot be derived 
from the correlation. However, it can be falsified by lack of correlation in the 
data. Likewise, stock market prices are correlated to the spread of Ebola but it 
would be wrong to conclude that Ebola cases are caused by stock market losses 
since it in general is impossible to derive causality from correlations. It is 
beneficial to view hypotheses as human conjectures to be pruned by comparing 
with data.  Sampling bias makes it dangerous to assume that Twitter streams 
represent attitudes and feelings of a nation. Twitter users in the U.S. are for 
example predominantly young, urbanized and black which means that Twitter 
data is an indicator of the opinions and sentiments of a significant U.S. sub-
population but not the entire population. 
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7.2 Research Perspectives 

7.2.1 3D Virtual-reality 

Based on the success and performance of the Oculus Rift9 Virtual Reality Helmet 
we believe that 3D virtual-reality environments will be a key aspect in future 
implementations of Visual Analytics. The Oculus Rift is a head-mounted display 
that following a Kickstarter campaign was developed by Oculus VR. The user is 
mobile while wearing the headset and get the experience of being immersed in a 
fully 3D virtual world which makes gaming the main application of the 
technology. Facebook acquired Oculus VR 2014. Samsung released an Oculus 
Rift clone 2015 marketed as Gear VR10. Because of the gaming market 
supporting the development of advanced VR headsets, we think that VR helmets 
will be widely available at a reasonable price in the near future and that it 
therefore will be quite feasible to use VR headsets for Visual Analytics. This 
opportunity will drive Visual Analytics research in a new direction. 

7.2.2 Semantic Hashing with Deep Learning 

Deep Learning is a comparatively new machine learning technology with a 
potential for approaching human-like intelligence. Using deep layers of 
autoencoders11 it is possible to perform dimensional reduction of input data. This 
technique, called “semantic hashing”, has been used for indexing and retrieving 
documents in semantically relevant classes. We think that such semantic hashing 
will be widely used in Visual Analytics. 

7.2.3 Decision Support 

Although the purpose of decision support is ultimately to support decisions or 
actions that have a positive impact on some operation of interest to the user, 
current research on visualization for decision support seems to reach no further 
than just to accurately present information. For instance, in a research paper 
focusing on the “visualization-based decision support” (Sauter, Mudigonda, 
Subramanian, & Creely, 2011), the most stressing issue seems to be the selection 
of a suitable visualization tool to aid decision making, without considering the 
following step of how to present the actual decision or action options. In chapter 
4, we address that “missing part” of the decision process, that of selection of 
options, which could be part of the decision support (and sometimes “should be 

 
9 http://www.ign.com/wikis/oculus-rift 
10 https://en.wikipedia.org/wiki/Samsung_Gear_VR 
11 https://en.wikipedia.org/wiki/Autoencoder  
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part of” due to the need for automatic management of a large number of time-
varying options). At FOI, in the SBFP project (described in section 7.3.2 below), 
an effort is now made to complement the pure visualization of data with the 
commander’s operational action options. 

7.3 Relevance for Defense 
This section describes options for using Visual Analytics in military contexts 
with concrete application in some ongoing FOI projects. 

7.3.1 ONSIM 

Intelligent On-line Simulation Support for Operational Battle Management 
(ONSIM) is an ongoing FOI-project aiming at creating a new model for leading 
and managing air combat. The key idea is to use advanced simulation to predict 
the outcome of possible moves combined with AI for managing the simulation 
resources and compiling reports for military leaders. Commanders use a 
graphical interface to sketch plans such as for example to commit all available air 
defense resources to thwart an ongoing attack. The AI maps out possible 
implementations of the sketch and starts a set of simulations for analyzing 
possible long-run outcomes and analyzes conclusions that can be drawn from the 
simulation results. Firm conclusions are presented for the commander via the 
graphical interface. A possible overall conclusion might be that the ongoing 
attack will be defeated but the second attack wave will break through because of 
depleted defense resources. We can view the simulations as means for collating a 
vast database of possible events and evolutions in the ongoing air battle. The 
graphical user interface supports a Visual Analytics process in which the 
commander interacts with the system by suggesting possible plans and gets 
feedback as intelligent digests of simulation results. The inbuilt AI handles the 
detailed mechanics of initializing and starting simulations. From the point of 
view of the commander and his/her staff, operational battle management is 
transformed to a Visual Analytics process where people suggest plans and 
machines propose likely outcomes. One of the partners of ONSIM is Thales who 
provides graphical tools for enhancing situational awareness in air combat12 with 
potential for integrating the ONSIM analytical tools. 

 
12 https://www.thalesgroup.com/sites/default/files/asset/document/WebS%C2%B2AT.pdf 



FOI-R--4200--SE 

78 

7.3.2 Simulation-based Operation Planning 

The Simulation-based operation planning project (SBFP) is focused on using 
simulation-based methods for analysis of commander questions concerning 
military operation planning. These methods are used to evaluate alternative 
military scenarios and plans, involving resources used for military operations. 

The thousands of detailed simulations cover a range of input parameter values 
and output a number of performance values. These are collected and statistics are 
visualized to the commander in a multitude of ways. An example is shown in 
Figure 43, where, briefly, the importance of various simulation parameters on the 
beneficial result is shown (Schubert, Johansson, & Hörling, 2015). 

 

Figure 43. A visualization to compare the statistics of some parameters based on a 
large number of simulations. 

7.3.3 Uncertainty in Terrain Analysis  

Terrain Analysis for Simulation Applications is an ongoing FOI project that 
among others develops a geo-analysis software library that can be integrated in 
different simulation environments with the focus on path planning and 3D line-
of-sight analysis. This project employs a method for line-of-sight analysis that 
does not give an answer of the binary type (0 = no sight, 1 = free sight), but 
incorporates uncertainty in the height data in the analysis process and provides 
the probability of the free sight (a value between 0 and 1), see (Tolt, Follo, 
Hedström, & Härje, 2014). 
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Figure 44. Left: traditional line-of-sight analysis. Right: Probability based line-of-sight 
analysis that takes into the account the uncertainty in the data. 

Real-time line-of-sight analysis has many applications in military operational 
planning, for instance in urban terrains. Introducing uncertainty to the analysis 
and permitting the user to interact with the visualized result (e.g. changing 
probability measures) provides a far more advantageous decision support tool to 
the planner. 

7.3.4 Decision Support with Multiple Options 

Information Interoperability and Intelligence Interoperability by Statistics, 
Agents, Reasoning and Semantics (IN-4-STARS2.0) is a European defense 
agency (EDA) project13 involving FOI and partners from Estonia and the 
Netherlands. IN-4-STARS2.0 deals with various aspects of secure 
interoperability and processing of heterogeneous information in a networked 
information exchange infrastructure for large-scale intelligence analysis.  

The FOI part of the project primarily consists of supporting an intelligence 
analyst, who is monitoring the collection of information from distributed 
heterogeneous information sources (including sensor data and social media 
information), information management, and inference for threat estimation. 
Based on the processed information, the analyst should be prepared to respond to 

 
13 EDA project no. B 0983 IAP4 GP (IN-4-STARS) 
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questions about the security status of a particular region of interest. To aid the 
analyst, he/she has a decision support tool which presents threat levels, with the 
help of a library of inference models (in our case Bayesian networks).  

The collected information is typically highly uncertain and sometimes it is even 
difficult to know which potential threat it concerns, resulting in multiple 
alternative interpretations of the data (Johansson, Horndahl, & Rosell, 2015). The 
analyst’s need for Visual Analytics is hence strongly related to the discussion in 
chapter 4 about visualization of multiple options.  

In Figure 45, an initial prototype of an analyst’s interface is sketched. On the far 
right is a tree structure, which concisely depicts all alternative data 
interpretations, i.e. each branch in the tree represents a particular sequence of 
interpretations of the collected data so far. In this case, each branch also 
represents an instantiation of nodes in a Bayesian network-based threat model 
and updated probabilities on all involved variables. As the number of branches 
(interpretations) grows exponentially with each new collected data, the tree also 
allows the user an opportunity to use its expertise to cut unlikely branches. 

To the left of the tree are three boxes entitled Avg, Max and Min. Max and Min 
are the two alternative interpretations that yield the highest and lowest value on 
the analyst’s threat variable of interest, 80% and 10% respectively, in the 
example. The instantiated Bayesian networks for each case is also shown. Avg 
shows a mean threat probability over the whole set of interpretations. 

 

 

Figure 45. Prototype visualization of multiple options as alternative interpretations of 
data (illustration by Andreas Horndahl). 
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7.4 Relation to the Teenage Mutant Ninja 
Turtles Universe 

Some readers might miss a logical flow in the chapter structure of this report. We 
could for example have organized chapters according to a process pipeline or 
systematically covering the relation to various neighboring scientific domains. 
However, each author has written a chapter that typically focus on some 
problematic point of Visual Analytics. One could argue that the chapters in this 
report follow a different dimension as compared to the process pipeline in Figure 
4. This is correct but best described by comparing to the Teenage Mutant Ninja 
Turtles Universe (TMNT). In TMNT there is a normal world that works more or 
less according to normal logic and reason as well as an extra dimension X from 
which evil monsters and green slime14 oozes out. The mission of the Turtles is to 
contain such breakouts from dimension X. Each chapter in this report can hence 
be viewed as some problematic issue discharging from the otherwise beautifully 
organized and marketed edifice of Visual Analytics. The authors have brought 
out their best moves to restore order to it all. 

 
14 http://tmnt2012series.wikia.com/wiki/Mutagen_Ooze 
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