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Abstract

This report presents the results of a survey project at FOI with the
goal of comprehending the security and privacy implications of the
Internet of Things (IoT).

There are several characteristics such as uncontrolled environ-
ment, heterogeneity, requirements for scalability, and constrained
resources, which make the security and privacy issues of the IoT
more challenging. Moreover, one of the requirements of IoT systems
is a high degree of availability, which sometimes may compromise
confidentially and integrity of the data. In the light of these condi-
tions, the report discusses some examples of IoT security problems
in specific areas, such as medical technology and transportation.
Stuxnet worm that targeted control systems of Iranian nuclear en-
richment plants, along with a demonstration in which researchers
used a vehicle’s Internet connection to take over the control of the
car remotely, indicate that the IoT security encompasses new dimen-
sions previously not observed.

Other incidents such as the recent attack on the USA-based com-
pany Dyn shows that IoT devices like video cameras, digital video
recorders, and home routers can be used as a platform to orchestrate
distributed denial-of-service (DDoS) attacks.

We have already observed a gradual change in attitudes, both in
public administrations and in business entities towards collecting,
processing and storing as much personal data as possible. It is plau-
sible to assume that the emergence of the IoT will reinforce this
development. One of the challenges of privacy in the IoT is that the
data collection process is more passive and more pervasive, which
results in that the users are less aware of whether and when they are
being tracked.

Existing approaches to anonymize personal data, such as k-
anonymity, [-diversity and t-closeness add some safeguards to the
data, however, none of these methods can guarantee anonymity, and
researchers have demonstrated how these privacy measures can be
breached in practice. Differential privacy, which is a randomization-
based notion of privacy, provides a mathematical model of privacy
and quantifies the individual privacy loss. Differential privacy sys-
tems based on this model, ensure that the privacy loss will be sig-
nificantly the same regardless of joining or withdrawing private in-
formation from a database.

While confidentiality of the data has always been critical in the mili-
tary domain, the advance of the IoT creates new challenges in a world
where armed forces become more and more dependent on connected
devices and services. Privacy issues that the explosion of the IoT
might entail are not only a concern for military personnel as indi-
viduals. Exposure of personnel’s private information to adversary is
a potential severe threat that should be considered seriously.

Keywords
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Sammanfattning

Denna rapport presenterar resultaten av ett avskannande forsknings-
projekt vid FOI med malet att forsta sékerhets- och integritetskon-
sekvenserna av sakernas internet (IoT).

Det finns flera egenskaper sdsom okontrollerad miljo, heterogenitet,
krav pa skalbarhet och begrinsade resurser som gor att sikerhets-
och integritetsfragor i IoT blir mer utmanande. Dessutom &r en hog
grad av tillgdnglighet ett av kraven pa [oT system, vilket ibland kan
dventyra konfidentialitet eller riktighet i informationen.

Mot bakgrund av dessa betraktelser, diskuterar rapporten néagra fall
av sdkerhetsproblem med IoT pé vissa omraden, sasom medicintek-
nik och transport. Stuxnet-masken som riktades mot kontrollsyste-
men for de iranska nukledra anrikningsanldggningarna, tillsammans
med en demonstration dar nagra forskare anvinde ett fordons in-
ternetanslutning for att ta 6ver kontrollen 6ver bilen fran avstand,
visar att sdkerhet for IoT omfattar nya dimensioner som tidigare inte
observerats.

Andra héndelser som den nyligen intréffade attacken pa det USA-
baserade foretaget Dyn visar att IoT enheter s& som videokameror,
digitala videoinspelare och hemroutrar kan anvindas som en platt-
form for att iscensétta distribuerade belastningsattacker (DDoS).
Vi har redan sett en gradvis férdndring av attityder, bade inom den
offentliga forvaltningen och i privata féretag mot insamling, bearbet-
ning och lagring av sa& mycket personuppgifter som mojligt. Det &ar
rimligt att anta att framvixten av IoT kommer att forstidrka denna
utveckling. En av utmaningarna fér den personliga integriteten inom
IoT &r att datainsamlingsprocessen dr mer passiv och mer genom-
trangande, vilket resulterar i att anvindarna dr mindre medvetna
om och nér de spéaras.

Befintliga metoder for att anonymisera personuppgifter, sdsom k-
anonymity, [-diversity och t-closeness dr anvdndbara och ger nagot
skydd, men ingen av dessa metoder kan garantera anonymitet, och
forskare har visat hur dessa atgirder kan brytas i praktiken. Diffe-
rential privacy, vilket dr en slumpbaserad metod, ger en matematisk
modell av integritet och kvantifierar den enskildes integritetsforlust.
Differential privacy forsikrar att den personliga integritetensforlus-
ten for en individ kommer att vara (ungeféir) densamma oavsett om
dess data &r med eller utesluts fran en databas.

Aven om informationssikerhet har alltid varit kritisk for den mili-
tdra doménen, skapar IoTs frammarsch nya utmaningar i en vérld
dér vépnade styrkor blir mer och mer beroende av anslutna enheter
och tjanster. Integritetsfragor som explosionen av IoT kan innebéra
dr inte bara ett problem for militdr personal som individer. Expo-
nering av personalens privata information till motstandaren &ar ett
potentiellt allvarligt hot som bér beaktas.

Nyckelord

Sakernas internet, Sékerhet, Integritet, Integritetbevarande metoder
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1 Introduction

This document is the final report of a survey project at FOI with the goal of
covering some, for FOI and the Swedish Armed Forces, relevant aspects of the
Internet of Things (IoT). The scope of the project was limited to literature
study and synthesis and there was no room for conducting new research.

The IoT covers many different areas and overlaps with several research
fields, ranging from enabling technologies (e.g. sensors, protocols, sensor net-
works), to software architecture (e.g. middleware, cloud solutions, data man-
agement, big data), services and applications (e.g. smart homes, smart cities,
connected cars), social impacts of the IoT (e.g. acceptance of users, change in
the societal organizations, change in control of the infrastructure), and security
and privacy issues [1].

In an early stage of the project, the authors decided to delimit the scope
of the study to security and privacy issues of the IoT as they found it more
appealing. Although we cannot postulate that we provide a complete overview
of the security and privacy issues of the IoT, we believe that the report can
serve as a good starting point to obtain a grasp of the subject and become
acquainted with the most current developments in the area.

1.1 Whatis loT?

Loosely speaking, the IoT is the collection of physical devices that are connected
to the Internet; however, despite the diversity of research on IoT, its definition
remains fuzzy. A good start point to seek for the definition of the IoT is [1],
where the IEEE Internet of Things Initiative! aims to give an all-inclusive
definition of the IoT ranging from small localized to large, distributed and
complex systems. The document provides an excellent example of how diverse
the definition of IoT might be.

Even if IoT devices are often small appliances that encompass a wireless
transmission channel, it is not a necessary part of the IoT. A more common fea-
ture is that at least one of the systems is embedded and in control of something
in the environment.

The definition that best reflects the authors’ view of the IoT is found in [2]
where IoT is defined as:

“The term IoT refers to the connection of systems and devices with
primarily physical purposes (e.g. sensing, heating/cooling, lighting,
motor actuation, transportation) to information network (including

1IEEE Internet of Things (IoT) Initiative is an IEEE (Institute of Electrical and
Electronics Engineers) platform for the global technical community working on the IoT
(http://iot.ieee.org/ [accessed Nov 11, 2016]).
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the Internet) via interoperable protocols, often built into embedded
systems.”

This definition is much broader than most of the others and includes em-
bedded systems that we have previously seen in larger energy producers and
other critical infrastructure.

1.2 Security and privacy challenges

Like every new technology, the IoT brings with its benefits new risks and
challenges. As the IoT is closely related to communication and information
technology, it is justified to consider security and privacy challenges already
known in information security and examine how these concerns are transferred
to the current and future state of the IoT. At the first glance, the similarities
seem so many and the differences so subtle that one may be deceived that
security and privacy concerns in the IoT are the same challenges as those
known in the information security and the same measures are sufficient to face
these challenges. However, some characteristics make the security and privacy
challenges in the IoT so distinct that a more careful investigation of the subject
is required.

e The number of connected devices to the Internet has already surpassed
the number of humans on the planet. This number continues to increase
dramatically and is predicted to be between 26 billion and 50 billion by
2020 (e.g. see [3]). Several factors facilitate this development, among oth-
ers the introduction of Internet Protocol version 6 (IPv6), which allows
that every device has a unique IP-address, leading to much easier com-
munication between devices. However, the security and privacy issues for
the IoT does not increase linearly with the number of Internet-connected
devices, but grows in a much faster rate. This is due to the fact that, even
assuming everything is the same, the number of communication channels
in a network increases faster than the number of nodes.

e Computer networks are often heterogeneous in nature, which can induce
security challenges. The IoT is expected to be far more heterogeneous
than current computer networks, integrating a multitude of various de-
vices from different manufacturers, software platforms and communica-
tion protocols.

e While servers and workstations are protected in server rooms and offices,
and personal computers, notebooks and handheld devices are protected
by the owner’s presence, in an IoT setting, sensors and other devices
are located everywhere, and exposed to theft, malicious damage and in-
trusion. Vicious attackers can use the increased physical accessibility of
devices to find more vulnerabilities in IoT systems.
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e [oT devices are usually battery-driven, fault-prone systems and gener-
ally have lower processing power and memory and used to not fulfil the
requirements for implementing appropriate security and anonymization
services, which require sufficient amount of processing and memory re-
sources. Although in recent years, this has been less of an issue, many
constructions still have a lack of security functions built in.

e The IoT is expected to be ubiquitous and pervasive. Connected devices
are worn, carried or seamlessly embedded in the world around us. They
may collect data, communicate and interact with other devices, without
our permission or even our knowledge, simply because we do not own
them (e.g. video surveillance cameras in a shopping mall, or connected
vehicles that we travel in as a passenger).

e As the number of connected things increases, the amount of gathered
and accumulated information about us in different databases increases
continuously. Although sensitive data might be removed or protected by
anonymization when the data is disseminated, an unpredictable combi-
nation of seemingly non-sensitive data from different sources can create
a unique identifier resulting in privacy breaches.

e While until recent years, cyber-attacks have mainly threatened informa-
tion systems, computer networks, and personal computers, the IoT will
escalate security risks to a different level. In the IoT era, as actuators
and control systems will be interconnected with other systems, attackers
may be able to directly target connected devices and achieve physical de-
struction of the equipment and infrastructures, such as self-driving cars,
smart houses, electric grids, oilfields, transportation systems, and nuclear
plants. Stuxnet [4] was the first malicious code that attacked the control
system of a nuclear facility; however, with the explosion of the IoT, it
will not be the last one that leaves the cyber realm to cause physical
destruction.

e The IoT inherently has a dynamic characteristic. Pervasive devices such
as wearables can join and leave the IoT network (e.g. smart homes) any-
time. This, in combination with multiprotocol communication charac-
teristics, makes the traditional information security measures insufficient
for the IoT [5].

1.3 The outline of the report

The outline of the report is as follows. In chapter 2, the security issues related
to the IoT are discussed. While in chapter 2, the target of attacks are IoT
devices, in chapter 3, security attacks are discussed where IoT devices are used
as a platform for a large-scale attack on Internet infrastructure. In chapter 4,
privacy in general, and in relation to the IoT is reviewed. Chapter 5 considers
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security and privacy in cloud-supported IoT and chapter 6 discusses some of
the findings of the study and concludes the report.

10
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2 loT Security

“The S in IoT stands for Security.”!
— Melvin Lammerts

IT security is a large and diverse field and it is not always obvious what
the term really means. It is also closely related to the broader concept of
information security. In the context of IoT, information security is intently
related to protecting the privacy of the user.

Many researchers and industry partners, however, agree on that securing
the IoT is very crucial and that this should happen from the beginning of IoT
development [6]. At the same time, many researchers agree that securing the
IoT is one of the most serious security challenges we are facing? today.

We already have many things connected to the Internet, mobile platforms,
connected kitchen devices, cars and industrial control systems. Therefore, there
are already many systems, both small and large, which collect and process
data in our daily lives. Nevertheless, the greatness of the IoT comes from
connecting all these systems together and allowing devices to communicate
with each other across the systems. This demands new architectures for the
IoT, and here the IoT is only at its initial stage of development. The area is
not, yet mature, there are no accepted standards and architectures, but there is
much work in progress in various organizations [7]. In Europe alone, there are
several research projects where architectures for IoT are developed, such as IoT
Open Platforms®, IoT European Research Cluster?, IoT European Platforms
Initiative®, and IoT ArchitectureS.

Georgia Institute of Technology highlights several threats related to the IoT
in its report on emerging cyber threats” 2015:

e “Attackers target the trust relationship between users and machines” -
trust is considered as a major challenge in the IoT where different devices
will share data with each other on their users’ behalf.

e “Technology enables surveillance, while policy lags behind.”

e “Mobile devices fall under increasing attack, stressing the security of the
ecosystem.”

Thttps://twitter.com /showthread/status/776089345069555713 [accessed Sept 14, 2016].

2https://www.infosecurity-magazine.com/news/securing-the-iot-next-big-challenge,/ [ac-
cessed Nov 11, 2016].

3http://open-platforms.eu/ [accessed Dec 12, 2016].

4http://www.internet-of-things-research.eu/ [accessed Dec 12, 2016].

Shttp://iot-epi.eu/ [accessed Dec 12, 2016].

Shttp://www.iot-a.eu/ [accessed Dec 12, 2016].

"http:/ /www.cc.gatech.edu/sites/default /files/images/2015emergingcyberthreatsreport.pdf
[accessed Dec 29, 2016].

11
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Security and privacy challenges of the IoT originate from the specific char-
acteristics of IoT networks, which make them unique [8]. These characteristics
are:

uncontrolled environment,

heterogeneity,

need for scalability, and

constrained resources.

It can, however, be argued that the last item about resources is less valid
than it is suggested. Even the smallest processor platforms today contain
a decent crypto engine and enough program memory to implement security
functions.

Vasilomanolakis et al. [8] further propose security requirements for IoT
systems, based on their unique characteristics and divide the requirements
into the following groups: network security, identity management, privacy,
trust and resilience. The authors consider several architectures that have been
proposed for the IoT in the research community and analyse whether different
architectures meet the proposed security requirements. The analyses show that
many of the security requirements are considered but none of the architectures
covers all of them. Most uncovered are the privacy and trust requirements.

As long as there have been computers, there has been a widely accepted
model for IT security based on three desired security features of the systems,
often abbreviated as CIA, confidentiality (i.e., preventing unauthorized access
to data), integrity (i.e., ensuring data is not altered), and availability (i.e.,
ensuring data is accessible when needed).

Confidentiality

Availability Integrity

Figure 2.1: CIA (confidentiality, integrity, and availability) of IT systems are
depicted as vertices of a triangle.

12
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These properties have often been described in the form of a triangle in
which the properties are placed in vertices (see Figure 2.1). Through the years,
the model has been modified with a number of alternative key properties,
but the core properties, CIA, has always remained. Something that has not
been equally highlighted is that these three properties are never possible to
be fully achieved simultaneously, as they are mutually exclusive. For instance,
given the same resources, it is impossible to increase the availability, without
compromising the confidentiality, accuracy, or both.

For the general information-processing computer systems, traditionally se-
curity almost entirely has focused on the confidentiality property, but for most
of the embedded systems and the IoT it can be argued that the other two as-
pects are the most important ones, or at least much more important than it is
in office information systems. One effect of this is that the security mechanism
often is exclusively focused on the protection of the confidentiality of the data.
Another observation is that the differences in approach in many cases seriously
hampers cooperation between the administrators of the control system and
standard IT systems. If you have confidentiality as the most important param-
eter, the implication will be to advocate more and more intrusive safeguards
than what you can accept if it is availability that is the most prioritized fea-
ture. The delicate trade-off between confidentiality and availability introduces
challenges that are the source of many IoT security problems. In this study,
we have seen several examples of this. The knowledge is not new, but it has
not previously been discussed in this context.

By the recent explosion of computerization of everything, from the mi-
crowave ovens to weapons systems, however, we cannot avoid the challenge
any longer. Many of IoT systems will be linked together in larger networks
and they will not work at all if you consistently apply a security strategy that
primarily consists of confidentiality. However, we cannot ignore the other as-
pects of security, either. These systems will be subjected to antagonistic threats
that we somehow have to deal with.

Even if IoT domain is not mature yet, we already have a multitude of
devices connected to the Internet, which are part of systems of various sizes.
To understand the threats and vulnerabilities of the IoT, one can start by
investigating some of these devices.

2.1 Sloppy implementation of protocols and standards

Many weaknesses come from the implementations of various protocols and stan-
dards. One example is the ZigBee® standard, which includes security, but when
some implementations of the standard have been analysed, several vulnerabili-
ties could be identified. Zillner and Strobl [9] show that often only the minimum
security requirements are implemented according to the ZigBee standard, and
that user-friendliness is prioritized over security. They also show how the ini-

8https://en.wikipedia.org/wiki/ZigBee |accessed Aug 12, 2016].

13
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tialization key is sometimes sent in plaintext in the initialization phase, which
makes it possible for several encryption keys to be retrieved later on. Jun and
Qing [10] also show, by looking at the firmware or by using a network protocol
analyser, some encryption keys can easily be retrieved.

2.2 Medical technology

One area where embedded systems completely has exploded in recent years is in
the medical-centres and hospitals. An example that shows how it can go wrong
is from Panama where “The National Oncology Institute” right at the turn of
the century had a problem with a radiation gun for the treatment of cancer
patients [11]. A software program that was used to calculate the exposure dose
occasionally computed inaccurately, so that a large number of patients were
given a too high dose, some as high that they did not survive. This is not an
example of security breach in the IoT per se, but more of an indication that
the medical tools are complex and prone to error even when they are used by
qualified users.

A significant factor in all these failed systems is that almost all regulation is
against protecting the secrecy and privacy of the patients’ data. This is rather
obvious in [12] where a few of the incidents in Swedish health care system are
analysed.

2.3 Transportation

Another major area where the software begins to play an increasing role is in
transportation. Two researchers made a general review of vulnerabilities in a
number of automobile brands [13] already in 2014. In the autumn of 2015, the
same researchers could also demonstrate that the hack that they had previously

performed sitting in the car, also worked remotely and exemplified this in a
Jeep Cherokee [14].

2.4 Stuxnet

When the first reports of the worm Stuxnet began to appear during the summer
of 2010, it created some interest in the IT security community. It was the first
time anyone had seen a malware that was specially created to manipulate
control systems.’

9 Tt is not the first time physical systems are destructed by using manipulated control
software. During the cold war, the US Central Intelligence Agency (CIA) orchestrated a
counter-intelligence operation that delivered modified computer chips and software to the
Soviets military equipment and infrastructure (gas turbines, chemical plants, etc.) [15]. The
Siberian gas pipeline sabotage in 1982 is attributed to this operation, where CIA allegedly
manipulated some PLCs that the Soviet Union smuggled out from Canada. The manipulation
eventually had the effect that a large part of the Siberian gas pipelines exploded [16]; however,
this claim has been challenged.

14
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To begin with, it just seemed to be an attempt to gather information from
project databases in a Siemens WinCC system using a default password that
was common to all installed systems of this type. For instance, the authors’ very
first impression was that the worm was probably just the result of someone’s
experiment who found a new default password and tested how widespread it
was. It soon became evident that it was much more serious than that.

This description of Stuxnet is primarily based on three sources: (i) first and
foremost, the white paper [17] published by the antivirus company Symantec!?,
which conducted a study of the worm, (ii) FOI projects that studied a sample
of the Stuxnet code (e.g., see [18]), and (iii) Confront and Conceal [19], a book
by New York Times reporter David E. Sanger!!.

Although there is no solid proof, and no state has officially admitted re-
sponsibility for designing Stuxnet, much evidence points to Israel and United
States as the origin of the malware. The attack was designed to manipulate
the programmable logic controller (PLC), which controlled operating speed of
centrifuges in the nuclear facility in Natanz and by destroying them, disrupt
the enrichment process. These centrifuges were a central part of the nuclear
enrichment process and additionally sensitive to variations in rotation speed.
The attack required exact information about the structure of the system in all
its details, and Israelis, which allegedly had infiltrated Iran’s nuclear program,
acquired this intelligence [19, pp 195].

Control systems were standard systems from Siemens and were easy to ob-
tain. The centrifuges were more difficult to purchase. However, the United
States had managed to take over a few that was left over when Libya had sus-
pended its nuclear program, and these could be used for “destructive testing”.
Libya’s centrifuges were of exactly the same design as Iran.

The oldest documented infection was in June 2009 [17, pp 9] and the large
public outbreak started a year later, in summer 2010. There are slightly dif-
ferent data about when the operation began to succeed with wrecked cen-
trifuges, ranging from that they started to fail almost immediately to November
2010 [19, pp 188].

Although, the Stuxnet attack is not a typical IoT security issue (the facil-
ity’s network was an air-gapped network), however, it demonstrates the poten-
tial and impact of security problems in the IoT, where devices are seamlessly
connected to the Internet and attacks might be designed to manipulate the
physical systems directly.

Ohttps: //www.symantec.com/ [accessed Oct 23, 2016].
https://en.wikipedia.org/wiki/David _E. Sanger [accessed Oct 23, 2016].

15
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3 The IoT as a Platform for Attacks

“In a relatively short time we’ve taken a system built to resist de-
struction by nuclear weapons and made it vulnerable to toasters.”!

— Jeff Jarmoc

One effect of the discrepancy between protecting the secrecy and maintain-
ing the availability is that many small gadgets that we connect to Internet have
an insufficient security level. A recent example of this occurred on 21 October
2016 when the USA-based company Dyn was hit by a distributed denial-of-
service (DDoS)? attack®.

Two characteristics make the attack more significant from a security per-
spective. First, the attack made several large services on Internet unavailable
by targeting the Domain Name System (DNS) supplier of these services. Ser-
vices such as Spotify, Amazon, HBO, Netflix, Twitter and Reddit among others
were affected. Notably for Sweden was that the national website for emergency
information (www.krisinformation.se) was unavailable during the attack?.

More interesting is the second characteristic of the attack. The botnet®
Mirai®, used for attacking Dyn was built of web cameras, digital video recorders,
home routers and other IoT appliances.

The Mirai bot takes over a node by testing the default login names and
passwords set by the manufacturer. Even with this naive operation, these
botnets can grow fairly large. In the Dyn case they counted to more than 100k
bots in the botnet. When an unprotected device is connected to the Internet,
it will be reinfected within minutes”.

According to Scott Hilton®, the vice president of Dyn, the significance of the
attack is not only due to its severity, but also because that it has highlighted
vulnerabilities in the security of IoT devices that need to be addressed. The
attack has started conversations about Internet security and volatility in infor-
mation security community, as well as debate in the infrastructure community
about the future of the Internet.

Thttps://twitter.com/jjarmoc/status/789637654711267328 [accessed Oct 21, 2016].

?https://en.wikipedia.org/wiki/Denial-of-service _attack [accessed Nov 27, 2016].

3http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack,/ [accessed Oct
26, 2016].

4http://www.dn.se/nyheter /sverige/sakerhetsbristerna-fick-vara-kvar-hos-msb-i-fyra-ar,/
[accessed Oct 23, 2016].

Shttps://en.wikipedia.org/wiki/Botnet [accessed Nov 18, 2016].

Shttps://en.wikipedia.org/wiki/Mirai (malware) [accessed Nov 18, 2016].

"https://www.deepdotweb.com/2016,/11/06/analysis-record-ddos-attacks-mirai-iot-
botnet/ [accessed Nov 6, 2016].

81bid, 3.
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4 loT Privacy

4.1 Privacy definition

Privacy is a multifaceted concept and literature provides a broad array of def-
initions and nuances of the concept of privacy [20, 21, 22]. One of the most
influential approaches to privacy associates the concept of information privacy
to the control of personal information. Alan Westin is widely credited with the
well-known definition of information privacy as:

“The claim of individuals, groups, or institutions to determine for
themselves when, how and to what extent information about them
is communicated to others.” [23]

While control is highlighted as one of the key factors in explaining pri-
vacy, this definition is not undisputed, and some researchers in philosophy
have noted that the concept of privacy should be distinguished from the notion
of control[24]. Further, some literature indicates, “increasing perceived control
over the release of private information will decrease individuals’ concern about
privacy”[25]. The authors argue that this paradoxical behaviour has its roots
in the same mechanisms that make people perceive driving safer than flying,
in part, based on the misleading feeling that they have more control when
driving [25].

Regardless of the definition, privacy threat (the potential risk of loosing
control over personal information), is generally one of the major concerns of
users and has a significant influence on the adoption level of a new technology.
This will probably also be true for the IoT. For instance, an empirical inves-
tigation shows that the security and privacy has a significant correlation with
the willingness of users to provide personal information to IoT services [26]. In
a study about the acceptance of the IoT in the home, respondents consistently
demonstrate reluctance to share their data with commercial organizations (no-
tably they are more willing to share information publicly than with commercial
organizations) [27].

4.2 Status of privacy

The IoT is the “natural” next step in the evolution of the Internet. Hence,
it is plausible to analyse the effect of recent trends in information technology
(e.g. social network media, smartphone and big data) on individuals’ privacy
to foresee the potential influence of the IoT on privacy of the users.

One of the consequences of the current rapid technological developments
and globalization is that the scale of the collection and sharing of personal
data has increased significantly across all sectors of the society. Furthermore,
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the number of actors, application areas, storage time of the data, distribution
and exchange of the information between actors all show enormous increase.
Individuals increasingly make personal information available publicly and glob-
ally. Data mining and multiple and further use of the data by actors is reality,
huge amounts of data are processed in real-time, cross-border flow of personal
data has increased substantially!. Some large corporates, as a result of the
development in general and their own business strategies, have access to an in-
creasing amount of personal data and thus are able to depict a more complete
picture of an individual.

This development is due to digitalization and a gradual change of attitudes
towards information processing, both in public administration and in business.
The following simplified comparisons, by the Swedish Privacy Committee?, pro-
vides a graphic description of the status of privacy:

e Previously organizations had a specific goal in building a personal database.
They now have a variety of purposes.

e In the past, they collected information because there was a clear need.
Now they gather data in order that it “may be useful”3.

e In the past, it was important, not least for cost considerations, to keep
storage times short. Now it is considered to be of great advantages to
retain the data.

e Previously, searching and analyses had a specific objective. Now, big
data and data mining is a reality.

e In the past, personal data was gathered through a specific registration.
Now, it arises more or less automatically when an individual acts and
uses an online service.

e Personal data has become a commodity, collected, traded and sold.

4.3 Privacy by design

To address the privacy concerns of the customer, a joint team of the Information
and Privacy Commissioner of Ontario, Canada, the Dutch Data Protection
Authority and the Netherlands Organisation for Applied Scientific Research,
introduced the concept of Privacy by Design[28], in the mid-1990’s. According

IThe General Data Protection Regulation (GDPR) (Regulation (EU) 2016/679):
http://ec.europa.eu/justice/data-protection/reform/files/regulation oj en.pdf  |accessed
Dec 27, 2016].

2http://www.regeringen.se/rattsdokument /statens-offentliga-utredningar /2016 /06 /sou-
201641/ |accessed Nov 29, 2016].

3For instance, Jason Hoffman, head of technology for cloud systems at Ericsson,
in an interview with NyTeknik on 2nd November stated: “We should measure ev-
erything in the real world. ...take all data and hopefully make our lives better.”
(http://www.techsite.io/p/476128 [accessed Nov 03, 2016]).

18



FOI-R--4362--SE

to this approach, privacy may be accomplished by practicing the following
seven foundational principles [29].

1. Proactive not reactive, preventative not remedial: It aims to prevent pri-
vacy violation events from occurring.

2. Privacy as the default setting: It should be the default rule of any IT
system. The user is not required to take any action to protect her privacy.

3. Privacy embedded into design: It is an integral component of the core
functionality of IT systems and is not an add-on part that is bolted to
the system afterwards.

4. Full functionality — positive-sum, not zero-sum: It avoids trade-offs be-
tween different objectives and seeks to achieve all desired (seemingly con-
flicting) goals (e.g. privacy and functionality) by a “win-win” approach.

5. End-to-end security — full lifecycle protection: It is embedded into the
IT system prior to collecting the first data record and to the end of
the lifecycle of the data, ensuring that information is securely retained,
processed and destroyed at the end of process.

6. Visibility and transparency — keep it open: It assures all stakeholders that
information is managed according to the stated promises and objectives
and its components are visible and transparent.

7. Respect for user privacy — keep it user-centric: The interests of the users
are its first priority. It provides strong privacy by default and chooses
appropriate notice measures when required.

The concept of privacy by design is recognized in different recommendations for
data protection, by different policy makers and actors, among others by Euro-
pean Union*. However, these principles are considered to be vague and to leave
many open questions about how they should be implemented when designing
a system [30]. Consequently, there have been several attempts to concretize
the term privacy by design and exemplify how it should be applied in practice.
For instance, the parliamentary committee appointed by the Swedish Govern-
ment to survey and analyse the risks of privacy (so called Privacy Committee),
recommends the following principles®:

1. Data minimization: Prevent privacy risks in a proactive manner by sys-
tematically minimizing the amount of collected and processed data.

4http://ec.europa.eu/justice/news/consulting_public/0006/com 2010 609 en.pdf [ac-
cessed Nov 29, 2016].

Shttp://www.regeringen.se/rattsdokument /statens-offentliga-utredningar/2016,/06 /sou-
201641/ [accessed Nov 29, 2016].
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2. Informed consent: Terms are presented in an understandable, relevant
and transparent way, which gives the user the ability to choose not to
share certain information.

3. Transparency: Provide users with insight into how their data is treated
and used.

4. Verifiable preventive protection: Prevent threats by security measures
whose effectiveness are verifiable.

5. Possibility to withdraw consent: Offer the users the possibility to conve-
niently withdraw their consent and remove the shared information.

4.4 Privacy threats in the loT

Potential threats in the IoT are hard to quantify due to the uncertainties of
whether and how the IoT will influence society. On the other hand, we can
already today observe the effect of collection of large data quantities from
e.g., social media, smartphone sensors, and mobile network operators. The
implication of the breakthrough of the IoT on privacy could be best studied
using the experiences of how these technologies have affected the privacy.

Using this parallel, we can infer that even if the data transmitted by an
endpoint device might not cause any privacy issues per se, the accumulated
data from multiple devices can still create privacy problems. Furthermore,
some characteristics make privacy threats of the IoT more challenging. The
data collection process is more passive, more pervasive and less intrusive, which
results in that users are less aware that they are being tracked [20].

In the sequel of this section, we render different types of privacy threats
and discuss (mostly based on [20]), how the evolution of the IoT may affect
these threats.

4.41 Identification

The IoT by definition is pervasive, where different devices sense and collect data
about the users and their environment to provide some kind of service. The
collected data is typically processed at service providers, which are located
outside of the users’ control. Identification is the threat of associating an
identifier (e.g. name, address), with private data about an individual.

Data anonymization, that is, replacing personal information by randomly
generated unique IDs, is not sufficient to guarantee the anonymity of the users
and it has been shown that identity of the users can be inferred from the
anonymized data sets. Renowned examples of such privacy breaches despite
anonymization [31, 32] are:

e In Massachusetts, a government agency, Group Insurance Commission
(GIC), which purchased health insurance for state employees, released
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records of every state employee’s hospital visits at no cost to any re-
searcher who requested them. To protect patient privacy, the data was
anonymized by removing fields such as name, address, and social security
number; however, ZIP code, birthdate and gender were not removed.

Sweeney [33] showed that despite removing explicit identifiers from med-
ical data, in most cases, the remaining data (such as gender, date of
birth, and ZIP code) was sufficient to re-identify individuals by linking
it with public voter database. More spectacularly, Sweeney could reveal
and send the health records of the governor William Weld (including di-
agnoses and prescriptions) to his office. William Weld, then Governor of
Massachusetts, had assured the public that the release of the GIC data
did not compromise the patient privacy [34, 35].

e A serious privacy breach of AOL search data occurred, when AOL re-
leased 20 million (seemingly anonymized) search inquiries online, to en-
gage academic researchers [36]. AOL had assigned each of the users a
unique number; however, the information was so detailed and personal
that it was possible to reveal some users’ identity and compromise their
privacy®.

e In 2006, the online DVD rental company Netflix announced an open com-
petition to develop an algorithm that could improve its movie recommen-
dation system by 10%. Along with the contest, Netflix released a massive
training data set to the competitors, consisting of more than 100 million
movie ratings, given by around 480000 unique users to 17770 movies.
The name of the users and movies were replaced by numerical IDs to
anonymize the data set”. However, Narayanan and Shmatikov [37] could
identify several anonymized Netflix users by comparing the data set with
reviews posted on the Internet Movie Database (http://www.imdb.com).
The experiment showed that it was possible to identify users’ political
leanings and sexual references. The scandal led to a lawsuit against Net-
flix, which ultimately resulted in termination of the second round of the
contest in 2010 due to privacy concerns.

In the IoT, new technologies and interconnection of these features and tech-
niques further enlarge the threat of identification [20].

The use of surveillance camera technology, in non-security contexts is an
example of such techniques, where customers’ behaviour is studied for analysis
and marketing (e.g. see [38]). More recently, in 2013, one of the Russia’s
largest cosmetics chain stores (Ulybka Radugi) started using emotion recog-
nition software as a pilot test to sense the customers’ facial expression at the

Shttp://www.nytimes.com/2006/08/08 /business/media/08aol.html [accessed May 10,
2016].
Thttps:/ /www.wired.com/2009/12/netflix-privacy-lawsuit/ [accessed May 10, 2016].
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checkout counter®. The goal of this technology is for Ulybka Radugi to offer

customized discounts in real-time for its customers based on how she is feeling
and reviewing her purchase history and preferences.

Automated identification of individuals from a digital image or a video
frame (facial recognition systems) is already in use by law enforcement agencies
i many countries.

Speech recognition is widely used in mobile applications and huge databases
of speech samples are already being built, which can potentially be used to rec-
ognize and identify individuals [20]. The increasing interconnection and vertical
communication of everyday things, opens up possibilities for identification of
devices through fingerprinting [20]. For example, it is shown that it is possible
to use the Radio-frequency identification (RFID) profile of a person to trace
him [39].

To address the problem, attribute-based authentication is suggested to min-
imize the data a device communicate in the IoT, and maintain control over the
disclosure of data and improve user privacy in the IoT [40].

4.4.2 Localization and tracking

Localization and tracking are the threats of determining and recording a per-
son’s location through time and space by different means, e.g. cell phone
location, Internet traffic, or GPS data [20].

The availability of vast and detailed spatial and spatiotemporal data, which
has become possible due to data collection techniques, such as global position-
ing systems (GPS), high-resolution remote sensing, location-aware services,
and Internet-based volunteered geographic information has led to an increas-
ing interest in using geographic data and incorporating spatial information and
analysis.

However, this data has become more diverse, complex, dynamic, and much
larger than before and therefore is more difficult to analyse and understand.
The emergence of the field of spatial data mining and knowledge discovery tries
to address these difficulties by developing theory, methods and practice for
the extraction of useful information and knowledge from massive and complex
spatial databases [41].

One rich source of geo-location information is the mobile network oper-
ators’ call detail records (CDRs). CDRs are data records containing detail
information about telephone calls and other communication services (e.g. text
message), which are automatically collected by mobile network operators, pri-
marily for billing, accounting purposes and network traffic monitoring. CDRs
consist of metadata (i.e. data about data) and do not include the content of
the communications. Typical attributes included in a CDR are, phone num-
bers of the source and destination of a call, starting time (and date) of the

8http://www.humintell.com/2013/08 /emotion-recognition-software-that-helps-you-shop
|accessed May 10, 2016].
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call, its duration, type of the call (voice, message, etc.). The information in
CDRs is considered highly personal and people usually expect that it will not
be disclosed to any third party by the network operators.

However, during the past decade, researchers have been provided access to a
quite large amount of data, among others CDR data sets for different research
and development projects [32]. In order to maintain the users’ privacy, the
CDR data sets are anonymized, that is, each phone number is replaced by a
randomly generated unique ID, before they are transferred to a third party.
Nevertheless, as discussed in section 4.4.1, such methods cannot guarantee
anonymization and protect sensitive personal data.

Web 2.0 (i.e. social networking sites, social media, blogs, wikis, RSS feed,
apps, etc.)? has changed the role of the user on the web, from consumer to pro-
ducer of information. Smartphones, equipped with GPS sensors have allowed
users to geo-locate themselves. Integration of Geographic Information Systems
(GISs) and social networks has resulted in so-called Location Based Social Net-
works (LBSN), that is, social networks that include location information into
their contents.

This capability has made real-time urban sensing possible. Urban sensing
uses citizens as active and passive sensors with the goal to gain insights in hu-
man behaviour in the city. Possible use scenarios are imaginable, for example,
community healthcare, public safety, city resource management and transporta-
tion management [42]. The data sources that can be inferred for urban sensing
are heterogeneous and originates from three data sources: (a) mobile sensor
data, (b) infrastructure sensor data, and (c) social data from social network
and other Internet services [43]. Data sources can be used independently but
the combination of data from different sources provide a comprehensive under-
standing of individual and group behaviour, social interactions, and community
dynamics [43, 42].

Localization in the adjacent surrounding usually is not perceived as a pri-
vacy threat as we are used to observing others and being observed by other
people when we are in their field of view. Localization is experienced as a
threat mainly when this information is recorded, processed and stored without
the permission and control of the subject. As with other privacy concepts,
the lack of control is central to the concept of location privacy, which is de-
fined as “the ability to prevent other parties from learning one’s current or past
location” [44].

By emergence of the 10T, several factors would presumably exaggerate the
privacy threat of the localization: (i) expansion of location-aware applications
and improvement of their accuracy, (ii) the ubiquity of data collection technol-
ogy and process, and (iii) interaction with IoT devices that register the identity,
location and activity of the user.

Current research on location privacy, such as trusted third party, peer-to-
peer, etc. mainly deals with location-aware applications in smart phones and

9https://en.wikipedia.org/wiki/Web_ 2.0 [accessed Aug 12, 2016].
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does not encompass location privacy threats in the IoT. Ziegeldorf et al. iden-
tify three main challenges: (i) addressing threats of pervasive data collection,
(ii) how to control shared location data, and (iii) privacy-preserving protocols
for interaction with IoT systems [20].

4.4.3 Profiling

Profiling is the practice of collecting and processing data about individuals’
activities (e.g. sites visited, products purchased, product pages viewed, and
emails sent) over long periods in order to categorize them according to some
key feature. The information usually is collected with little or no consent of
users, and combined with other personal data to create a more comprehensive
profile. Profiling is used currently in a large spectrum of domains, for example,
e-commerce, targeted advertising and credit scoring [20, 45].

Profiling poses several potential privacy risks. Users demonstrate con-
cerns'® associated with unsolicited marketing, invisibility of data collection
process, and the risk that undesired third party access the data. In recent
years, data marketplaces have emerged, which trade data that have been col-
lected from a variety of sources, aggregated, enriched and processed.

Another risk associated with profiling is that personal information may
be revealed to other users, as other users who share the same computer and
browser may view one’s targeted advertisement (due to cookies saved on the
computer and depending on the settings). Moreover, many users are disturbed
by the mere awareness of being watched and tracked [45].

Several cases of privacy violating profiling efforts have been reported, for in-
stance Facebook’s racially discriminatory!! and Google’s gender-discriminatory!?
advertisings.

By evolving the IoT, data collection increases quantitatively by orders of
magnitude, due to the explosion of data sources and connected devices. More-
over, data will change also qualitatively as data is collected from previously
inaccessible parts of people’s private lives [20], for example, data collected by
wearables and different devices at home.

4.4.4 Lifecycle transitions

This type of privacy threat refers to disclosure of private information where
the owner of a consumer product is changed during its lifecycle (e.g. photos
and other private information on a second-hand smartphone or computer) [20].

10 Among consumers who show a medium degree of privacy concern, people can be clus-
tered into two different groups: (i) those who are more “identity aware” (i.e. users who worry
more about sharing e-mail address, physical address or phone number), and (ii) those who
are more “profile aware” (i.e. users who do not wish to share their hobbies, age, interests, or
preferences) [46].

Mhttp://fortune.com/2016/10,/28 /facebook-ad-propublica-race [accessed Oct 28, 2016].

2http:/ /www.theverge.com/2015/7/7 /8905037 /google-ad-discrimination-adfisher ~ [ac-
cessed Oct 28, 2016].
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Since currently, consumer products that hold private information (e.g. smart-
phones, cameras and laptops) are mostly under the control of the same owner
during their entire lifecycle, this problem is not observed very often. However,
as more and more everyday things will be connected and will contain private
data (e.g. smart homes, connected cars, etc.), the risk for privacy disclosure
due to change of owner will increase.

4.4.5 Inventory attack

Inventory attacks are related to illegitimate gathering of information about
the existence and characteristics of things in a specific place (e.g. household,
office, or factory) [20]. Inventory attacks can usually be performed by using the
fingerprint!? of IoT devices, for instance, their communication speed, reaction
time, and so on. Assuming that the promise of the IoT will be fulfilled, all
smart things will be addressable over the Internet, opening the opportunity
for unauthorized entities to exploit this and create an inventory list of things
belonging to a target.

An inventory attack could be used for profiling individuals, since owning
special items disclose private information about the owner. For instance, books,
movies or music reveals personal interests and medicine or medical devices
expose one’s health state [20].

4.4.6 Linkage

Linkage threat refers to uncontrolled disclosure of information due to combina-
tion of separated data sources and linking different systems [20]. The combined
information about an individual provides a much more detailed portrait of her.
This occurs because aggregating information creates synergies. Aggregated
information can reveal new facts, which the owner did not expect would be
known about her, when the original isolated data was collected [48]. The re-
vealed combined information does not need to be truthful to be conceived as
a privacy breach. On the contrary, many users fear poor judgement and loss
of context when data that have been gathered from different parties under
different contexts and permissions are combined [48, 20].

As Solove [48] suggests, aggregating information is not a new activity and it
has always been possible to combine separate pieces of personal information, to
infer something new about an individual. What makes it different, nowadays,
is that the aggregation’s power and scope are different now; the volume of
collected data about people is significantly more extensive, and the process to
combine and analyse it is much more powerful.

The threat of linkage will deepen by the IoT development, for two main
reasons: (i) the integration process will link system from different companies

13Fingerprinting is defined as the measuring of an identifying characteristic of an individ-
ual, or a physical or digital item [47].
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and organizations to build a heterogeneous distributed system-of-systems de-
livering new services that no single system could provide on its own, and (ii)
the linkage of systems will make data collection in the IoT even less transparent
than what it already is expected to be [20].

4.5 Privacy-preserving data mining

Privacy-preserving approaches are efforts to prevent information disclosure gen-
erally due to legitimate access to the data and differs from data security mea-
sures (e.g. access control and encryption). While the aim of conventional data
security is to prevent information disclosure against illegitimate actions such as
hacking, access control violation, query-injection and theft, privacy-preserving
methods attempt to prevent identification, profiling and linkage as a result of
legitimate operations on the data.

Collection and analysis of the data to provide service to the user is one of
the central promises of the IoT, and the main challenge in the IoT privacy is to
balance data gathering and analysis with the users’ privacy requirements [20].

In recent years, to address the privacy requirements of the users in the
context of the big data and social online networks, several privacy-related fields
have emerged.

Privacy-preserving data mining is a common name for different approaches
with the aim of retrieving valid data mining results without learning the un-
derlying data values. Although, the field has been receiving much attention in
privacy research community and beyond, its meaning is not entirely clear [49].

As the name suggests, privacy-preserving data mining is primarily focused
on privacy issues in databases and is related to data mining. However, since
it is assumed that many applications based on data mining will provide intel-
ligent services to the IoT, the field is highly relevant to the privacy in the IoT.
Depending on the application area, settings and the goal, different privacy-
preserving methods have been constructed.

4.5.1 Group-based anonymization

It is obvious that prior to publishing a data set, all unique identifiers such as
social security and driving license numbers have to be removed from records
to mask the identity of the individuals in the database. However, as examples
discussed in section 4.4.1 show, combination of non-unique information such as
gender, age and ZIP-code (so called quasi-identifiers) can be used to identify
an individual uniquely. For instance, the combination of the date-of-birth and
place-of-birth might be enough to re-identify a certain individual if the place-
of-birth refers to a small village [50].

Therefore, different types of anonymization methods are introduced to con-
struct groups of anonymous records, which are transformed in a group-specific
way [51]. In the following, some of these methods are briefly discussed.
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4.5.1.1 k-anonymity

Assume the owner of a database containing patient information would like
to share parts of the database with researchers and aims to make it difficult
that the published records can be tracked back to specific individuals. After
removing all (explicit) identifiers, there is still a considerable risk to associate
a record with a specific individual by using quasi-identifiers. A method to
mitigate this risk is k-anonymization, which means reducing the granularity
of the data in such a way that for each record, there are at least £ — 1 other
records that have the same values for their quasi-identifiers [52]. Attacks using
combinations of quasi-identifiers are prevented by k-anonymization, since it
assures that no individual can be identified with a certainty exceeding 1/k.

While k-anonymization reduces the risk of sensitive data disclosure, it is still
possible for attackers to make inferences about an individual that is known to
be in the database. An example is homogeneity attacks, in which a lack of
diversity among sensitive attribute values is exploited by the attacker (e.g.
consider a case where an equivalence class of k records all have the same value
for the sensitive data).

Moreover, k-anonymization is not a suitable method for high-dimensional
data sets and in many cases, the level of information loss required in order to
preserve k-anonymity (even for very small values of k) is so high that the data
set is not useful for any data mining purposes [53].

4.5.1.2 |[-diversity

The [-diversity model has been suggested as an extension to k-anonymity to
handle vulnerability of the k-anonymization against homogeneity attacks. Ho-
mogeneity attacks, as above remarked, target cases where some sensitive values
for a set of k records in a group are identical (or show little variation). To ad-
dress this type of attacks, the [-diversity method is proposed which not only
maintains the minimum group size of k, but also tries to provide a diversity
among the sensitive attributes. In [-diversity, each group of k records with
the same set of non-sensitive values must contain at least [ “well represented”
values for each sensitive attribute [51]. A linear-time algorithm for creating
tables that obey the I-diversity privacy requirements is presented in [54].
Although [-diversity protects data against homogeneity attacks, it is not
immune against attacks based on the distribution of sensitive values. Li et
al. [65] show that [-diversity is insufficient to prevent attribute disclosure by
two types of attacks: (i) skewness attack where the overall distribution of the
sensitive data is strongly skewed (and known), and (ii) similarity attack when
the sensitive attribute values in a group are distinct but semantically similar.
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4.5.1.3 t-closeness

The t-closeness method [55] is an enhancement of the I-diversity approach
with the objective of protecting against skewness attack. The main idea in
t-closeness method is that the distance between the distributions of the sensi-
tive attribute within each anonymized group should not differ from the global
distribution of the same sensitive attribute, by more than a threshold t.

4.5.2 Distributed privacy-preserving data mining

Distributed methods for privacy-preserving data mining concerns scenarios,
where several participants (database owners) wish to collaborate with each
other and use data mining algorithms to compute aggregated statistics, how-
ever, they do not fully trust each other. Therefore, they are not inclined to
share the data and compromise the privacy of the individual data records.

The data sets may be partitioned either horizontally or vertically. In hori-
zontally partitioned data sets, each participant has data records with the same
attributes, however, the data is spread between them and each owner has some
partition of the data (e.g. two cities each having a database over both electric-
ity and water consumption of their own population). In vertical partitioning,
each participant may have different attributes of the same set of records (e.g.
a water supplier having a database over water consumption and an electricity
provider having a database over electricity consumption of the same individu-
als).

Distributed privacy-preserving data mining is closely related to secure multi-
party computation (SMC), which is a subfield of cryptography focusing on
constructing algorithms such that several participants can jointly compute a
function over their inputs while keeping those inputs private[51].

4.5.2.1 Algorithms for horizontally partitioned data sets

In order to illustrate, how these types of algorithms work and how they can
possibly be used in an IoT context, consider a hypothetical scenario, where
four IoT devices, a, b, ¢ and d (e.g. belonging to four different individuals),
cooperatively consume some critical resource. They are all interested to com-
pile the (aggregated) instantaneous consumption of the resource in order to
optimize their behaviour. None of the participants is, however, willing to re-
veal its own consumption of the resource, since it can provide the others with
sensitive information about the owner’s lifestyle. The problem can be solved
with homomorphic encryption techniques.

Homomorphic encryption is a form of encryption, which allows specific types
of operations to be performed on encrypted data and has the desired property
that decrypted result matches the result of operations performed on the origi-
nal data. For example, an additive homomorphic encryption scheme with the
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addition operator @ is a scheme that satisfies

for all values of M; and Ms.

Given the above prerequisites, participant a generates a private and a public
encryption key and sends the public key to participants b, ¢ and d. Participant
b uses the key to encrypt the value of its own consumption of the resource,
En(Ry), and sends the result to participant ¢. Participant ¢ encrypts the value
of its own consumption, En(R.), and computes En(Ry) & En(R.). This value
is sent to participant d, which in turn computes En(R;,) ® En(R.) + ®En(Rq)
and sends it to participant a. Participant a uses its private key to decrypt the
received encrypted value and computes Ry + R, + Ry using 4.1. Participant a
adds its own consumption R, to this value and broadcasts the total value of the
consumption of the resource to participants b, ¢ and d. Using this algorithm,
no participant obtains more information than the total consumption of the
resource. The sequence of messages between entities is shown in Figure 4.1.

5. Broadcast (Ra + Rb + Rc + Ra)

1. Public key

&

4. En(Rb) ® En(Rc) ® En(Rd)
Asy a1and °T
(ag)u3 ¢

3. En(Rb) ®En(Rc)

Figure 4.1: A schematic diagram over how encrypted messages flow between
entities. No information other than the sum of consumed resource is disclosed

to any entity.

This approach can be generalized across k participants. Moreover, since
many data mining algorithms can be expressed as repetitive computations of
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different primitive functions such as addition, scalar product, etc., one can
generalize the above method to design homomorphic encryption schemes for
privacy-preserving data mining for horizontally partitioned databases and ex-
changing aggregated information without compromising privacy[51].

4.5.2.2 Algorithms for vertically partitioned data sets

A data set is considered vertically partitioned when different attributes asso-
ciated to the same individuals are distributed between different parties that
do not wish (or are not allowed) to share their data with other participants.
However, they are permitted and interested in discovering interesting relations
between the attributes. In general, IoT devices are not directly involved in
such operations; nevertheless, service providers will be likely inclined to per-
form such operations on data gathered by different parties.

For instance, consider a hypothetical scenario where a municipal water
provider wishes to investigate whether there is a correlation between the amount
of consumed water and the type of dishwasher owned by households, assum-
ing that the latter information is collected by the electricity provider, using
a service that targets connected dishwashers. Privacy-preserving data min-
ing algorithms for distributed databases with vertical data partitioning can be
used to compute the average water consumption of households owning differ-
ent types of dishwashers without disclosing the type of dishwashers or water
consumption of each household. We outline an algorithm, which uses a commu-
tative encryption scheme. A commutative encryption is an order-independent
encryption, that is, it satisfies

Enkl(Enkg(M)) = Enkg(Enkl(M)), (42)

for all values of encryption keys k1 and k2 and all messages M. Commutative
encryptions further fulfils

Dekz(Enkl(Enkg(M))) = Dekg(Enkg(Enkl(M)) = E’I’Lkl(M), (43)

and
M1 75 MQ — Enkl(Enkg(Ml)) 7& Enkl(EnkQ(MQ)). (44)

We assume that the water provider holds a set of tuples, [(id, con)], where id
is a unique global identifier for households and con is the water consumption
of the corresponding household. The water supplier encrypts records in the
database with its secret key k., and sends the encrypted data to the electricity
provider (i.e. [(Enyg, (id), Eng, (con))]).

The electricity supplier encrypts only the ids in the received data us-
ing its own secret key, ke, and returns the double encrypted ids and single
encrypted water consumption values back to the municipal water provider
(i.e. [(Eng, (Eng, (id)), Eng, (con))]). Alongside with this data, the electricity
provider, also encrypts and sends its own database to the water provider. The
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latter is the set of the tuples [(Eny, (id), Eng, (type))], where id is the same
unique identifier for households and type is the type of the dishwasher the
household possesses.

The water provider encrypts the encrypted ids in [(Eng, (id), Eng, (type)))
by its own key and composes [(Eng, (Eng, (id)), Eng, (type))]. By compar-
ing the double-encrypted ids, the water provider can now join the two tables
[(Eng, (Eng, (id)), Eng, (con))] and [(Eng, (Eng, (id)), Eng, (type))], and cre-
ate the table [(Eng, (Eng, (id)), Eng, (type), Enyg, (con))].

The water provider is now able to create the table [Enyg_(type),con)] by
decrypting Enyg,, (con) using its own key and calculate the mean value of water
consumption for each type of the dishwashers, albeit the types are encrypted by
ke. The water provider sends the table [(Eny, (type), average)] to the electricity
supplier, which decrypts the values for dishwasher types and sends back the
table [(type, average)] to the water provider. Both the water provider and
electricity supplier have now access to a table consisting of the mean of water
consumption for each dishwasher type, while no further information about
the households has been disclosed. Figure 4.2 illustrates the sequence of the
messages between the two entities.

L]
1. [Enkw(id), Enkw(con)]
\_I

2. [Enke(Enkw(id)), Enk«(con)]

id con 2. [Enke(id), Enke(type)] id type
abise 113 kh993 AEG
dm123 120 dm123 LG

qalla 123 um908 LG

ab123 50 3. [Enke(type), average] ab123  Bosch
fg234 72 qalla AEG
km101 79 km101 Husqvarna
Kkh993 a fg234 Bosch
umoos 19 4. [type, average]

mni2s 129 <

Figure 4.2: The flow of encrypted messages between a water provider, at
the left side and an electricity supplier, at the right side of the figure. No
information other than the average of water consumption of households having
the same type of dishwasher machine is disclosed to any entity.

This approach can be generalized to other data mining rules (see e.g. [51]

for a detailed discussion on privacy-preserving data mining algorithms and
techniques).

4.6 Differential privacy

Data anonymization approaches such as k-anonymity, [-diversity and t-closeness,
discussed earlier in section 4.5.1 are considered non-interactive publishing ap-
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proaches, in which the data owner releases an anonymized data set (or a subset
of that) to the public at once. However, as it has been shown, anonymization
is not a trivial task and all these methods are, in some degree, prone to privacy
breaches.

Another privacy-preserving approach that in recent year has received much
attention is differential privacy, which is related to the interactive query model.
In the interactive approach, the data owner does not release the anonymized
data but provides a statistical database, where the analyst can run a sequence
of queries and retrieve information without being able to compromise individual
private data.

Differential privacy is a mathematical model of privacy invented by Cynthia
Dwork [56] that quantifies the individual privacy loss in a statistical database
while aggregate information about the data is released. In this framework, the
goal is that by adding noise to the database ensure that the amount of any
privacy loss and the ability of an adversary to cause harm remains the same
for any individual independent of whether she opts in to, or opts out of, the
database®.

Definition: A randomized function K gives e-differential privacy if
for all data sets Dy and D differing on at most one row, and all
S C Range(K),

Pr[K(Dy) € S] < € x Pr[K(Ds) € S). (4.5)

Using a mechanism K that fulfils this definition to provide answers to
queries, will theoretically ensure any participants that the leakage of her per-
sonal information regardless of presence or absence of her data in the database
will be significantly the same [56].

Note, that this definition does not describe how to achieve e-differential
privacy. However, departing from the definition, Dwork designs [56, 58] several
differentially private mechanisms, which are in essence, calculating how to add
just as required random noise to the database to hide the presence or absence
of a single individual, while it is still possible to retrieve accurate aggregate
information from the database. For example, the Laplace mechanism adds
Laplace noise (i.e. random numbers generated from a Laplace distribution'®)
to the function.

Two desirable properties that are both satisfied by differential privacy are:
(i) composability, meaning that if we query an e-differential privacy database
t times, then the result would be te-differentially private, and (ii) robustness

14The underlying idea can be rooted back to the notion introduced by Tore Dalenius,
in 1977 articulating a desideratum for statistical databases: “access to a statistical database
should not enable one to learn anything about an individual that could not be learned without
access” [57]. Dwork shows that although this characteristic is desirable, it is not achievable
and suggests a new measure, differential privacy, which quantifies the increased risk to one’s
privacy as a result of participating in a database.

LShttps://en.wikipedia.org/wiki/Laplace_distribution [accessed Dec 12, 2016].
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to auxiliary information, that is, differential privacy is independent of what
auxiliary information is available to the adversary.

4.6.1 Attacks on differential privacy

Differential privacy is one of the most robust privacy models known so far;
however, several attacks on differential privacy have been discussed in litera-
ture.

Haeberlen et al. [59] point out side-channel attacks on differential privacy
systems considering information leakage from the system through character-
istics of how it operates, e.g. long or rejected response. They describe sev-
eral different kinds of covert channel attacks'® (on differential privacy systems,
showing these systems can be exploited by adversarial queries [59]. Although,
these vulnerabilities are potentially serious, they are related to specific dif-
ferential privacy systems, that is how they are implemented, and cannot be
considered as a critique of the model per se. However, quite recently, some re-
searchers have raised concerns about the differential privacy model itself. Liu
et al. argue that the privacy guarantee of differential privacy relies on the
assumption of independence of tuples in the database. This assumption gener-
ally is not fulfilled in real-world databases where various natural dependences
between users can lead to degradation in expected privacy levels [60]. They
demonstrate an inference attack, where an adversary uses the probabilistic
dependence between tuples to extract users’ sensitive information from differ-
entially private query results; violating the differential privacy guarantees. Liu
et al. introduce the notion of dependent differential privacy (DDP), and pro-
pose a mechanism that takes into the account the dependence between tuples
and achieve privacy guarantees in DDP [60].

It should also be emphasized, that in practice, every data publishing sce-
nario has its own assumptions and requirements of the data publisher, the data
recipients, and the data publishing purpose. For instance, there are two mod-
els of data publishers: (i) untrusted model, in which the data publisher is not
trusted and may identify sensitive information about the record owners, and
(ii) trusted model, in which the record owners trust the data publisher and are
willing to provide their personal information to [61]. The differential privacy
model is based on the latter assumptions. However, trustworthiness is not
an immutable perceived property and may change of different reasons during
time. Moreover, even if the data collector/publisher is well-intentioned and
trustworthy, intrusions and thus privacy breach can occur for other reasons,
including hacking (e.g. see [59]), subpoena, or mission creep (i.e. expansion
of a project or mission beyond its original goals) [62]. These concerns, has
prompted researchers to seek methods for learning from data without saving
the data, something that is briefly discussed in the next section.

16https://en.wikipedia.org/wiki/Covert _channel [accessed Nov 08, 2016].
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4.7 Pan-private streaming model

The main idea behind pan-privacy model is that there should be no tempting
target and the data should never be saved. It is assumed that the data collector
is trusted, however, the raw data should not be saved because the entity holding
information may be subject to compulsory non-private data release (e.g. due
to a subpoena), be purchased by another possibly less trustworthy entity, or
be hacked. Note that in the two first cases (i.e. subpoena and purchase),
intrusion is known, but in the latter case (hacking) the intrusion is unknown.
Thus, the goal of a pan-private mechanism is to hold the internal state of the
algorithm differentially private even against an adversary that can observe the
algorithm’s internal state on rare occasions [62].

Note that an streaming algorithm that after updating the internal state
discards the input, in general, does not provide privacy against intrusions. For
instance, consider the counter problem, in which the input is a stream of ze-
ros or ones (for instance 10010011000100001 ...) and the goal is to output a
publicly observable counter that approximates, with reasonable accuracy, the
total number of 1’s, while protecting individual increments. The administra-
tor, reads each x;, updates its internal state to ) . x; and outputs the value
observable to the adversary. Evidently, as can be seen in Figure 4.3, output 1
is sufficient to expose the value of all increments in the input. Nevertheless, by
adding an independent Laplace noise (i.e. random numbers generated from a
Laplace distribution), one can protect each increment and achieve differential
privacy of the internal state and the output. For instance, consider output 2
and 3 in Figure 4.3, where with each input, a Laplace noise (with mean = 0,
and scale = 1 and 2 respectively) is added to the accumulated sum.

Note that the administrator, accumulates statistical information, and never
stores data about individual inputs. The accuracy of the information is ob-
tained (to some extent), since the noise cancels out!”. Research is ongoing
to develop new methods that increase the accuracy of the statistics without
compromising the privacy.

4.8 Visual privacy protection

Advances in computer vision technologies and development of indoor monitor-
ing systems, which can be used for assisting a rapidly aging world population,
will probably boost the use of IoT devices at home. These systems are able
to automatically interpret visual data from the environment and provide home
help services for the elderly. The use of indoor monitoring systems, poses a
new threat to individual’s privacy, implying the significance of visual privacy
protection techniques. Literature on privacy-aware monitoring system and

7The example is taken from Moni Naor, Institute for Advanced Study video lecture,
November 23, 2009, available at: https://video.ias.edu/csdm/dynamicdata [accessed 14 Dec,
2016].
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Input

[eloJofsfofofefafofofoJasJoJoJoJofsl]

Output 1: counter without noise

Lelsfofofofofsfafafafa]s]sfsfsfs]e]

Output 2: counter with Laplacian noise, scale = 1.0

[0.45]0.38]-2.30[ 0.21] 120 2.31] 2.86 | 3.32] 3.34 | 2.22 | 5.55 | 9.47 ] 9.80 |11.70] 8.88 | 8.87 J11.14]

Output 3: counter with Laplacian noise, scale = 0.5

[0.72]0.69]-0.65] 1.10] 160 2.15| 2.93] 3.66] 3.673.11[4.77| 7.23] 7.39| 8.34 | 6.94 [ 6.3 |8.56 |

Figure 4.3: Three different continual outputs of a counter: output 1 reveals
the input completely. Outputs 2 and 3 preserve the secrecy of individual input
values, while providing some degree of accuracy.

privacy-preserving photo sharing serves an opening to the privacy in the IoT
realm.

Padilla-Lopez et al. [63] provide a literature survey on several protection
methods for visual privacy and existing privacy-aware monitoring systems. The
authors identify five categories of privacy protection methods.

e Intervention methods that physically prevent the acquisition of an image
by interfering with the camera’s optical lenses (e.g. by directing pulsing
light at detected cameras).

e Blind vision method deals with image or video processing in an anony-
mous way using secure multi-party computation (SMC) techniques ap-
plied to vision algorithms. SMC is a subfield of cryptography with the
goal of creating methods for parties to jointly compute a function in such
a way that their inputs and are not revealed (see section 4.5.2). Using
blind vision techniques, vision algorithms among several parties can be
performed in an anonymous manner.

e Secure processing refers to other methods that process the visual data
in a privacy-preserving manner, but are not based on SMC. This cate-
gory contains several approaches, for example private content based im-
age retrieval, which makes it possible to query an image database by a
sample image, without revealing the content of the query image to the
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database [64], and matching encrypted images using phase-only correla-
tion [65].

e Redaction is modifying the sensitive parts of an image such as faces,
number plates, etc. to protect the private information of the subjects.
This can be achieved by using common image filtering (e.g. blurring or
pizelating), concealing region of interest by image encryption, face de-
identification, object remowval, or visual abstraction.

e Data hiding based methods are approaches in which like redaction meth-
ods region of interest are modified, however the hidden information is
also embedded inside the modified version so that the original images
can be retrieved if required. Data hiding methods are similar to digital
steganography*® technique.

4.9 Data protection legislation

We conclude this chapter by a brief remark on privacy legislation, which pre-
sumably has a significant effect on how IoT privacy will be shaped.

Most countries do not have any regulation targeting IoT systems specifically,
so general privacy laws for data collection, processing, and dissemination apply
to the IoT. These privacy regulations vary between different countries, even
within the EU. However, EU’s General Data Protection Regulation (GDPR)!?,
effective in May 2018, aims to unify the regulation for data protection within
the Union.

Even if the GDPR is a compromise between various interests and does not
go as far as some privacy advocates might wish, it is considered as a milestone
in the data protection regulation and a step in the right direction. According
to the GDPR fact sheet??, by the new regulation, users can expect greater
control over their personal data and corporates have to comply with more
stringent requirements and build data protection into their systems from the
very beginning of the design process.

A special Eurobarometer on data protection?', which was carried out in
2015, shows that an overwhelming majority of Europeans are concerned about

18Steganography is an old practice used to hide (possibly encrypted) messages inside
a cover message or image. The advantage of steganography over cryptography alone is
that the intended secret message does not attract attention to itself and only the recip-
ient is aware of its existence. The embedded message is recovered using a secret key
(https://en.wikipedia.org/wiki/Steganography [accessed Dec 27, 2016]).

9The EU Regulation 2016/697, GDPR, is a regulation passed on 27 April 2016, which
will enter into force on 25 May 2018 after a two-year transition period. It will re-
place, the Data protection Directive, and unlike the directive, does not require any en-
abling legislation to be passed by national governments (http://ec.europa.eu/justice/data-
protection/reform/files/regulation oj en.pdf [accessed Dec 27, 2016]).

20http:/ /europa.eu/rapid/press-release MEMO-15-6385 _en.htm [accessed Dec 27, 2016].

2L http://ec.europa.eu/public_opinion/archives/ebs/ebs 431 en.pdf [accessed Dec 27,
2016].
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how their data is collected and processed by companies. For instance, more
than eight out of ten respondents feel that they do not have complete control
over their personal data and two-thirds of respondents are concerned about not
having complete control over the information they provide online. In GDPR,
these concerns are addressed through:

Right to be forgotten, i.e., when an individual no longer wants her/his
data to be processed, the data will be deleted.

Easier access to one’s data, i.e., individuals will have more information
on how their data is processed.

The right to know when one’s data has been hacked, i.e., companies
and organizations must notify the national supervisory authority and (if
required) the data subject of data breaches.

Data protection by design and by default, i.e., data protection safeguards
will be built into products and services from the earliest stage of devel-
opment.

Stronger enforcement of the rules, i.e., data protection authorities will
be able to fine companies who do not comply with EU rules up to 4% of
their global annual turnover.
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5 Security and Privacy in
Cloud-Supported loT

Cloud-based services are often considered as the natural infrastructure of the
IoT that provide support for data storage, data processing and data shar-
ing [66]. Therefore, it is justified to study security, privacy and personal safety
risks in the context of cloud-based services.

Singh et al. [66] distinguish twenty security and privacy concerns that are
beyond particular application domains, and are from the perspectives of cloud
providers and end-users across the range of IoT technologies. In the following
a brief discussion on some of these concerns are given. The reader interested in
security and privacy issues of IoT-cloud is referred to [66], for a more detailed
discussion.

5.1 Accessing the cloud

The flow of data from IoT devices to the cloud (either for storage or process-
ing), and the flow of data (including actuating commands) to the devices are
sensitive. Therefore, secure communication that prevents unauthorized access
to data is required to both counter wiretapping and protecting data from tam-
pering. Current technologies for secure communication of data and encrypting
data by applications and modifications of these techniques are used to achieve
confidentiality and integrity of data. However, this approach can be a com-
plex endeavour, considering the number of participants in IoT systems and the
dynamic nature of such systems, and does not scale well.

Another related concern is the access control for IoT-cloud. Access controls
serve as a means to manage the privileges of users, that is only those that have
the right and are authorized have access to appropriate data and services. For
example, this can be implemented by imposing access control lists. A security
challenge is that the IoT often involves interactions between IoT devices that
have not been connected earlier. Moreover, the IoT may require more flexible
and context-dependent access control policies, for instance, it may be desirable
that in acute medical circumstances personal devices reveal information about
the owner’s health state, something that is not appropriate otherwise [66].

5.2 Data management within the cloud

Identifying potentially sensitive data is a crucial part of IoT security. It is
important to note that it is not sufficient to identify devices that produce the
data, to determine whether the data is sensitive. Hence, it is important to
design security mechanisms in a way that resolve the sensitivity of the data in
the current context.
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However, the benefits from the IoT vision depends on information sharing
between devices, and if the data gathered by each device is isolated, the wider
vision of the IoT will be lost. While the current cloud design is focused on
strong protection without sharing, the requirements of the IoT are both data
protection and sharing. The main concern here is to reassure that personal data
is protected and shared as the user specifies, even when it has been uploaded
to the cloud.

A way to ensure protection against leakage of data by the cloud provider
due to bugs, malicious insiders, or misconfiguration is to enforce encryption by
IoT device. One problem here is that then IoT devices have to deal with all as-
pects of security, data and key management, which can be complex and hinder
scalability. Another problem is that encryption by IoT devices, limits the cloud
provider’s capability to supply data processing and analytics services. A way
to address this problem is using homomorphic encryption techniques (discussed
in section 4.5.2.1), which enable computation on encrypted data, without ac-
cess to the intelligible data. However, these methods are not currently mature
enough to be used in practice [66].

Data generated or produced by IoT devices may have different level of
sensitivity. While some data such as location of a personal device are intrinsi-
cally sensitive, others may be harmless per se. However, even if an individual
data stream is not harmful, the combination of data with other information
may compromise security and privacy of clients. The general problem is that
it is impossible to foresee all imaginable security risks and privacy concerns
that may appear from different combination of data produced by all devices.
Anonymizing the data is often not sufficient to prevent re-identification of at-
tributes (see section 4.4.1). This is increasingly meaningless as the amount and
variety of available information about individuals grows exponentially [67].

5.3 Identity management

The IoT adds more complexity to identity management. One problem is that
some devices could be shared between different individuals. For example, con-
sider a home monitoring and control system, which should identify residents of
a house to apply user-specific policies. However, different family members may
have different conflicting preferences (e.g. about appropriate room tempera-
ture), thus some conflict detection and resolution mechanisms are required [66].

5.4 Managing scale for the loT-cloud

The IoT produces a huge amount of data, enlarge communication requirements,
and increase the number of clients with which an IoT-cloud should interact.
This may lead to availability problems, and consequently failure in coordination
of the devices. Another issue is how to manage the log information for devices
and where to save them. Logs are essential for controlling the compliance with
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regulations and contracts [66].

5.5 Malicious devices

The IoT implies a drastic increase of the number of connected devices, which
vastly increase opportunity of denial-of-service (DoS) attacks (see also chapter
3).

An essential problem is how to determine which devices have been com-
promised. Among other methods, analysing the data outputs and patterns of
behaviour or reputation of an IoT device (i.e., trust value assigned by other
nodes) are suggested methods to address the problem [66].
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6 Discussion

6.1 loT security

The Stuxnet example is a military, targeted operation that we do not see many
of. However, it is extremely difficult to protect oneself against an opponent
with large resources of this magnitude.

What one can at least say for sure is that this sort of operation has a time
span of several years in which a long time is used for planning. One can also
conclude from the FOI’s own investigations that the code quality seems to have
been degraded in more recent versions, probably due to a short development
time of perhaps six months. The most of the sloppy code was added after this
period, resulting in an uncontrolled spread of the worm, which presumably was
not the intention.

Although, these centrifuges cannot be classified as IoT), it indicates that the
antagonistic threat to embedded systems is not new. If it is possible to conduct
such sophisticated attacks on air-gapped systems, we can argue a fortiori that
the IoT will experience similar threats. Our tools tend to be more and more
complex and that makes them more vulnerable to antagonistic threats unless
protection against attacks is built in, which it seldom is.

Are we heading for disaster in all areas? Adequately, a regular practice
of the developers of control systems is that they assume that systems can fail
in different ways and therefore they provide redundant safeguards. Although
it might not be possible to protect a system against all deliberate tampering,
it must be generally difficult to manipulate a well-designed system in a “dan-
gerous” manner. Hacking is just one more way that a control system can be
broken. A relatively clear example of this approach is described in a report
on traffic light controller [68]. The system that the authors study has several
fully open lines of communication by which an attacker can easily manipulate
the system. With one exception. Right in front of the traffic lights there is a
separate unit called the MMU, Malfunction Management Unit, whose task is
to not allow dangerous light combinations. It is relatively easy to obtain the
advantage of green wave, but not to manipulate the system to display green in
all directions simultaneously.

At least in larger systems that can fail in harmful ways, the protection level
is usually at a higher level than in household appliances and they are often
rather difficult to break. This is probably the main reason that we so seldom
see any hacking terrorism. It is usually much easier to make a statement in
more traditional ways.
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6.2 loT privacy

Smartphones and social network media, which are ranked as the first and sec-
ond top 11 technologies of the first decade of the 21st century [69], have al-
ready changed our lives in a significant way'. In our pockets, we carry various
embedded sensors (GPS, accelerometer, gyroscope, microphone, camera, and
Bluetooth), as well as a traditional telephone. The wealth of (mostly free)
available applications that creatively use these sensors and users’ information
has widespread social implications [70].

The IoT evolution continues to add billions of new sensors and devices to
the Internet, generating an enormous amount of information about people, in-
cluding their locations, connections, shopping records, financial transactions,
pictures, voices, conversations, health state, etc., with or without explicit con-
sent. This data will be further processed, stored, analysed and will be treated
as a commodity (data is already proclaimed to be the new oil?).

What are the social consequences of these changes on our lifestyle and the
way we perceive privacy? Geoff Webb, a security expert and IoT blogger argues
that the IoT will affect everything and everyone in a way that is unprecedented
from the invention of agriculture: “The IoT will be everywhere which means
that when the changes occur (and they will) those changes will impact every-
thing, and everyone - there’s no ‘offline’ no ‘standby’ for the IoT. No one will
be able to escape its impact, because you won’t use the IoT, you’ll live inside it
all day, every day”. He concludes that we have to say goodbye to privacy since
we are not only going to lose our privacy, but we will have to watch that the
very concept of privacy be redefined.* This is not a new insight. As early as in
1991, Mark Weiser (who also coined the term ubiquitous computing), already
identified privacy as one of the main challenges of ubiquitous computing [71]:
“Perhaps key among [the social issues that embodied virtuality will engender|
is privacy: hundreds of computers in every room, all capable of sensing peo-
ple near them and linked by high-speed networks, have the potential to make
totalitarianism up to now seem like sheerest anarchy.” [72].

Apparently, the value placed on privacy is culturally and historically relative
and this value might change depending on technological growth and other social
and cultural factors. However, it is implausible that the right to privacy is
voluntarily abandoned.

On the other extreme, is it possible that human’s insistence on privacy,
reflected in various regulations will restrain the development of the IoT, to

IThe number of global smartphone users as 2016 is around 2 billion and there is a
noticeable rise in the percentage of people in the emerging and developing nations in adoption
of the smartphones and Internet usage (http://www.pewglobal.org/2016/02/22/ [accessed
Dec 15, 2016]).

2https://www.wired.com/insights/2014,/07/data-new-oil-digital-economy/ [accessed Dec
29, 2016.

3http://www.wired.com /insights/2015/02 /say-goodbye-to-privacy/ [accessed Dec 29,
2016).

Ibid.
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that extent that its benefits will be completely lost? There are no simple and
pre-determined answers to these questions.

Privacy and data utility are often perceived to be conflicting. In recent
years, various privacy-preserving techniques have targeted the balance between
privacy and utility. As discussed in the report, the idea that removing identi-
fiers is sufficient to provide anonymity has lost its scientific support. Methods
that aim to mitigate risk of privacy breach after removing identifiers (e.g. k-
anonymity, [-diversity and t-closeness) have also all shown to be more or less
vulnerable.

More recent techniques such as homomorphic encryption, differential pri-
vacy, and pan-privacy are comparatively powerful privacy-preserving methods,
however, they are either in research phase or not completely mature.

Binding privacy legislation in combination with increased level of data pro-
tection enforcement will likely both promote the research on privacy-preserving
methods and overcome any reluctance of IoT companies to address privacy con-
cerns of the consumers. We are in the early stages of developing IoT technolo-
gies. Providing clear legal privacy requirements allows for developing methods
that could address these requirements.
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