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Sammanfattning 
Denna rapport beskriver en metodik och ett system för så kallad horizon scanning av 
vetenskaplig litteratur i syfte att upptäcka vetenskapliga trender. Litteratur inom ett brett 
definierat forskningsfält kan med denna metodik grupperas automatiskt i kluster efter 
ämnesinnehåll och rangordnas med avseende på inflytande inom respektive 
ämnesområde. En metod för att bestämma det optimala antalet kluster för en befintlig 
dokumentklustringsalgoritm, samt en metod för att ta fram beskrivande och särskiljande 
ord för de upptäckta klustren introduceras. Dessutom föreslås en rankingmetodik baserad 
på citeringsstatistik för att identifiera inflytelserika bidrag inom de upptäckta 
ämnesområdena. 

 

Nyckelord: horizon scanning, scientometri, Gibbs sampling, Dirichlet multinomial 
mixture model, entropi, klustring, HSTOOL
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Summary 
In this report we develop a methodology and a system for horizon scanning of scientific 
literature to discover scientific trends. Literature within a broadly defined field is 
automatically clustered and ranked based on topic and scientific impact, respectively. A 
method for determining the optimal number of clusters for the established Gibbs 
sampling Dirichlet multinomial mixture model (GSDMM) algorithm is proposed along 
with a method for deriving descriptive and distinctive words for the discovered clusters. 
Furthermore, we propose a ranking methodology based on citation statistics to identify 
significant contributions within the discovered subject areas. 

 

Keywords: horizon scanning, scientometrics, Gibbs sampling, Dirichlet multinomial 
mixture model, entropy, clustering, HSTOOL 
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1 Introduction 
Horizon scanning methods aim to discover changes, disruptions, and trends with the 
potential to influence the development of a particular area of interest significantly. For 
scientific literature, the goal of horizon scanning is to discover emerging or rapidly growing 
research areas and to identify technologies that have reached a level of readiness that is 
suitable for industrial applications. 

To scan broad scientific fields without making presumptions about specific topics worthy 
of further studies, large numbers of scientific articles must be included in the scanning 
process. This requirement motivates the need for a semiautomatic approach, where software 
tools provide some initial filtering and structuring of the data. 

In this report, we propose a method for semiautomatic horizon scanning of scientific 
literature and present the horizon scanning system HSTOOL that supports the proposed 
method. The goal of the method is to identify rapidly developing fields and their most 
significant contributions by first scanning the scientific literature using relatively general 
search criteria and then structuring and filtering the discovered articles. HSTOOL accesses 
the Thomson Reuters Web of Science1 (WOS) Core Collection through a set of APIs that 
allow searches and retrieval of article data, as well as citation statistics. The proposed 
method and software thereby enable semiautomatic scanning of 71 million articles found in 
over 20 300 journals, 94 000 books and 180 000 conference proceedings included in the 
WOS Core Collection. 

The key steps of the method are clustering of the discovered literature to identify topics and 
ranking of articles in the resulting clusters based on scientific citation statistics to find the 
most significant contributions within the respective topic. 

We use the Gibbs sampling Dirichlet multinomial mixture model (GSDMM) algorithm [1] 
for clustering and introduce a complementary method to determine the optimal number of 
clusters. We find the optimal clustering by evaluating the quality of placement of every 
article in each specific cluster using an entropy measure [2], [3]. Furthermore, we develop 
a method for automatically presenting two sets of descriptive words for each cluster based 
on the cluster’s contents. The first set consists of the words that most often occur in the 
cluster, while the second set consists of the most distinctive words in the sense that their 
occurrence throughout the entire set of articles is concentrated in the current cluster. In 
combination, the sets provide a description of the articles that are part of the cluster and an 
account of what primarily distinguishes these articles from articles in other clusters. 

For scientific ranking, we propose a set of scientometric measures that identify articles that 
have made a significant impact in the respective fields. Influence is measured as either 
collecting many citations over a short period of time, or having a strong citation trend, or 
frequently being cited in prestigious journals. Finally, the measures are aggregated into a 
total ranking within each discovered cluster. The top-ranked articles can thus be selected for 
detailed study. 

The report is organized as follows. In Section 2, we describe a workflow model that contains 
all process steps of searching, organizing and analyzing scientific articles. In Section 3, we 
develop methods for performing horizon scanning to discover and analyze trends in 
scientific literature. In Section 4, we develop processes for scientific trend discovery and 
describe a literature scanning system. We apply the system to a case study of literature on 
military applications of artificial intelligence (Section 5). Finally, conclusions are provided 
in Section 6. 

                                                 
1 http://www.webofknowledge.com (March 2019). 

http://www.webofknowledge.com/
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2 Workflow 
Fig. 1 shows the proposed workflow of horizon scanning of scientific literature in five steps. 
The process is intended to facilitate scanning of broad areas defined by a general topic search 
string (step 1). The topic search is further discussed in Section 3.1. Once a search has been 
performed and records downloaded (step 2), topics are automatically discovered using a 
clustering algorithm that groups the scientific articles based upon textual contents (step 3). 
Details of the clustering algorithm are described in Sections 3.2 and 3.3. Clusters of articles 
can then be selected for further studies. To find the key contributions from a cluster of 
interest, a ranking method is proposed that uses a set of statistical citation measurements to 
capture various aspects of scientific impact (step 4). Section 3.4 covers the derivation of 
impact measurements and ranking procedures. Once top-rated contributions for a subject 
area have been identified, a manageable subset of articles can be selected for detailed studies 
(step 5). 

 

 

Figure 1. Proposed workflow for horizon scanning of scientific literature. 

1

Topic 
search

Download 
records

2

Rank articles 
in interesting 

clusters

4

Select top ranked 
articles from 

interesting clusters 
for further study

5

Discover 
clusters

3



  FOI-R--4760--SE 

 

 9 

3 Methodology 
In this section, we describe methods for searching scientific literature, clustering articles in 
groups that correspond to subject areas and evaluating the scientific impact of all articles 
with citation statistics. Search methods are described in Section 3.1, clustering of articles in 
Section 3.2, methods for describing the contents of clusters in Section 3.3 and the ranking 
of articles according to citation statistics in Section 3.4. 

3.1 Searching scientific publications 
All searches are performed using search terms provided by subject matter experts. These 
search terms should be tested before use in HSTOOL to ensure that they yield results within 
the area of interest. 

We use HSTOOL to search for publications through an API that provides access to WOS. 
We limit the search to the Core Collection because that database has the citation statistics 
that we need for scientometric analysis and ranking of articles. 

3.1.1 Search terms 

Usually, we search in the topic field (TS) with a search query that consists of the search 
terms supplied, along with logical operators AND, OR, NOT, and NEAR. In this instance, 
NEAR\n allows n words between two terms. However, there is nothing to prevent us from 
searching all available fields with a logical construct of search terms, Boolean operators and 
parentheses. 

3.2 Clustering of articles 
Once a search result has been downloaded from WOS (Fig. 1, steps 1–2) we want to group 
all articles that concern the same subject area into a cluster to be treated as a separate 
subproblem (Fig. 1, step 3) and then use scientometric information to determine which 
articles within each cluster are most important to that area (Fig. 1, step 4). 

In the following two sections, we describe how to use a GSDMM algorithm to organize 
articles into clusters with common subject areas (Section 3.2.1) and how we determine the 
optimal number of clusters (Section 3.2.2). It is important to point out that the search terms 
used in the previous step are not used in the clustering phase. 

3.2.1 Clustering with GSDMM 

To group articles within the same subarea, we use the abovementioned GSDMM [1], [4]. 
Simply described, this method starts from a large number of clusters and a random 
distribution of articles among clusters. Then, the method examines each article to determine 
if it fits better in any other cluster than where it is currently placed. This procedure is 
repeated iteratively for all the articles until there are no more changes. 

The method proceeds by comparing for every article all words in the article’s title and 
abstract with the corresponding words in all other articles. If a word is missing or occurs a 
different number of times when comparing with another article, the probability that these 
articles belong together is assigned a lower value. These probabilities are combined for all 
articles within each cluster (and also for the cluster where the article is currently located). 
This results in an evaluation for all clusters of how well this article fits into all the different 
clusters. Then, the article is moved to a cluster where it fits well according to these 
probabilities. The procedure is applied to all articles and repeated iteratively until all articles 
are placed in their best clusters. 
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During the process, the number of clusters will decrease dramatically, often by 80–85%. For 
example, if we start with 500 clusters and thousands of articles, we can finish with 75–100 
clusters. 

The clustering process is performed by a sequence of Gibbs sampling iterations. During 
each iteration, we calculate the probability of each article belonging to each cluster k, 
resulting in the probability that the article should be moved to that cluster. 

We have [1] 

 

𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑�𝑘𝑘𝑑𝑑 = 𝑘𝑘�𝑘𝑘�⃗ ¬𝑑𝑑 ,𝑑𝑑� ∝
𝑚𝑚𝑘𝑘,¬𝑑𝑑 + 𝛼𝛼
𝐷𝐷 − 1 + 𝐾𝐾𝐾𝐾

×
∏ ∏ �𝑛𝑛𝑘𝑘,¬𝑑𝑑

𝑤𝑤 + 𝛽𝛽 + 𝑗𝑗 − 1�𝑁𝑁𝑑𝑑
𝑤𝑤

𝑗𝑗=1𝑤𝑤∈𝑑𝑑

∏ �𝑛𝑛𝑘𝑘,¬𝑑𝑑 + 𝑉𝑉𝑉𝑉 + 𝑖𝑖 − 1�𝑁𝑁𝑑𝑑
𝑖𝑖=1

,             (1) 

 

where on the left-hand side, 𝑘𝑘𝑑𝑑 is the cluster position of article d, k is the kth cluster, 𝑘𝑘�⃗ ¬𝑑𝑑 is 
the set of cluster positions of all other articles excluding d, and 𝑑𝑑 is the set of all articles. In 
the first term on the right-hand side, 𝑚𝑚𝑘𝑘,¬𝑑𝑑 is the number of articles in cluster k not including 
d, α is a cluster parameter set to 0.1 in our test case, D is the total number of articles under 
consideration, and K is the initial number of clusters. In the second term on the right-hand 
side, w is the wth word of article d, 𝑁𝑁𝑑𝑑𝑤𝑤 is the number of times word w appears in article d, 
𝑛𝑛𝑘𝑘,¬𝑑𝑑
𝑤𝑤  is the number of times word w appears in cluster k when article d has been removed, 

β is a cluster parameter that will determine the number of final clusters, 𝑁𝑁𝑑𝑑 is the number of 
words in article d, 𝑛𝑛𝑘𝑘,¬𝑑𝑑 is the number of words in cluster k when article d has been removed, 
and V is the number of words in the vocabulary. 

During the first iteration, a new cluster position is sampled for each article using (1). After 
each sampling, (1) is updated. When all articles in D have been reassigned to new cluster 
positions, the second iteration starts. The process continues for a fixed number of iterations. 
The final cluster positions of all articles at the last iteration is the result of the clustering 
process. 

3.2.2 Managing the number of clusters 

To select the best number of clusters, we need to evaluate various options. To this end, we 
evaluate various numbers of clusters based on the quality of clustering. 

The GSDMM algorithm does not require a predetermined number of clusters to assign the 
articles of a given corpus2. However, the number of clusters depends on parameter 
𝛽𝛽 ∈  (0, 1) that appears in equation (1). A value of β near zero results in many clusters, 
while β near one produces fewer clusters. 

Several standard internal clustering performance metrics [5] utilize some definition of 
distance between data points. However, since the GSDMM algorithm does not utilize any 
distance measure between documents to define clusters, these metrics are inapplicable. 
Instead, we focus on the articles that have been clustered and study how well they fit in the 
clusters where they have been placed. 

Each article has a probability distribution across all clusters that indicates the probability 
that each cluster is the optimal location for that article (1). This distribution is calculated 
and used in the clustering process for GSDMM and is recalculated in each step of the 
clustering process for all articles. At the end of the clustering process, we use the final 
calculated probability distribution for each article. This is a distribution over all initial 

                                                 
2 The collection of all articles from a particular search. 
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clusters, although most of the original clusters are empty at the end of the clustering process 
and thus have a nearly zero probability. 

We consider {𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑}, where 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 is the probability that article d belongs to cluster k at 
iteration i (1), with 

 

�𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑

𝐾𝐾

𝑘𝑘=1

= 1                                                                 (2) 

 

for any constant d and i, and where K is the initial number of clusters. 

If the placement of a particular article is almost certain, that article will have a probability 
near one for the respective cluster. Sometimes, an article may have more than one 
probability that is not near zero because the placement is uncertain. A clustering can be 
considered to be of high quality if as many articles as possible have as certain a placement 
as possible. Consequently, the entropy of the probability distribution is a good measure of 
the quality of placement of a particular article [2]. To study the convergence of the GSDMM 
algorithm, we calculate at each Gibbs sampling iteration i the entropy for each article d as 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑 = −�𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑�𝑘𝑘𝑑𝑑 = 𝑘𝑘�𝑘𝑘�⃗ ¬𝑑𝑑 ,𝑑𝑑�log�𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑�𝑘𝑘𝑑𝑑 = 𝑘𝑘�𝑘𝑘�⃗ ¬𝑑𝑑 ,𝑑𝑑��
𝐾𝐾

𝑘𝑘=1

.                      (3) 

 

To determine the quality of a specific clustering (i.e., the clustering at a specific iteration i 
for a specific value of β), we calculate its entropy as 

 

𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 = �𝐸𝐸𝐸𝐸𝐸𝐸𝑑𝑑𝑑𝑑

𝐷𝐷

𝑑𝑑=1

.                                                               (4) 

 

Fig. 2 shows the convergence of 𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖 for i ∈ [0, 14], averaging over 100 runs for a test case. 
The clustering quality is not significantly improved after 10 iterations. However, entropy 
convergence can vary between runs, which would motivate a dynamic choice of iterations, 
whereby the entropy reduction rate determines when the algorithm is complete. This would 
be an interesting future direction to investigate. 
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Figure 2. Entropy convergence (4) over 15 Gibbs sampling iterations for all articles in a test case, 
averaging over 100 runs. 

From the above, it follows that a good measure of quality of the entire partition of all articles 
for a particular clustering process is the sum of entropy over all articles after the final 
iteration, where 𝐸𝐸𝐸𝐸𝐸𝐸14 is the sought-after entropy to be minimized. 

In Fig. 3, the average number of discovered clusters is shown for a test case for various 
values of parameter β. If β is small, we obtain a large number of remaining clusters at the 
end of the process. The number of clusters drops rapidly if β is increased. For values of 
β > 0.2, the decrease in the number of final clusters is more gradual. In a test case with β = 
0.01, GSDMM discovers on average 326 clusters among 1358 articles, while for β = 0.99, 
the average is six clusters. It is clear that choosing the right value of β is key to obtaining an 
appropriate number of clusters for the contents of the corpus. 

 

 

Figure 3. Average number of clusters discovered by GSDMM as a function of β, averaged over 100 
runs for each value of β for a test case. 
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To find the best number of final clusters, we study the entropy at the end of each clustering 
process for values of β between zero and one. The results are shown in Fig. 4. 

 

 

Figure 4. Final entropy 𝐸𝐸𝐸𝐸𝐸𝐸14 (3) for a test case summed over all articles as a function of β, averaged 
over 100 runs. 

As β increases, there is a decline in the final entropy for each clustering process. Note that 
most of the decline in entropy occurs when β is increased to 0.1. For values of β > 0.1, the 
decline in entropy is modest. The initial high entropy is caused by partitioning the set of 
articles into too many clusters of overlapping subject areas relative to the current problem. 

However, the number of clusters keeps decreasing as β approaches 1, as shown in Fig. 3, 
without any improvement in entropy (Fig. 4), which ultimately results in a few large clusters, 
each containing multiple topics. Ideally, we want to find a partition that has well-defined 
clusters that correspond to subject areas yet has the lowest possible entropy. 

To estimate the correct number of clusters, the final entropy derived from clusterings with 
various values of β is calculated. As shown in Fig. 4, if β is small, entropy is high; as β 
increases, entropy declines with a small residual entropy at high β. It is evident that there is 
a change of behavior of the entropy at a point that we consider to yield the best number of 
clusters; that point is determined as follows [3]. The concave lower envelope of entropy is 
determined by a convex hull algorithm. At any abscissa, the envelope function is bisected 
into left and right parts. The acute angle between the left and right line segments is 
minimized across all bisection values of abscissa, and the minimizing abscissa is selected as 
the best value of β, see Fig. 5. 

 

Figure 5. Red line is the concave lower envelope of the black dots. Blue line is an abscissa a of point 
(a, b), and green is the minimizing angle. 
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3.3 Describing the contents of clusters 
In this section, we outline a method for describing the contents of a cluster. A high-level 
description is given by the most representative and the most distinctive words. The most 
representative words are those that most often occur in the cluster. For cluster k, we have 

 
𝐹𝐹𝑘𝑘𝑤𝑤 = 𝑛𝑛𝑘𝑘𝑤𝑤 ,                                                                        (5) 

 

where 𝑛𝑛𝑘𝑘𝑤𝑤 is the number of times word w occurs in cluster k. We rank all words in cluster k 
according to 𝐹𝐹𝑘𝑘𝑤𝑤 and present the highest-ranked words with the maximum 𝐹𝐹𝑘𝑘𝑤𝑤 as 
representatives of cluster k. 

Words that distinguish a cluster from other clusters are determined by calculating the 
entropy of each word in the corpus as 

 

𝐸𝐸𝑤𝑤 = −  �
𝑛𝑛𝑘𝑘𝑤𝑤

∑ 𝑛𝑛𝑗𝑗𝑤𝑤𝐾𝐾
𝑗𝑗=1

𝐾𝐾

𝑘𝑘=1

log�
𝑛𝑛𝑘𝑘𝑤𝑤

∑ 𝑛𝑛𝑗𝑗𝑤𝑤𝐾𝐾
𝑗𝑗=1

� ,                                              (6) 

 

where 𝐸𝐸𝑤𝑤 is the entropy of word w, and 𝐾𝐾 is the number of clusters. For each cluster k, the 
words in this cluster with the lowest entropy (i.e., the words that occur in the least number 
of clusters) are listed as distinctive words. 

We have 

 
𝐸𝐸𝑘𝑘𝑤𝑤 = 𝐸𝐸𝑤𝑤|𝑛𝑛𝑘𝑘𝑤𝑤 > 0,                                                                (7) 

 

where 𝐸𝐸𝑘𝑘𝑤𝑤 is the entropy of word w in cluster k. We rank all words in cluster k according to 
𝐸𝐸𝑘𝑘𝑤𝑤 and present the highest-ranked words with the minimum 𝐸𝐸𝑘𝑘𝑤𝑤 as the most distinctive 
words. 

Together, 𝐹𝐹𝑘𝑘𝑤𝑤 and 𝐸𝐸𝑘𝑘𝑤𝑤 identify the most representative and distinctive words for each cluster, 
describing the contents of that cluster. 

3.4 Ranking of articles within clusters 
The ranking of articles is done using citation statistics in several different ways [6]. We use 
the statistics provided by Thomson Reuters’ WOS. With these statistics, we can rank all 
articles based on the interest that other scientists have expressed according to their citations. 

Our focus is on finding the most important articles within the clusters. This is done 
independently for each cluster by ranking all its articles. The ranking results from several 
independent methods with measures that perform alternative assessments. We start by 
calculating the number of citations for an article during each of the preceding six years. We 
then define four different impact measures based on citation impact and citation trends for 
all articles. Using the four measures, the articles within each cluster are assigned four 
alternative impact rankings that are then aggregated into a total ranking. The aggregation of 
the four rankings is designed to maximize robustness such that no single method dominates 
the final ranking. The process is repeated independently for each cluster. The four impact 
measures and the aggregated total rank are described in detail below. 
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3.4.1 Impact measures 
The first measure is called Impact1. With this measure, we can rank all articles within a 
cluster according to the number of times they have been cited in the WOS database over the 
past year (i.e., the preceding 365 days). This can be done by the operator citingArticles in 
the WOS API. 

We have 

 

 𝑠𝑠1𝑗𝑗𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, (8) 

 

where 𝑠𝑠1𝑗𝑗𝑘𝑘  is the number of citations of 𝐴𝐴𝑗𝑗 (i.e., the numerical value of the impact measure 
Impact1), 𝐴𝐴𝑗𝑗 is the jth article in the search, k is the cluster position of 𝐴𝐴𝑗𝑗, timeSpan.end is 
today’s date, timeSpan.begin is one year prior, and recordsFound calculates the number of 
found records. The highest-ranked article 𝐴𝐴𝑗𝑗 is the one with the maximum value of 𝑠𝑠1𝑗𝑗𝑘𝑘  for 
all {𝐴𝐴𝑙𝑙}. 

The second impact measure is called Impact5. This measure is similar to Impact1, except 
that it includes all citations over the past five years. 

We have 

 

 𝑠𝑠5𝑗𝑗𝑘𝑘 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, (9) 

 

where 𝑠𝑠5𝑗𝑗𝑘𝑘  is the number of citations of 𝐴𝐴𝑗𝑗 over the past five years, and timeSpan.begin is 
five years prior to timeSpan.end. With Impact5, we rank all articles in the second ranking 
independently from the ranking made with Impact1. 

The third impact measure is called ImpactAIS. Similarly, to Impact5, this measure uses 
citation statistics from the past five years. It is extended by weighting the source according 
to the source’s importance with the Article Influence Score (AIS). However, AIS is only 
available for journals and unavailable for conferences, which therefore receive a zero 
weight. This may mean that with ImpactAIS, we will not find completely new articles that 
quickly receive many citations in conference proceedings. For articles that have been 
available for a few years, however, this should be a better way to rank. We need both 
methods because neither Impact5 nor ImpactAIS is always the best method. 

AIS is a measure developed to quantify the importance of a journal. Formally, it measures 
the average influence of the journal’s articles during the first five years after publication. 
AIS is calculated by multiplying the journal’s EigenfactorScore3 (EFS) by 0.01 and dividing 
by the number of articles in the journal, normalized with respect to all articles in all 
publications covered by the Journal Citation Reports4 (JCR). For example, since the average 
for all JCR journals is 1.0, an AIS score of 2.0 means that the average article in this journal 
has twice the influence of the average article in the JCR. 

  

                                                 
3 http://www.eigenfactor.org/about.php (March 2019). 
4 http://www.webofknowledge.com/JCR (March 2019). 

http://www.eigenfactor.org/about.php
http://www.webofknowledge.com/JCR
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We have 

 

 𝐴𝐴𝐴𝐴𝐴𝐴 = 0.01 × 𝐸𝐸𝐸𝐸𝐸𝐸 𝑋𝑋,⁄  (10) 

 

where X is the number of articles in the journal published during five years divided by the 
number of articles in all JCR journals during five years. 

EFS in (10) is based on the number of times articles in the journal, published in the past five 
years, have been cited in the JCR. It also takes into account the journal in which these 
citations occurred, so that citations in articles published in highly cited journals have a larger 
effect than do those in journals that are not as highly cited. In addition, references from an 
article in a journal to another article in the same journal are eliminated. For our purpose, we 
do not need to calculate EFS or AIS because Thomson Reuters provides AIS for all JCR 
journals. 

We have 

 

𝑠𝑠AIS𝑗𝑗𝑘𝑘 = � 𝐴𝐴𝐴𝐴𝐴𝐴(𝐴𝐴𝑙𝑙),                                                          (11)
𝐴𝐴𝑙𝑙∈𝑌𝑌𝑗𝑗

 

 

where 𝑠𝑠AIS𝑗𝑗𝑘𝑘  is the number of citations in the preceding five years of 𝐴𝐴𝑗𝑗, where each citation 
is weighted by AIS of the citing source, and 

 

 𝑌𝑌𝑗𝑗 =  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑗𝑗, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (12) 

 

is the set of citing articles in the past five years, where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is five years ago, 
and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑒𝑒𝑒𝑒𝑒𝑒 is today. 

The fourth impact measure is called ImpactReg. This method performs a least-squares fit of 
a line to data on five-year citations changes (based on six years of data) for each article. The 
method ranks all articles according to the average change in citations during these five years, 
as defined by the slope of the regression line, as shown in Fig. 6. 
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Figure 6. Example of a regression line (red line) over six years and the number of citations (black 
dots) per year for a particular article. The regression line in the example has a slope of 2.9047. This 
means that the number of citations for each year increases by an average of 2.9047 for this article. 
We use this value when we rank this article against all other articles in the same cluster. 

The purpose of this method is to capture new articles with a strong trend that have not yet 
received enough citation coverage to receive high rankings by Impact1, Impact5, and 
ImpactAIS. 

We have 

 

𝑠𝑠Reg𝑗𝑗𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆{𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅[ 
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡6. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆6. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡5. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡5. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡4. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡4. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡3. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 
 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�𝐴𝐴𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡2. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 
 𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖�𝐴𝐴𝑗𝑗 , 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡1. 𝑒𝑒𝑒𝑒𝑒𝑒�. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟]}, (13) 
 

where 𝑠𝑠Reg𝑗𝑗𝑘𝑘  is the slope of the regression line of six data points where 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 .𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 is 
the ith year before today, and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 .𝑒𝑒𝑒𝑒𝑒𝑒 is a year later. We use 𝑠𝑠Reg𝑗𝑗𝑘𝑘  in cluster k as 
our fourth independent ranking of all articles 𝐴𝐴𝑗𝑗 in the cluster. 

In the next section, we will combine the four rankings derived in this section into a complete 
overall ranking of all articles 𝐴𝐴𝑗𝑗 in each cluster k. 

3.4.2 Combining all impact measures for an overall ranking 
The measures derived in the previous section capture different aspects of scientific impact. 
The aggregated ranking should be able to reflect all these different aspects. A fairly good 
ranking by all four measures should result in a fairly good aggregated ranking. Furthermore, 
to receive an acceptable aggregated ranking index, it should be sufficient for an article to 
have an excellent ranking by one measure, even if the rankings by the other measures are 
mediocre. Finally, to ensure robust sampling, we want to eliminate any skewness in the 
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distribution for a particular measure. In what follows, we derive a method for aggregating 
the four impact measures into an overall ranking that meets these criteria. 

When selecting r articles for further study from m articles (r ≤ m =��𝐴𝐴𝑗𝑗��) contained in cluster 
k, we use the four impact measures calculated for the articles in that cluster. For each impact 
measure, Impact1, Impact5, ImpactAIS, and ImpactReg, we sort all articles �𝐴𝐴𝑗𝑗� in cluster k 
in the decreasing order of impact according to �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗 and renumber all articles within this 
cluster in the same decreasing order. Thus, the first article (𝐴𝐴1) has the highest impact 
according to 𝑠𝑠𝑖𝑖1𝑘𝑘  within the current cluster k. 

We assign a ranking score to r selected articles �𝐴𝐴𝑗𝑗�𝑗𝑗=1
𝑟𝑟

. For article 𝐴𝐴𝑗𝑗 in cluster k that 

received the jth highest �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗, we calculate a ranking score with label 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘  determined 
according to 

 

𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘 =
𝑟𝑟 − 𝑗𝑗 + 1
∑ 𝑙𝑙𝑟𝑟
𝑙𝑙=1

=
𝑟𝑟 − 𝑗𝑗 + 1

1
2 𝑟𝑟(𝑟𝑟 + 1)

,                                                  (14) 

 

where 𝑖𝑖 = {1,5,𝐴𝐴𝐴𝐴𝐴𝐴,𝑅𝑅𝑅𝑅𝑅𝑅}, and j is the index of article 𝐴𝐴𝑗𝑗 in position j in the ranking of all 
articles. If 𝑟𝑟 <  𝑗𝑗 ≤  𝑚𝑚, then 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘 = 0 applies by definition. 

Since 
 

�𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘
𝑟𝑟

𝑗𝑗=1

= 1                                                                    (15) 

 

we can consider �𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘 �
𝑗𝑗
 as a probability distribution where 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘  is the probability that 𝐴𝐴𝑗𝑗 is the 

most preferred article according to impact measure i. This approach turns out to be 
immediately useful: for rankings that take into account more than one measure, we will use 
the calculated �𝑃𝑃𝑖𝑖𝑖𝑖

𝑘𝑘 �
𝑗𝑗
 instead of �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗 because the former is more robust, as some bias in the 

distribution of �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗 is eliminated, since �𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘 �
𝑗𝑗
 decreases linearly for all �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗, as shown in 

Fig. 7. 
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Figure 7. Example showing the probability �𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘�𝑗𝑗 for 10 ranked articles with 1 ≤ 𝑗𝑗 ≤ 𝑑𝑑 = 10. By 

switching from the initial measurements calculated by the methods of �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗 with 𝑖𝑖 = {1, 5,𝐴𝐴𝐴𝐴𝐴𝐴,𝑅𝑅𝑅𝑅𝑅𝑅} to 
these ranking measures, we can calculate an overall ranking for each article based on all methods. 

Consequently, we substitute in place of scores �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗 for each measure the corresponding 

ranking scores �𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘 �
𝑗𝑗
 and calculate the probabilistic sum of all ranking scores �𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘�𝑖𝑖 for each 

article 𝐴𝐴𝑗𝑗. This will be the total measure we use for the final ranking of articles in each 
cluster. 

Within each cluster, we have so far had four different numberings with an individual 
numbering for each impact measure, since we have sorted all articles separately according 
to �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗. We now number all articles within each cluster such that j always refers to the 

same article 𝐴𝐴𝑗𝑗 for �𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘 �
𝑗𝑗
 and �𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 �𝑗𝑗. 

Finally, we calculate the total ranking score �𝑃𝑃𝑘𝑘𝑘𝑘
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�

𝑗𝑗
 for each article 𝐴𝐴𝑗𝑗. We obtain 

 

𝑃𝑃𝑘𝑘𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 1 − � (1 − 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖∈{1,5,𝐴𝐴𝐴𝐴𝐴𝐴,𝑅𝑅𝑅𝑅𝑅𝑅}

)                                             (16) 

 

for each article 𝐴𝐴𝑗𝑗 and cluster k, where 𝑃𝑃𝑖𝑖𝑖𝑖𝑘𝑘  is the ranking score of article 𝐴𝐴𝑗𝑗 according to 
measure 𝑖𝑖 ∈ {1, 5,𝐴𝐴𝐴𝐴𝐴𝐴,𝑅𝑅𝑅𝑅𝑅𝑅}. This is the probabilistic sum of all �𝑃𝑃𝑖𝑖𝑖𝑖

𝑘𝑘 �
𝑖𝑖
 [7]. Since each 

ranking score �𝑃𝑃𝑖𝑖𝑖𝑖
𝑘𝑘 �
𝑖𝑖
 ∈ [0, 1], the probabilistic sum thereof also belongs to interval [0, 1]. 

This is our final ranking of articles in cluster k. Ranking for every other cluster is done 
separately the same way. We can now select the highest-ranked articles within each cluster 
for further study, as shown in Fig. 1. 
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4 System description 
In this section, we provide an overview of the horizon scanning software HSTOOL. HSTOOL 
is a web application built mainly in Scala5. The functionalities of the software correspond 
to the proposed workflow (Section 2) and include 

1. Topic search in WOS, 
2. Downloading of article records to a local database, 
3. Clustering of articles according to topics, 
4. Ranking of articles within each cluster based on scientometric impact, and 
5. Outputting the resulting ranked clusters for further study. 

4.1 Architecture 
HSTOOL is built using the Play Framework6 that follows the Model-View-Controller (MVC) 
architectural pattern shown in Fig. 8. Here, the Model is the representation of the 
information on which the application operates. This layer contains classes that describe 
article records and impact measures. The View layer provides a user interface that enables 
interaction with the Model, such as downloading search results and clustering and ranking 
of articles. The Controller layer processes user actions and updates the Model and View 
accordingly using a set of packages for communication via the WOS APIs as well as with 
the local database and for clustering and ranking calculations. The View layer constitutes 
the frontend of the application, while the Controller and Model layers constitute the 
backend. 

 

 

Figure 8. MVC architectural pattern. 

                                                 
5 https://www.scala-lang.org (March 2019). 
6 https://www.playframework.com/ (March 2019). 
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4.2 System overview 
Fig. 9 provides a system overview and illustrates the data flow in HSTOOL. HSTOOL 
communicates with the online scientific databases of WOS as well as a local PostgreSQL 
database where downloaded records and calculation results are stored. 

The user interface of HSTOOL is shown in Fig. 10. In the following sections, the functionality 
listed above is described in further detail. 

 

 

Figure 9. HSTOOL: System description and data flow. 

 

 

 

Figure 10. HSTOOL user interface. Various functionalities are highlighted in red. 
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4.3 Connecting to Web of Science 
HSTOOL connects to WOS through APIs provided by Thomson Reuters under a license 
agreement. The APIs allow web service operations7, such as topic searching, and retrieval 
of article records, citation data and records of citing articles for a particular article. 

4.4 Searching and downloading 
Topic searches with HSTOOL are performed by combining search terms with logical 
operators. When a topic search is performed, the number of articles found is displayed in 
the HSTOOL user interface along with the search string used. A button is available for 
downloading the search result to a local Postgres database. Records of each article in the 
search result are saved, including keywords, abstract, and scientific field data that will later 
be used for clustering. 

4.5 Clustering 
Pressing the button “Discover clusters” initiates the article clustering algorithm (see Section 
3.2). For each article in the downloaded corpus, a representative text is constructed by 
combining title, abstract, keywords, subjects, headings, and subheadings provided in the 
records from WOS. These are the texts that are fed to the GSDMM algorithm. 

Once the clustering has been completed, a list of the discovered clusters is displayed on a 
separate web page, represented by representative and distinctive words for the cluster (see 
Section 3.4) and a list of the included articles. The discovered clusters are also displayed in 
a scrollable list in the HSTOOL main view, from which clusters can be selected for ranking. 

4.6 Ranking 
To rank articles within a cluster, it is necessary to select the cluster from the scrollable list 
and click “Compute ranking.” Once the ranking has been completed, a ranked list of articles, 
including the calculated ranking index of each article, is displayed in the HSTOOL main 
view. Details of the ranking algorithm are outlined in Section 3.4. 

4.7 Output 
Once the ranking of a cluster has been completed, the results can be exported by clicking 
the button “Export results.” This action produces a CSV file, including the WOS ID, article 
title, abstract, keywords, subjects, headings, journal title, ISSN, AIS factor, the estimated 
impact factors (see Section 3.4), and the resulting ranking index. 

4.8 Performance and limitations 

4.8.1 Clustering 
The time complexity of GSDMM is O(KDL) [1], where L is the average length of a text in 
the article set. Since one clustering must be performed for each value of β to find the optimal 
setting, the total time complexity of clustering will be influenced by the choice of granularity 
of β as well. However, since clusterings for different values of β can be performed in 
parallel, the algorithm’s time consumption is in fact determined by the computational power 

                                                 
7 http://help.incites.clarivate.com/wosWebServicesExpanded/WebServicesExpandedOverviewGroup/Introducti

on.html (March 2019). 

http://help.incites.clarivate.com/wosWebServicesExpanded/WebServicesExpandedOverviewGroup/Introduction.html
http://help.incites.clarivate.com/wosWebServicesExpanded/WebServicesExpandedOverviewGroup/Introduction.html
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of the system on which HSTOOL is run. As an example, using a laptop with 2.70 GHz CPU 
and 16 GB of RAM, a clustering of 1000 articles for a single value of β takes less than a 
minute. 

4.8.2 Ranking 
There are a number of limitations on the data transfer via the WOS APIs, which specify 
upper limits on processing speed and on the number of articles that can be analyzed by 
HSTOOL. The limitations critical to the performance of HSTOOL are listed below: 

• A maximum of five parallel sessions of the same user are allowed. 

• A maximum of two queries per second can be submitted from a session. 

• A maximum of 100 records (i.e., XML-formatted information for an article) can be 
retrieved in one query. 

• A maximum of 2500 queries per session are allowed. 

• A maximum of 100 100 records can be retrieved from the same search. 

For HSTOOL, the limitation on the number of queries per second is the most critical factor 
affecting performance. Since the ranking calculations require seven queries per article, it 
takes 3.5 seconds to retrieve the data needed for one article from WOS. In other words, 
ranking a category containing 1000 articles will take approximately an hour. 
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5 Case study of artificial intelligence in 
military applications 

In this section, we report findings and results of a case study carried out to validate the 
proposed methodology and software tool. The topic of the case study was chosen within the 
authors’ field of expertise to facilitate the evaluation of the results of the horizon scanning 
process. 

5.1 Topic search 
A search was performed using a combination of rather broad concepts, aiming to capture 
articles related to artificial intelligence (AI) in the context of defense applications. We 
compiled a topic search string of the form 

 

[AI terms] AND [defense terms].8 

 

The search resulted in 1358 hits in the WOS Core Collection, with publication years ranging 
from 1991 to 2019. Fig. 11 shows the number of articles per year for the search result. We 
will refer to the set of discovered articles as the AI corpus in the following sections. 

 

 

Figure 11. Number of articles per year in the AI corpus. 

5.2 Clustering search results 
Clustering of the search results encompasses two steps: first, determining the optimal value 
of parameter β ∈ (0, 1) (which in turn yields the optimal number of clusters), and, second, 
performing the actual clustering with the optimal settings. The GSDMM algorithm clusters 

                                                 
8 (“artificial intelligence” OR “machine learning” OR “deep learning” OR “neural network$”) AND (military 

OR defense OR defence OR (command NEAR\1 control)) – the operator NEAR\n signifies that the words on 
either side of it must be at most n words apart, and $ denotes the option of a plural s. 
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articles in the course of a set of Gibbs sampling iterations, during which the articles converge 
to a subset of the initial clusters. The size of this subset is determined by parameter settings. 
To understand how the algorithm works, we will first study the Gibbs sampling iterations 
for a fixed value of β, after which we will determine the value of β that yields the best 
clustering of the AI corpus. 

5.2.1 Gibbs sampling iterations and convergence of entropy 

At each Gibbs sampling iteration, the conditional probability 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 given by equation (1) (see 
Section 3.2.1) is calculated for each article d and cluster k, yielding the probability that d is 
generated by k. Fig. 12 shows how 𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑 varies over 15 Gibbs sampling iterations for a 
sample article. At first, the probability density function has spikes (0 ≪ p < 1) at a few 
different clusters, but for most articles, it converges quickly towards a Dirac pulse (p = 1) at 
a certain cluster. 

 

 

Figure 12. Probability density function for an article in the AI corpus, as it varies over the 15 Gibbs 
sampling iterations. 

To study the convergence of the DMM algorithm, we calculate at each Gibbs sampling 
iteration i the entropy using (3). Fig. 13 shows how Entdi for a set of articles that end up in 
the same cluster varies over 15 Gibbs iterations for a clustering run with β = 0.101. After 15 
iterations, most articles have converged to low entropy, while a few may still oscillate 
between different clusters. 
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Figure 13. Example of how the entropies for a set of articles that end up in the same cluster vary over 
15 Gibbs iterations. 

Fig. 14 shows, for a subset of the entire corpus, how articles move between clusters during 
the Gibbs sampling iterations. Most articles converge quickly to their final clusters, while a 
few move around between clusters for a few iterations before settling. Some articles never 
quite converge and instead display an oscillating behavior. 

 

 

Figure 14. Paths of a set of articles from initialization to their final clusters over 15 Gibbs sampling 
iterations. 

To determine the quality of a specific clustering (i.e., the clustering at a specific iteration i 
for some specified value of β), we calculate its entropy using (4) and the entire set of articles. 
Fig. 2 shows how the entropy for the entire AI corpus converges for a fixed value of β. 
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5.2.2 Determining the optimal number of clusters 
Following the approach outlined in Section 3.2.2, the final entropy of the entire AI corpus 
for values of β ∈ (0, 1) is calculated, and the value of β that minimizes the angle of the lower 
envelope curve is determined to be β = 0.101, yielding an average of 84 clusters over 100 
runs, as shown in Fig. 3. 

5.3 Analysis of clusters 
We perform an individual clustering of the AI corpus using the optimal β = 0.101, this time 
yielding 90 clusters. The number of articles in the discovered clusters varies from 1 to 224. 
Fig. 15 shows the number of clusters of each size. 

 

 

Figure 15. Number of clusters of each size for the AI corpus using DMM with β = 0.101. 

To select clusters for further study, we use three criteria: 

1. The cluster should be of sufficient size to represent a significant topic for the 
corpus. 

2. The cluster should be well defined, i.e., have as low an entropy as possible. 

3. The topic of the cluster should be relevant with respect to the original intention of 
the search query. Once a subset of clusters has been selected according to steps 1 
and 2, clusters with irrelevant topics are removed from this subset. 

Fig. 16 shows the number of articles in each of 90 discovered clusters. We will select clusters 
of size 15 or larger for further study. Fig. 17 shows the mean entropies for all such clusters. 
Among these, we examine the nine clusters with the lowest entropy in detail. The topics 
discovered using the method of Section 3.3 for these clusters are listed in Table 1. 
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Figure 16. Number of articles in each of 90 discovered clusters. 

 

 

Figure 17. Entropies for all clusters of size 15 or larger. 

The search queries used for topic search in WOS aimed to find articles on AI applications 
in the military domain. According to the discovered topics, clusters 115, 304 and 374 are 
beyond the scope of the study and are removed before further analysis. We are left with a 
set of six clusters that are sufficiently large, well defined and represent relevant topics. The 
descriptive and distinctive words of the six remaining clusters are shown in Table 1. 
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Table 1. Discovered topic words in the clusters chosen for further study. Clusters deemed irrelevant 
to the search query have been grayed out. 

Id Common words Distinguishing words Size 

115 
learning, system, education, computer, 
student 

pupil, pill, installing, educate, math, 
leaming, pedagogical 

39 

164 
image, target, network, recognition, 
neural 

correlator, mstar, foreground, dividing, 
uncorrelated, eo, replaces 

190 

219 
classification, signal, network, neural, 
feature 

amc, instantaneous, cepstral, mel, 
mfcc, awgn, warped 

49 

233 
attack, system, network, detection, 
computer 

multicore, bodyguard, port/protocol, 
dsvms, dsvm, nash, protocol/internet 

224 

235 
system, computer, agent, intelligence, 
decision 

practically, illustration, bdi, nec, ner, 
automates, succession 

117 

304 
cell, gene, immune, system, network, 
neural 

hormone, overexpression, 
transcriptome, transgenic, glial, 
neurone 

54 

308 
game, player, computer, artificial, 
defense 

offense, beginner, dda, 
neuroevolution, shogi, warcraft 

17 

374 
peptide, antimicrobial, machine, amp, 
learning, model 

outlook, antitumor, staphylococcus, 
aureus, mic, insecticide 

38 

393 
network, sensor, system, application, 
neural 

ndia, biomechanical, fence, relay, 
transceivers, alcohol, steganography 

34 

 

Fig. 18 and Fig. 19 show, respectively, the number of articles in each of the studied clusters, 
and the number of citations of articles in each cluster over time. It can be noted that even 
though cluster 233 (attack, system, network) has the most articles and the strongest 
publications trend, the most cited cluster is cluster 164 (image, target, network), a trend that 
has been strong over the past 15 years and is still holding. It should be noted that the number 
of citing articles is based on all citing articles, whether part of the search result or not. A 
conclusion that can be drawn from Fig. 18 and Fig. 19 is that computer vision applications 
(cluster 164) remain a dominating topic within the “AI for the military” field, while defense 
against adversarial attacks for neural networks (cluster 233) has gained interest over the past 
few years. It should, however, be noted that this cluster, due to the design of our topic search, 
contains a certain number of articles about defense against such threats as malware attacks, 
which are not necessarily connected to military applications. We will therefore choose the 
computer vision cluster 164 as an example for further study. 
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Figure 18. Number of articles per year in the clusters of interest. 

 

 

Figure 19. Number of citations per year generated by the clusters of interest. 

All articles in the computer vision cluster are ranked according to the four impact measures 
in Section 3.4.1. The top results are shown in Table 2–5. 
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Table 2. Top 10 ranked articles in the computer vision cluster, considering all impact measures, see 
equation (16). 

Ranking Title Year 

1 
Spiking Deep Convolutional Neural Networks for Energy-Efficient Object 
Recognition 

2015 

2 
Remote Sensing Scene Classification by Unsupervised Representation 
Learning 

2017 

3 Learning Race from Face: A Survey 2014 

4 Neural networks for automatic target recognition 1995 

5 
Adaptive fusion method of visible light and infrared images based on 
non-subsampled shearlet transform and fast non-negative matrix 
factorization 

2014 

6 
A generative vision model that trains with high data efficiency and breaks 
text-based CAPTCHAs 

2017 

7 Modern Trends in Hyperspectral Image Analysis: A Review 2018 

8 
S-CNN-Based Ship Detection From High-Resolution Remote Sensing 
Images 

2016 

9 A neuromorphic system for video object recognition 2014 

10 
Airport Detection Based on a Multiscale Fusion Feature for Optical 
Remote Sensing Images 

2017 

 

Table 3. Top 10 ranked articles in the computer vision cluster, according to Impact1. 

Imp 1 Title Year Overall 
ranking 

95 
Multi-resolution, object-oriented fuzzy analysis of remote sensing 
data for GIS-ready information 

2004 39 

29 
Spiking Deep Convolutional Neural Networks for Energy-Efficient 
Object Recognition 

2015 1 

26 
Remote Sensing Scene Classification by Unsupervised 
Representation Learning 

2017 2 

11 Learning Race from Face: A Survey 2014 3 

8 Modern Trends in Hyperspectral Image Analysis: A Review 2018 7 

7 
A generative vision model that trains with high data efficiency 
and breaks text-based CAPTCHAs 

2017 6 

4 
Adaptive fusion method of visible light and infrared images 
based on non-subsampled shearlet transform and fast non-
negative matrix factorization 

2014 5 

4 Neural networks for automatic target recognition 1995 4 

3 
S-CNN-Based Ship Detection From High-Resolution Remote 
Sensing Images 

2016 8 

3 
Airport Detection Based on a Multiscale Fusion Feature for 
Optical Remote Sensing Images 

2017 10 
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Table 4. Top 10 ranked articles in the computer vision cluster, according to Impact5. 

Imp 5 Title Year Overall 
ranking 

592 
Multi-resolution, object-oriented fuzzy analysis of remote sensing 
data for GIS-ready information 

2004 39 

81 
Spiking Deep Convolutional Neural Networks for Energy-Efficient 
Object Recognition 

2015 1 

38 
Remote Sensing Scene Classification by Unsupervised 
Representation Learning 

2017 2 

32 Learning Race from Face: A Survey 2014 3 

28 Statistical pattern recognition in remote sensing 2008 50 

19 
Adaptive fusion method of visible light and infrared images 
based on non-subsampled shearlet transform and fast non-
negative matrix factorization 

2014 5 

17 Neural networks for automatic target recognition 1995 4 

10 
S-CNN-Based Ship Detection From High-Resolution Remote 
Sensing Images 

2016 8 

10 
Real-time automated counterfeit integrated circuit detection 
using x-ray microscopy 

2015 14 

9 A target-based color space for sea target detection 2012 57 

 

Table 5. Top 10 ranked articles in the computer vision cluster, according to ImpactAIS. 

Imp AIS Title Year Overall 
ranking 

83.93 
3-D Object Recognition Using Bipartite Matching Embedded In 
Discrete Relaxation 

1991 12 

52.88 
Multi-resolution, object-oriented fuzzy analysis of remote sensing 
data for GIS-ready information 

2004 39 

48.56 
Spiking Deep Convolutional Neural Networks for Energy-Efficient 
Object Recognition 

2015 1 

41.56 
Remote Sensing Scene Classification by Unsupervised 
Representation Learning 

2017 2 

39.00 Statistical pattern recognition in remote sensing 2008 50 

28.27 Neural networks for automatic target recognition 1995 4 

17.25 Learning Race from Face: A Survey 2014 3 

13.49 
Detection of leukocytes in contact with the vessel wall from in 
vivo microscope recordings using a neural network 

2000 32 

11.56 Color machine vision for autonomous vehicles 1998 60 

10.72 
Texture synthesis and pattern recognition for partially ordered 
Markov models 

1999 179 
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In the overall ranking (Table 6), a set of representation learning and object recognition 
articles receives the highest scores. This is a reasonable result, given the impressive progress 
made recently with regard to these topics. As discussed in Section 3.4.2, the different impact 
measures aim to capture different impact aspects. Examining the ranking results for the 
computer vision cluster, we note that ImpactAIS – that takes into account the AIS score of 
the journal an article is cited in – is the measure most in disagreement with the total ranking. 
As ImpactAIS does not in general reward recent articles, this would be an expected result, 
given the rapid development in the field of AI for computer vision (Fig. 18 and Fig. 19). 

Table 6. Top 10 ranked articles in the computer vision cluster, according to ImpactReg. Overall 
ranking is listed in the right-most column. 

Imp reg Title Year Overall 
ranking 

6.20 
Spiking Deep Convolutional Neural Networks for Energy-Efficient 
Object Recognition 

2015 1 

4.74 
Remote Sensing Scene Classification by Unsupervised 
Representation Learning 

2017 2 

1.94 Learning Race from Face: A Survey 2014 3 

1.23 
Adaptive fusion method of visible light and infrared images 
based on non-subsampled shearlet transform and fast non-
negative matrix factorization 

2014 5 

1.14 Modern Trends in Hyperspectral Image Analysis: A Review 2018 7 

1.09 
A generative vision model that trains with high data efficiency 
and breaks text-based CAPTCHAs 

2017 6 

0.97 
S-CNN-Based Ship Detection From High-Resolution Remote 
Sensing Images 

2016 8 

0.51 Neural networks for automatic target recognition 1995 4 

0.51 
Airport Detection Based on a Multiscale Fusion Feature for 
Optical Remote Sensing Images 

2017 10 

0.51 
Kalman Filter Based Multiple Objects Detection-Tracking 
Algorithm Robust to Occlusion 

2014 11 

 

Notably, an article “Multi-resolution, object-oriented fuzzy analysis of remote sensing data 
for GIS-ready information” that scores in the top two according to Impact1, Impact5, and 
ImpactAIS is not among the overall top ten ranked articles. This finding is observed because 
even though this article has been cited frequently, both during the past year and in the 
aggregate over five years, and cited in high AIS journals, its citation trend has been that of 
a steep decrease in the past years, yielding it the lowest rank of all articles for the ImpactReg 
measure. 

The case study indicates that the proposed horizon scanning methodology and tool are useful 
for finding trending and significant topics in the scientific literature. The top-ranked articles 
within the studied cluster cover topics that have received significant attention in recent 
years, which validates the soundness of the impact measures and the aggregation method. 
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6 Conclusions 
We have developed new methods for horizon scanning, integrated them with an existing 
clustering method, and implemented all methods in a system for horizon scanning of 
scientific literature to discover scientific trends. In particular, we have developed methods 
for finding an optimal number of clusters by developing an entropy-based method that 
focuses on the clustered articles rather than on the clusters themselves. 

We conclude and show in a case study that with these methods, we can identify distinct 
clusters. These clusters can be categorized by automatically producing the most descriptive 
and distinctive words. Furthermore, we develop methods for a robust ranking of articles 
based on citation statistics and demonstrate in the case study how to produce an overall 
ranking of all articles in each category. 

Overall, these methods automatically discover previously unknown categories, describe 
such categories with their most important words, rank all articles within each category by 
importance and deliver categories of ranked articles as the system output. 
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