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Abstract

Keywords

As a result of the advancements in artificial intelligence (AI), machine learning
and specifically deep learning, the explainable artificial intelligence (XAI) re-
search field has received a lot of attention recently. XAI is a research field where
the focus is on ensuring that the reasoning and decision making of AI systems
can be explained to human users. In a military context, such explanations are
typically required to ensure that:

• human users have appropriate mental models of the AI systems they
operate,

• specialists can gain insight and extract knowledge from AI systems and
their hidden tactical and strategical behavior,

• AI systems obey international and national law,
• developers are able to identify flaws or bugs in AI systems even prior to

deployment.

The objective of this report is to explore XAI techniques developed specifically
to provide explanation in deep learning based AI systems. Such systems are
inherently difficult to explain because the processes that they model are often
too complex to model using interpretable alternatives.

Even though the deep learning XAI field is still in its infancy, many explanation
techniques have already been proposed in the scientific literature. Today’s
XAI techniques are useful primarily for development purposes (i.e. to identify
bugs). More research is needed to conclude if these techniques are also useful
for supporting users in the process of building appropriate mental models of
the AI-systems they operate, tactics development and to ensure that future
military AI systems are following national and international law.

Artificial intelligence, explainable AI, transparency, machine learning, deep
learning, deep neural networks
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Sammanfattning

Nyckelord

Förklarbar artificiell intelligens (eng. explainable artificial intelligence) eller
XAI är ett forskningsomr̊ade som har sett en stor tillväxt under de senaste
åren. Detta är ett resultat av den snabba utveckling som skett inom artifici-
ell intelligens (AI), maskininlärning och framförallt djupinlärning. Inom XAI
bedrivs forskning som syftar till att förklara AI-systemens resonemang och be-
slutsfattande för mänskliga användare av systemen. I en militär kontext är
förklarbarhet hos AI-system nödvändig för att säkerställa att:

• den militära slutanvändaren har en lämplig mental modell av hur syste-
met fungerar,

• specialister kan skaffa insikt och extrahera kunskap fr̊an AI-systemens,
ofta dolda, taktiska och strategiska beteende,

• AI-systemen följer internationell och nationell lag,
• utvecklare kan identifiera fel innan AI-systemet sätts i produktion.

Syftet med denna rapport är att presentera XAI-tekniker som har utvecklats för
ökad förklarbarhet i AI-system implementerade med djupinlärning. Modeller
som bygger p̊a djupinlärning är “svarta l̊ador” som har hög kapacitet och kan
modellera komplexa processer som är sv̊ara att modellera med alternativa, mer
förklarbara, angreppssätt.

Även om XAI för djupinlärning är ett relativt nytt omr̊ade s̊a har flertalet
förklarbarhetstekniker föreslagits i den vetenskapliga litteraturen. Idag är des-
sa tekniker främst utvecklade till stöd för modellutvecklare (d.v.s. för att iden-
tifiera fel och avvikelser). Mer forskning krävs för att utvärdera om och hur
dessa tekniker ocks̊a kan stödja skapandet av lämpliga mentala modeller hos
slutanvändaren, vid taktikutveckling, samt för att säkerställa att AI-systemen
följer lagar och förordningar.

Artificiell intelligens, förklarbar AI, transparens, maskininlärning, djupinlärn-
ing, djupa neuronnät
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1 Introduction
Artificial intelligence (AI) is a research field that is of strategic importance
to Sweden [1] and the Swedish Armed Forces (SwAF). The main contributing
factor to the success of today’s AI are breakthroughs within machine learning
(ML) and, more specifically, deep learning (DL). DL is a potentially disrup-
tive technology that allows us to use deep neural networks (DNNs) to model
processes that were previously too complex to model using traditional tech-
niques. For instance, DL can be used to accurately transcribe (speech-to-text)
[2, 3], translate (text-to-text) [4], synthesize speech (text-to-speech) [5], play
real-time strategy games (video-to-action) [6, 7], read lips (video-to-text) [8],
identify faces (image-to-identity) [9] and control self-driving vehicles (video-to-
action) [10, 11].

However, DL is still in its infancy and there is no mathematical frame-
work that can be used to guarantee model correctness [12]. Hence, there are
many challenges that need to be considered and addressed when developing,
deploying, using and maintaining DNN models in military applications.

Perhaps the most important challenge from a military user’s perspective
(operator, data analyst, etc.) is explainability. As a rule of thumb, the need
for explainability is greater when human lives are deeply affected. This is true
in the military domain but also in medicine, law enforcement and other civilian
services. Explainability is important because it influences the users’ trust and
reliance in the system. The trust relationship must be balanced; too much
trust may result in a misuse of the system whereas too little trust may result
in a complete disuse of the system [13]. Ultimately, explanations aim to help
users build an appropriate mental model of the system to ensure that it can be
used efficiently [14].

Deep learning has the potential to improve autonomy in complex military
systems such as fighter jets, submarines, drones and satellite surveillance sys-
tems. However, it would also make these systems even more complex and
difficult to explain. The main reason is that DL is an end-to-end machine
learning technique, meaning that the machine learns to extract the features
from the input data that are the most important ones to achieve high perfor-
mance. This is known as representation learning and it differs from traditional
techniques where human intuition is used to manually extract such features.
Representation learning often results in high performance, but it also requires
the model to be highly expressive and nonlinear. DNNs trained using DL may
therefore consist of millions or even billions of parameters. This makes them
difficult to interpret and explain to humans, even though learning algorithms,
model architecture, training data, etc. are known and well understood.

The explainable AI (XAI) program that was initiated in 2016 by the United
States Defense Advanced Research Projects Agency (DARPA) is perhaps the
most comprehensive military initiative taken towards addressing this challenge.
The aim of this program is to [15]:

• “Produce more explainable models, while maintaining a high level of
learning performance (prediction accuracy).”

• “Enable human users to understand, appropriately trust, and effectively
manage the emerging generation of artificially intelligent partners.”
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Many technical advancements have been made since the start of the XAI
program. Some XAI techniques have even been implemented and packaged
in software libraries that can be used to gain insight, debug and verify DNNs
[16, 17, 18]. This is a step in the right direction, but from a military perspective
it is critical that XAI techniques and tools are also tailored for military users
where aggregated, high-level explanations are needed to ensure trust, use and
performance.

1.1 Purpose and scope
The objective of this report is to present representative XAI techniques that
have been developed in the context of DL. The report is not exhaustive and it
does not cover all XAI techniques proposed in the literature.

1.2 Target readership
The target readership of this report is personnel that operates, acquires or
develops military systems where AI, ML and DL technologies are used by or
embedded in the system.

1.3 Outline
Chapter 2 introduces the concepts of intelligent agents, machine learning and
deep learning. Chapter 3 introduces a variety of XAI techniques proposed in
the literature. Chapter 4 introduces methods and techniques that can be used
to evaluate the explanations provided by XAI techniques. Chapter 5 presents
a case study where XAI was used to explain the behavior of a deep learning
model. Finally, Chapter 6 concludes the report and provide recommendations
for future work.

8
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2 Intelligent agents, machine learning
and deep learning
This chapter introduces concepts, methods, terms and techniques that are use-
ful when reading the remainder of this report. Readers that already have a
basic understanding of intelligent agents, machine learning and deep learning
can skip this chapter.

2.1 Intelligent agents
AI is a broad term that can be defined in many ways. In this report, AI is
used in terms of the study and design of intelligent agents (IAs). An IA is an
autonomous entity capable of sensing, reasoning and acting in an environment.
Typically, IAs interact with other agents (i.e. multi-agent system) as well as
humans (e.g. human-machine teaming) in the environment.

When implemented in the physical world, IAs may represent anything
from simple thermostats to complex self-driving vehicles, autonomous robots,
drones, etc. In virtual environments, IAs are typically represented by bots
or virtual assistants capable of translating, transcribing, and so on. In mili-
tary simulation, IAs are often referred to as non-player characters (NPCs) or
computer generated forces (CGFs).

Figure 2.1 illustrates the main components of an IA. These components are
typically implemented using a combination of traditional programming and
AI techniques such as expert systems, state machines, behavior trees and ma-
chine learning. This report focuses on XAI for IAs that are fully or partially
implemented using DNNs.

Sense Reason Act

Environment

Figure 2.1 – An intelligent agent (IA) is an autonomous entity that is able to
sense, reason and act in an environment. The environment can be physical (i.e.
real world) or virtual (e.g. the internet, virtual simulation, serious games). IAs
typically interact with other agents and humans to form multi-agent systems
and human-machine teams respectively.
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2.2 Machine learning
ML is a subfield of AI where the focus is on developing intelligent systems or
IAs that can learn from observations and experience. In this section, the main
learning strategies used in ML are introduced.

2.2.1 Supervised learning
In supervised learning, the IA learns from training examples that have been
tagged or labeled. The learning objective is to minimize the deviation from
these examples while also maintaining the ability to generalize to unseen inputs.
In effect, the IA will imitate the behavior presented in the training data. The
supervised learning process is illustrated in Figure 2.2.

In supervised learning, the labeling process is often manually performed by
humans, which is why the approach can be expensive and impractical in many
applications. The main advantage of supervised learning is that the learning
process, once the dataset has been created, is stable and relatively easy to
monitor.

The main applications of supervised learning are classification and regres-
sion where, discrete class labels and continuous values represent the output of
the model respectively. Classifiers can be used to detect objects of interest in
the agent’s field-of-view or to recognize if a particular situation is hazardous
or not. Regression is typically used for the low-level continuous control of the
agent’s actuators (robotic limbs, steering wheel position, etc.)

Model OutputInput

Minimize Deviation

Label

Figure 2.2 – Supervised learning. The IA learns from examples that have been
tagged or labeled. The objective of the learning process is to create a model
that minimizes deviation from the presented training examples. Light gray
boxes represent training examples (i.e. inputs and their labels).

2.2.2 Reinforcement learning
In reinforcement learning, the IA learns by performing actions in an environ-
ment that is often simulated. The learning objective is to maximize the reward
of the IA as it performs actions in the simulator. Rewards are typically rep-
resented by the outcome of games, so that the actions used to win or loose
are positively and negatively reinforced by the learning algorithm respectively.
The learning process is illustrated in Figure 2.3.

A major advantage of reinforcement learning is that there is no longer a
need to manually label training data. Instead, a reward function is used to, in
a sense, automatically label the data. However, designing a reward function for
real world problems is a non-trivial task. It requires that appropriate rewards

10
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can be assigned to the IA’s actions over time [19]. A poorly designed reward
function may result in undesirable and unexpected behavior.

Reinforcement learning is used in applications where IAs need to learn
optimal action selection strategies. When applied in real-time strategy games,
the IA can learn to select actions better than most human experts [6, 7]. Hence,
it is reasonable to believe that reinforcement learning will eventually also be
capable of generating alternative or even new tactics and strategies for military
purposes.

Model OutputInput

MaximizeReward

Simulator

Figure 2.3 – Using reinforcement learning the IA learns by taking actions in a
simulated environment. The objective of the learning process is to maximize
the reward signal provided by the environment. Light gray boxes represent the
input, in this case a simulator and a reward function, needed by this learning
strategy.

2.2.3 Unsupervised learning
In unsupervised learning, the IA learns to identify patterns and structure in
unlabeled data as illustrated in Figure 2.4. Note that learning, although re-
ferred to as unsupervised, is always guided by a pre-defined metric. For in-
stance, the k-means clustering algorithm uses Euclidean distances to cluster
data. Similarly, autoencoders (AEs) require the existence of a loss or error
metric function.

The most common applications of unsupervised learning include clustering,
visualization, dimensionality reduction and anomaly detection. A more recent
application of unsupervised learning in DL is meta-learning, where IAs are
trained with the objective to become faster learners (i.e. learning how to learn).

Model OutputInput

Optimize Metric

Figure 2.4 – In unsupervised learning, the IA learns to identify patterns and
clusters in unlabeled data. Unsupervised learning is guided by pre-defined
metrics (e.g. Euclidean distances in k-means clustering) to learn from the
data.

11
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2.3 Deep learning
Deep learning is a machine learning approach that can be used for all of the
abovementioned learning strategies (i.e. supervised-, reinforcement- and unsu-
pervised learning).

2.3.1 Deep neural networks
In DL, the model that is used to capture and learn from experience is repre-
sented by a DNN. A DNN is essentially a mathematical expression that consists
of a large number of nested and differentiable subfunctions. The reason why
the DNN must be differentiable is explained in Section 2.3.3.

DNNs are typically visualized using graphs where layers of nodes are con-
nected to each other using edges as illustrated in Figure 2.5. In this represen-
tation, each edge represents a trainable parameter or weight, and each node
represents a neuron (i.e. a differentiable subfunction) that uses the weights to
transform inputs to outputs. Figure 2.6 illustrates the operations carried out
by a single neuron. The neuron first calculates the sum of the products of its
inputs and weights. This value is then processed by the neuron’s nonlinear
activation function to produce an output. The output is then used as input in
the next layer of neurons.

In real world applications, the number of weights (edges in Figure 2.5) typ-
ically grows to millions and even billions. Note also that there are different
types of DNNs besides the fully connected neural network (FCNN) illustrated
in Figure 2.5. Convolutional neural networks (CNNs) are used when there are
spatial relations in the data, which is typically the case in images. Similarly,
recurrent neural networks (RNNs) are often used when there are known tem-
poral relations in the data (e.g. text and audio). In real world applications,
the model is typically designed using a mix of carefully selected CNNs, RNNs
and FCNNs. The remainder of this section focuses on FCNNs. However, the
same principles for inference and training also applies to CNNs and RNNs.

In this report the mathematical notation used to represent a DNN is fθ,
where θ represents the trainable weights or parameters of the DNN.

12
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x1Input

x2Input

x3Input

x4Input

Output

Hidden
layer 1

Hidden
layer 2

Input
layer

Output
layer

Figure 2.5 – Visualization of a fully connected DNN with four inputs, two
hidden layers and one output. In this representation, each edge represents
a trainable parameter or weight, and each node represents a neuron (i.e. a
differentiable subfunction) that uses the weights to transform inputs to outputs.
Each neuron calculates the sum of the products of its inputs and weights. This
value is then processed by the neuron’s nonlinear activation function to produce
an output.

Σ

b

x1

x2

x3

x4

g

Activation

ω1

ω2

ω3

ω4

Figure 2.6 – Visualization of a neuron in a DNN. First, the sum of products
using the inputs, x, and the weights, ω, are calculated. This value is then
fed into the neuron’s nonlinear activation function, g, to produce an output
that can be fed into neurons in the next layer. The mathematical expression
representing a neuron is g(

∑
xi×ωi + b). Note that bias, b, is also a trainable

parameter that, unlike the weights, is not connected to an input.
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2.3.2 Inference
Inference is the process in which inputs are processed by an already trained
DNN to produce an output. In DNNs the processing is carried out in a forward
pass through the layers of the network. Computational graphs are perhaps
the most intuitive way to describe inference. In a computational graph the
DNN is modularized into primitive subfunctions that represent the operations
embedded in the network. As an example, the computational graph in Figure
2.7 represents a neuron with one input. Using this representation it is easy
to see how the input is transformed as it moves forward (left to right) in the
graph.

The computational graph can be extended to model DNNs with arbitrary
number of inputs, neurons and outputs. In practice, it is common to design
DNNs using computational graphs that represent aggregated layers. Different
layers can then be connected to each other to form the final DNN.

x

ω

b

×

+ g

m = x× ω

n = m+ b g(n)

Figure 2.7 – Computational graph representing the operations, fθ(x) = g(x×
ω + b), of a neuron with one input, x, and pre-trained parameters θ = {ω, b}.
The computational graph can be extended to include arbitrary inputs and
outputs. In real world applications, the DNN consists of computational graphs
representing aggregated layers of neurons.

2.3.3 Training
Training is the process where the DNN, fθ, and its trainable parameters or
weights, θ, are updated. Training is an iterative process where the objective
is to adjust θ so that a loss function, L(fθ), is minimized. In practice, it is
the gradient descent (GD) optimization method in Equation 2.1, or variants
thereof, which is used to perform the update:

θ = θ − α∇θL(fθ) (2.1)

In the GD method, α represents a hyperparameter (i.e. a user defined
parameter used to control the learning process) called the learning rate. The
learning rate, α, controls the pace of the learning process. It is important that
α is properly initialized to ensure that the trainable parameters are able to
converge to an optimal solution. Generally, if α is too big the training process
becomes unstable and the trainable parameters will not converge. In addition,
if α is too small training will be stable, although it will take too much time
to converge. For this reason, it has become common practice to use schedulers
that dynamically can change the learning rate as the learning progresses.

The ∇θL(fθ) term in Equation 2.1 represents the gradients of the trainable
parameters. The gradients determine in which direction to update the trainable
parameters, θ, so that the loss function, L(fθ), increases. Note that updates
are performed in the opposite direction of the gradients so that the loss is
minimized.

14
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To find these gradients the backpropagation algorithm is used. Given a
training example (x, ŷ), the backpropagation algorithm first performs a forward
pass to calculate the loss. Given the loss, a backward pass is then performed
to calculate the gradients using the chain rule formula. Again, the most in-
tuitive approach to explain backpropagation is to use computational graphs
where DNNs are represented by a collection of subfunctions. To perform the
backward pass all that is needed is to find the derivatives of these subfunctions.
Let us illustrate backpropagation using a simple example where the DNN is
represented by a linear function, fθ(x) = ωx+b with only two trainable param-
eters θ = {ω, b}. In this case, the loss function can be defined as the squared
error of fθ(x) and the desired output, ŷ:

L(fθ(x), ŷ) = (fθ(x)− ŷ)2 = ((ωx+ b)− ŷ)2 (2.2)

Hence, the loss measures if the DNN’s prediction is close to the known
output value, ŷ. When the loss is small, the prediction is good. Similarly,
when loss is large, the prediction is poor.

The computational graph representing the loss function in Equation 2.2 is
presented in Figure 2.8. In addition to the forward pass, this computational
graph also includes a backward pass that propagates the loss (or error) back to
the trainable parameters, θ = {ω, b}, using the chain rule. Note that it is only
the derivatives of the loss with respect to the trainable parameters that are
needed for training (i.e. ∇θL(fθ) =

{
dL
dω ,

dL
db

}
). The backpropagation starts

by setting dL
dp = 1. From there it is easy to see how the chain rule propagates

the error backwards (right to left) to find dL
dω and dL

db . See Appendix A for a
demonstration of the training process described in this section.

Even if the training process is simple and can be explained using compu-
tational graphs, it is difficult to understand and explain the behavior of the
model. The next chapter presents XAI techniques that have been developed
for these purposes.

x

ω

b

ŷ

×

+

− x2 L

dL
dω = dL

dm
dm
dω

m = x× ω
dL
dm = dL

dn
dn
dm

dL
db = dL

dn
dn
db

n = m+ b

dL
dn = dL

do
do
dn

o = n− ŷ
dL
do = dL

dp
dp
do

p = o2

dL
dp = 1

Figure 2.8 – Computational graph representing the squared error loss function,
L = (fθ(x) − ŷ)2. In this example, fθ(x) = ωx + b and θ = {ω, b} represents
the model and its trainable parameters respectively. x and ŷ represents the
input and its desired output (i.e. training data).
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3 Techniques for explainable artificial
intelligence
The focus of explainable artificial intelligence (XAI) research is to ensure that
the reasoning and decision making of AI systems can be explained to human
users. Although it has received a lot of attention recently due to the advance-
ments in DL, the XAI research field is not new. It has been around since
at least the 1980s [20]. For a comprehensive review of XAI research and its
history, the reader is referred to [21].

Explainable artificial intelligence is a critical component in any military AI
system used for high-stake decision making where human lives are affected. Ex-
amples of AI applications at the tactical level, where the focus is on short-term
decisions, include autonomous control in unmanned vehicles as well as target
identification, tracking and engagement in weapons and surveillance systems.
Moreover, XAI is equally, or perhaps even more, important at the operational
and strategic levels of warfare, where long-term decisions and planning activi-
ties could affect entire populations. At this level, AI systems are typically used
for information analysis, but can also be used to propose plans or courses of
actions (COAs) through simulation. The main purposes of XAI in military
applications are:

• Mental modeling [14, 22]: XAI can be used to support users in the process
of building appropriate mental models of the AI systems they operate.
In any military system, AI enabled or not, users must have a clear un-
derstanding of the system’s operating boundaries to ensure appropriate
and efficient use.

• Insight [23, 24]: It has been shown that DNNs can be used to capture
knowledge and identify patterns in observations of complex processes
that are unknown to humans. Using XAI techniques it is possible for
humans to unlock this knowledge and learn from it. Tactics and strategy
development using reinforcement learning is a typical application where
XAI could potentially generate deeper insights in the military domain.

• Laws and regulations [25, 26, 27]: XAI can potentially be used to ensure
that AI systems follow national and international laws. Perhaps the
most controversial application of AI is lethal autonomous weapon systems
(LAWS) [26]. Some want to ban such systems altogether, while others
argue that LAWS should be allowed as they could potentially improve
accuracy and minimize collateral damage [27]. Nonetheless, the authors
believe that XAI could play an important role in the process of developing
policies regulating when, where and if AI systems such as LAWS can be
used.

• Debugging [23, 28]: There are numerous cases in the literature where
XAI has been used to identify bugs in DNNs. Bugs typically occur when
artifacts such as copyright watermarks in images or unknown cheats in
simulators and games that do not exist in real world data appear in the
training data. The training process presented in Section 2.3.3 can learn
to exploit, or take short-cuts, using such artifacts. The result is a DNN
that works well when presented with test data, but fails when real world
data is presented. This kind of problem can be detected and addressed
before deployment if XAI techniques are used as an integrated part of
the development process.
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This chapter introduces several XAI techniques that have been developed
specifically in the context of DL. XAI for DL is a major challenge because
the DNNs may consist of millions or even billions of parameters, making them
opaque and difficult to interpret by humans. Note that, to the best of our
knowledge, the proposed techniques have not yet been scientifically evaluated
in a military context. Hence, it is unknown to what degree these techniques can
provide useful explanations in this context. Chapter 4 provides an introduction
to how such evaluation can be performed.

3.1 Global explanation techniques
Global explanation techniques provide insight into the DNN and its behavior
as a whole. In this section, we primarily focus on techniques that can be used
to analyze and visualize high-dimensional training datasets but also how to ac-
quire and interpret performance measurements for model evaluation purposes.

3.1.1 Visualization techniques for large high-dimensional
datasets

In DL, training datasets typically consist of a large number of high-dimensional
samples. To visually inspect such datasets they must be reduced to a dimen-
sionality that is observable to humans (i.e. one-, two- or three dimensional
space). Summarizing large datasets in a visualization can provide useful in-
sights about the complexity of the task to be learned by the DNN. It may also
be used to identify artifacts in the dataset that could negatively impact the
performance of the DNN [23]. Below are three unsupervised techniques that
can be used to reduce dimensionality for visualization purposes:

• Principal component analysis (PCA) [29]: This technique identifies the
principal components of the dataset. The data is projected onto the
components or vectors that are considered to be the most important
ones. The main drawback of PCA is that it is a linear technique, hence,
it may fail to identify patterns in nonlinear data. The main advantages
of PCA is that the technique is well understood (i.e. it can be explained)
and that it is computationally efficient compared to other techniques.

• Variational autoencoder (VAE) [30]: This is a DL technique that uses
DNNs to reduce dimensionality. The VAE consists of two DNNs: the
encoder and the decoder. The purpose of the encoder is to compress
the high-dimensional input data into a latent space vector (in this case
of one-, two- or three dimensions). The purpose of the decoder is to,
as accurately as possible, reconstruct the high-dimensional data using
the low-dimensional latent space representation. Training the DNNs is
performed using a loss function that minimizes the error of the original
input and its reconstruction using GD and backpropagation as introduced
in Section 2.3.3. Once trained, only the encoder is needed to reduce
dimensionality. The main advantage of this technique is that it is able
to learn non-linearities in the data. The disadvantage is that the VAE is
built using opaque DNNs that are not easily explained to humans.

• t-distributed stochastic neighbor embedding (t-SNE) [31]: This technique
was specifically developed for visualization purposes. Similarly to VAE,
t-SNE uses the GD procedure to learn how to optimally reduce the di-
mensionality of the data. In this case, the objective function targets the
preservation of neighborhood distances. The advantage of t-SNE is that
it generally produces better visualizations. A disadvantage is that it is
computationally complex.

18



FOI-R--4849--SE

To demonstrate the above techniques, the MNIST dataset [32] will be used.
This dataset contains gray-scaled images including labels representing 70000
hand-written digits. Each image consists of 28 × 28 pixels, hence, the dimen-
sionality of the data is 784. Figure 3.1 illustrates 15 samples randomly drawn
from the dataset.

The visualizations (scatter plots) in Figure 3.2 were created using a subset
of 10000 images randomly drawn from the MNIST dataset. In this case the
dimensionality was reduced from 784 to 2 using PCA (Figure 3.2a), VAE (Fig-
ure 3.2b), and t-SNE (Figure 3.2c and Figure 3.2d). The plots were rendered
using all of the 10000 data points, and the label of each data point was color
coded so that clustering tendencies can be visually inspected by humans. In
Figure 3.2d the dataset was first preprocessed using PCA to reduce the dimen-
sionality from 784 to 50 prior to using t-SNE. This is standard practice when
using t-SNE to ensure computational efficiency. The visualizations in Figure
3.2 provide an insight into the complexity of the dataset. If clusters can be vi-
sually identified it is also very likely that a DNN will be able to efficiently learn
from the data. Similarly, if clusters cannot be identified it will also be more
difficult for DNNs to learn from the data. In this case, the PCA technique was
not able to separate the clusters. Hence, a linear classifier cannot be expected
to perform well.

(a) 3 (b) 3 (c) 3 (d) 6 (e) 2

(f) 6 (g) 1 (h) 6 (i) 0 (j) 9

(k) 1 (l) 8 (m) 3 (n) 8 (o) 0

Figure 3.1 – Samples randomly drawn from the MNIST dataset. The labels of
the samples are provided in the figure captions.
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(a) PCA (b) VAE

(c) t-SNE (d) t-SNE with PCA preprocessing

Figure 3.2 – Visualization of high-dimensional data in two-dimensional scat-
ter plots using principal component analysis (PCA), variational autoencoder
(VAE) and t-distributed stochastic neighbor embedding (t-SNE). In this case,
the dimensionality was reduced from 784, representing images of 28×28 pixels,
to 2. The plots were rendered using 10000 data points, and each data point was
color coded by its label (0 to 9) so that clustering can be visually inspected by
humans. In Figure 3.2d the dataset was preprocessed using PCA to reduce the
dimensionality from 784 to 50 prior to using t-SNE. This is standard practice
when using t-SNE to ensure computational efficiency. The visualizations pro-
vide an insight into the complexity of the dataset. If clusters can be visually
identified it is also very likely that a DNN will be able to efficiently learn from
the data. Similarly, if clusters cannot be identified it will also be more difficult
for DNNs to learn from the data.
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3.1.2 Model evaluation
When training a machine learning model, a model developer continuously mea-
sures how the model is performing on input data it has not seen before, in
order to recognize if the model is progressing towards useful behavior. When
the developer is satisfied with the model’s performance, the training process is
stopped and a final evaluation is performed using unseen test data. This final
test measures the expected performance of the model when applied in the real
world, where it will typically encounter inputs it did not see during training.
The extent to which the test dataset can be used to measure real performance
depends on how well the test set corresponds to real world data. While the on-
going measurement of performance during model training and tuning is mainly
interesting for model developers, the final performance measure is also valuable
for users from an XAI perspective.

3.1.2.1 Evaluation of classifiers

In the example of classifying military vehicles from images, of which there are
thousands for each class of vehicle, a significant proportion of the images would
be used for training, a separate set of images would be kept apart for fine tuning
and testing the model during training, and yet another set of images would be
reserved for the final performance measure. Since the classifier did not see the
images in the test set during the training process, measuring its performance
on them provides an idea of how well the model performs on new data.

In a classification task, the most straightforward measure of performance
is to count the proportion of correct classifications. This measure is called
accuracy :

accuracy =
correct classifications

all classifications
(3.1)

That is, if the vehicle classification model is tested on 100 images and 85
are correctly classified, the accuracy of the model on the test data is 85%.
Accuracy works well if instances from the different classes tend to occur with
equal frequency, that is, the data is balanced.

In the case of a sea-mine classification example the task is to analyze sonar
images of mine-like objects and classify the object as a mine or something else
(typically a rock). In this case there may be a relative shortage of mine images
to train on, since data about rocks is easy to gather while data about mines,
particularly those deployed by hostile forces, is not.

The mine detection case is an example of an unbalanced problem, which,
if the test dataset is to reflect real world occurrences, will contain many more
images of rocks than images of mines. As an example, assume that one example
in a thousand in the test dataset is a mine (and the rest are rocks). A classifier
that always returns negative classifications (not mine) would achieve 99.9%
accuracy on the test set since 999 out of one classifications will actually be
correct. Yet, it is useless for finding mines because out of the actual mines that
are presented to it, it detects none. It has a recall rate of 0%.

The recall rate can be increased by making the classifier more prone to
return positive classifications (mine) for suspicious objects. In the extreme,
a classifier that always returns positive classifications would trivially achieve
100% recall, because it catches all the mines, along with all the rocks. Yet,
again, it would be useless, because for every thousand positive predictions, only
one would be correct. Its precision would be 0.1%.

Clearly, a good mine detector, or any classifier for that matter, needs to
have reasonably high values for both precision and recall. That is, it must be
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possible to trust positive classifications enough to invest further resources (such
as deploying divers). It must also be possible to trust negative outputs enough
to expect it to find a decent proportion of mines that are actually there. In
reality there is, however, always a trade-off between the two, and the correct
balance depends on the particular operational requirements. If, for instance,
it is important not to miss mines, the classifier would be tuned to high recall.
However, there is a price to be paid in terms of lower precision, leading to more
time being devoted to investigating rocks.

Accuracy, precision and recall can be calculated by running the classifier on
the test dataset and counting how many mines were correctly classified (true
positives or TP), how many rocks were correctly classified (true negatives or
TN), how many rocks were mistaken for mines (false positives or FP), and
how many mines were mistaken for rocks (false negatives or FN). This yields
a confusion matrix, as shown in Table 3.1.

Table 3.1 – The structure of a confusion matrix, tabulating the number of cor-
rect positive classifications (TP), the number of correct negative classifications
(TN), the number of incorrect positive classifications (FP), and the number of
incorrect negative classifications (FN).

actual mine actual rock
predicted mine TP FP
predicted rock FN TN

The confusion matrix is a compact but rich way of representing the per-
formance of the model, from which many different metrics can be deduced. A
high precision model has a high TP value compared to other values on the
same row (FP), or more formally:

precision =
TP

TP + FP
(3.2)

A high recall model has a high TP value compared to other values in the
same column (FN), or more formally:

recall =
TP

TP + FN
(3.3)

A high accuracy model has high values in all diagonal positions compared
to non-diagonal positions, or more formally:

accuracy =
TP + TN

TP + TN + FP + FN
(3.4)

Other combinations of the values in the matrix yield other metrics, and
each metric sheds light on some aspect of the model’s performance. In general,
a case with unbalanced data, which tends to be the norm in reality, will require
more than a single metric to gauge the model’s performance. The right set of
metrics for the problem at hand, however, provides a concise picture of how the
model can be expected to perform in the wild. Since all metrics are calculated
from the confusion matrix, a trained analyst will quickly be able to extract this
information from it.

3.1.2.2 Evaluation of multi-class classifiers

If a vehicle classifier is to distinguish between tanks, motorcycles and transport
vehicles, there is a multinomial or multi-class classification problem. In such
a case the confusion matrix will have as many rows and columns as there are
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classes. An example of a multi-class confusion matrix is illustrated in Figure
3.3, where the task is to classify images of hand-written digits from 0 to 9, that
is, ten classes.

The calculation of metrics from the confusion matrix generalizes in that
accuracy is given by comparing the diagonal to the rest, whereas precision and
recall are given for each particular class by comparing its diagonal value to the
sum of its row (precision) or the sum of its column (recall). Thus, by color-
coding the matrix, as in the digit classification example, much information can
be gleaned by mere inspection. For example, as can be seen in this case, overall
accuracy is extremely high (comparing the diagonal to the rest), but perfor-
mance varies somewhat in the different digit classes. Number five is sometimes
a misclassification of three or six or others, and five is conversely sometimes
mistaken for three. The number one, however, is hardly ever confused with
anything else.

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

9.8e+02 0 0 1 0 0 3 0 1 0

0 1.1e+03 1 0 0 0 0 1 1 0

1 0 1e+03 0 0 0 0 3 1 0

0 0 2 1e+03 0 1 0 0 2 0

0 0 0 0 9.8e+02 0 1 0 1 3

1 0 0 5 0 8.8e+02 2 1 1 1

2 2 0 0 1 2 9.5e+02 0 1 0

0 0 5 0 0 0 0 1e+03 1 1

1 0 0 2 0 0 0 2 9.7e+02 3

0 0 0 0 6 3 1 6 3 9.9e+02

0

200

400

600

800

1000

Figure 3.3 – Confusion matrix illustrating the performance of a DNN trained to
recognize hand-written digits using the MNIST dataset. The confusion matrix
can be used to gain insight into which digits the model is most likely to confuse
with other digits.

3.1.2.3 Evaluation of regression models

In a regression task, it is impossible count correct classifications. Instead, it
is necessary to compare continuous values produced by the model with correct
values in the test set.

As an example, assume that an obstacle avoidance model for an autonomous
ground vehicle (AGV) is being trained. The AGV must produce a steering sig-
nal based on input from mounted sensors. The steering signals are represented
as a number between −1 and 1, where −1 means sharp left turn, 1 sharp right
turn, 0 means no turn, and everything in between are gradations of turning in
the corresponding direction. The AGV has been trained on data recorded by
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human operators. It is tested by taking the steering signals it produces for a
given sensor stimuli, and comparing it with the recorded data. For instance,
the recordings might say that detecting an obstacle to the left at a far distance
should produce a limited right turn signal (e.g. 0.2), whereas detecting an
obstacle to the left at close proximity should produce a sharp right turn (close
to 1). A model, A, that in the latter case produces a sharp left signal (−1)
should be judged to perform worse than another model, B, that produces a
slight rightward signal (e.g. 0.2). Comparing the model’s prediction to the
desired value, it is apparent that model A is at a distance of 2 from the value,
whereas model B is at a distance of 0.8. Hence, model B is closer to the correct
behavior. If such errors for all the instances in the test dataset are measured
and aggregated, for instance calculating the average error, an overall measure
of the model’s performance is obtained.

Evaluation techniques for regression differ mainly in how this aggregation
is done. Mean absolute error (MAE) takes the average of the absolute value
of the error. The metric measures how much the model predictions deviate
from the desired values. Root mean square error takes the root of the average
square of the error. It corresponds to the standard deviation of the error and
differs from MAE in that it penalizes large deviations more. R Squared (R2)
compares the mean squared error to the variance of the signal itself. Therefore,
it tolerates larger errors for signals that vary a great deal in the first place.

3.2 Local explanation techniques
In contrast to the global explanation techniques, local explanations are used
to explain the prediction for a specific input of interest. These inputs can be
real world examples or examples from the training- or test datasets. The input
to a DNN is essentially constituted by a list of numeric values, representing
some real world process, such as pixels in an image, letters in a text, scientific
data, and so on. A gray-scale image with 300 pixels thus represents its data in
300 dimensions, each dimension telling a part of the story (and all dimensions
together providing the whole).

This section focuses on local explanation techniques where saliency maps
are used for explanation. A saliency map explains the output of a model when
provided with a particular input example, by attributing scores of relevance,
or saliency, to each input dimension. That is, it shows how important each
dimension is in producing the particular output corresponding to the example.
For an image, these saliency scores translate into a heatmap that can be su-
perimposed on the image to indicate which pixels the model paid attention to
when producing its decision. Figure 3.4 provides an example of a saliency map
generated in the context of a simulated self-driving car.

The first two techniques introduced here are white-box techniques. These
techniques rely on access to the internal representation of the DNN (subfunc-
tions, gradients, etc.) to produce explanations. The other techniques are
black-box techniques that can produce explanations by querying the model,
often many times, with selected inputs. Hence, black-box techniques tend to
require more computational resources to produce their explanations.
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Figure 3.4 – Saliency map highlighting the most important input pixels used
by a DNN to control a simulated self-driving vehicle. In this case, the pixels
representing the right side of the road appear to be the most important ones.

3.2.1 Gradient saliency
Gradient saliency (also called sensitivity analysis) is one of the earliest local
explanation techniques, and it has been used to explain the behavior of neural
networks for a long time [33, 34]. The idea in gradient saliency is to generate
explanations by calculating how much changes in input values will change the
model output value. Inputs where changes in their values will affect the model
output value the most are considered more important for the model output
value than other inputs. In mathematical terms, this is called the derivate of
the model output for a given input, such as an image. Since DNN training
uses derivatives, many deep learning software libraries can directly compute
gradient saliency.

The computational graph in Figure 2.8 that was used to explain the DNN
training process can also be used to understand how gradient saliency works.
Instead of calculating the derivatives with respect to the trainable parameters,
which is what is done during training, the gradient saliency technique calculates
the derivatives with respect to the input (i.e. dL

dx = dL
dm

dm
dx ).

The problem with gradient saliency is that it does not distinguish between
the signal that affects model output and distractors that the DNN is trained
to filter out [35]. Explanations generated using the gradient saliency technique
tend to be noisy and can also hide features that the model actually uses. Ex-
plaining which features make an input more or less of an object type is not as
informative as explaining which features that make it the object type in reality
[34].

3.2.2 Layerwise relevance propagation
Layerwise relevance propagation (LRP) was published in 2015 and is one of the
first techniques that uses a theoretical framework to guide the development of
local explanation heuristics [36, 34, 37]. The main benefit of the theoretical
framework is that it provides a way to find local explanation heuristics that
are suitable for many types of layers at all levels in DNNs, as well as local
explanation heuristics for other types of machine learning models.

LRP starts by assuming that assigning relevance for how lower layers con-
tribute to each output value should consider which activations that are neces-
sary for the output value. Removing these relevant activations from the input
should ideally cancel out that output value. For example, removing all features
of a car in an image that is classified as car should mean that the model’s out-
put value for car is zero. In mathematical terms, this is called a root of the
model function, and the idea in LRP is to use local explanation heuristics that
are suitable to search for this root.
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Although there is no known technique to optimally search for a root of
model functions, there are some constraints to the search that have proven to
be sufficient. For example, the activations of the root should be near the acti-
vations of the output value, relevant activations should be within the possible
input space, and only the available relevance of the output value should be used
for assigning relevance to activations. These constraints have proven sufficient
to find local explanation heuristics that propagate relevance from the model
output back to the input.

LRP assumes that the model function can be approximated using the math-
ematical technique Taylor expansion. Taylor expansion decomposes the model
function into simple additive terms that can be directly mapped to neural net-
work components. The additive terms mean that the model function can be
decomposed into relevance scores for each activation that underlies the model
output.

LRP is a family of local explanation heuristics that use these techniques for
relevance propagation [37]. The heuristics are specifically adapted for different
types of neural network layers and layer levels. Some heuristics can also prop-
agate output relevance into positive activations that contribute to the model
output and negative activations that detract from the model output. This may
be useful to identify missing features that would make the model output more
likely.

3.2.3 Shapley additive explanations
The Shapley additive explanations (SHAP) was published in 2017 [38], promis-
ing to improve a number of previous methods by pointing out a mathematical
commonality between them and then proving that they could all be improved
by use of a particular mathematical formula.

The formula in question was introduced by the Nobel laureate Lloyd Shap-
ley in 1953 [39] in the field of game theory, a branch of economics. It calculates
so called Shapley values, which serve to distribute the gains from some joint
enterprise, or game, among the participating actors. The formula is designed
to distribute the gains fairly, according to a set of soundness conditions, so
that all gains should be distributed; actors who contribute more should have
more of the gains; non-contributing actors should gain nothing; and it should
be possible to sum up gains across games. In fact, Shapley showed that his
formula is the only one that can possibly satisfy all the conditions.

In terms of explanations, the first step is to observe that the input dimen-
sions to a machine learning model can be viewed as actors participating in the
model’s game of producing an output prediction. The output value can be seen
as the total gain from the game, that is, to be distributed among the actors. To
perform a fair distribution is to distribute the output value among the input
dimensions in proportion to their contribution. In other words, Shapley values,
thus applied, produce a saliency mask. This observation was made before the
SHAP method, for example in [40] and [41].

The contribution of the original SHAP work was to observe that a number
of earlier methods were all producing explanations that could be unified under
a common linear form, called an additive feature attribution, meaning that
they all share the property that the saliency values they produce sum up to
the output value of the model to be explained. The authors of [38] then set up
soundness conditions corresponding to the ones discussed above, and proved
that the Shapley formula is the only way for a feature attribution method to
satisfy all conditions. Since all the previous methods deviate in some way from
the Shapley formula (typically by applying some heuristic without much the-
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oretical foundation), the authors argued that the methods could be improved
by adjusting them to the formula. Thus, SHAP is in fact a family of methods
based on these adjustments. For instance, adjusting LIME (see Section 3.2.4)
to accord with the Shapley formula yields KernelSHAP, a model-agnostic ver-
sion of SHAP. Versions of SHAP that are based on model specific explanation
methods inherit the same model specificity constraints.

3.2.4 Local interpretable model-agnostic explanations
Local interpretable model-agnostic explanations (LIME) generated a great deal
of attention when it was published in 2016 [42], because it was one of the first
explanation methods that could be applied to any model as a black-box. LIME
explains a model’s prediction on an input example by performing perturbations
on the example and observing what happens.

Any machine learning model represents the relationship between its inputs
and its outputs as some mathematical function, defined by the weights and
structure of a neural network or by other parameters. This function in turn
aims to capture some real world relationship, for instance, the relationship be-
tween a sequence of sounds and a sequence of words. The function modeled
by a typical modern machine learning system is complex, which is why simply
inspecting the weights of a neural network does not do much by way of expla-
nation. LIME disregards the function as a whole, but instead tries to describe
what the function does in the vicinity of the example that is to be explained.
By perturbing the input in different ways, it is able to create a linear, and
hence much simpler, model that behaves close to the complex one on examples
that are similar to the one provided. The coefficients of this linear model then
constitute a direct measure of which dimensions of the input have the great-
est impact on the output of the model, or in other words, the coefficients are
LIME’s version of a saliency mask. Since all LIME had to do to the model was
to feed it different perturbations of the input and observe its output, nothing
had to be known about the model’s internal workings.

3.2.5 Randomized input sampling for explanation of black-box
models

Randomized input sampling for explanation of black-box models (RISE) is a
model-agnostic local explanation technique that was published in 2018 [43].
Similarly to LIME, RISE generates explanations by perturbing the input and
observing how the model reacts. No knowledge about the model’s internal
working is therefore necessary for generation of explanations.

RISE perturbs images by randomly generating masks that dim image pixels.
The masks are generated by dividing the image into larger areas and randomly
selecting which areas to include in the perturbed image. The model’s output
value for the perturbed image describes the extent to which the mask covers
image areas that are important for the classification of that model class. Masks
that cover many image areas that are important for the classification result
in higher model output values compared to masks that cover fewer important
image areas. By randomly generating many masks, RISE calculates the average
importance of each image area. The image area’s importance explains the
model’s classification.

A benefit of RISE is that it uses image areas of even size to generate expla-
nations. The explanations therefore cover the same image regions as objects
in the image. LIME, on the other hand, uses superpixels (continuous areas of
similar pixel values), that may not capture correct image regions.
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3.3 Hybrid explanation techniques
Hybrid explanation techniques provide insight by combining global and local
XAI techniques. Instead of only using local XAI techniques on a case-by-case
basis, hybrid explanation techniques automatically apply local XAI techniques
on a large number of cases, typically whole datasets. Hybrid explanation tech-
niques then compare all local XAI results to identify cases of where the model
does not perform as expected. Such anomalies may inform further model devel-
opment or indicate performance limitations to consider when using the model.

3.3.1 Spectral relevance analysis
The spectral relevance analysis (SpRAy) technique was introduced in [23].
SpRAy is a semi-automated technique that uses a whole dataset analysis ap-
proach to find cases where the model does not perform as expected. For ex-
ample, in image classification, a general type of object, such as dog or car may
appear in many forms and contexts, but similar object forms and contexts
should have similar local XAI results. If the local XAI results are dissimilar for
some cases compared to what is expected, this may indicate anomalous model
behavior. Decision strategies that rely on spurious and artificial correlations
that may not exist in the real world is also known as “Clever Hans” behavior.
SpRAy consists of five steps to find anomalous model behavior:

• Compute relevance maps with LRP (see Section 3.2.2).
• Pre-process all relevance maps to a uniform shape and size.
• Perform spectral clustering on the relevance maps. Spectral clustering is

an established technique that transforms a similarity matrix (measure of
similarity between cases) into a representation that enhances the cluster-
properties of the similarity matrix [44]. Clusters can then be detected
in the new representation. The similarity is computed between relevance
maps as the nearest neighbors from the Euclidean distance between pairs
of relevance maps. The Euclidean distance between two relevance maps is
computed from the difference in intensity for each color channel at every
pixel.

• Identify interesting clusters. Spectral clustering computes measures (eigen-
values) that indicate disjoint or weakly connected clusters. Large gaps in
eigenvalues indicate that the clusters are different.

• An optional step is to visualize the clusters using, for instance, t-SNE
(see Section 3.1.1).

In [23], SpRAy was used to show that a previous generation of machine
learning technique, the support-vector machine (SVM), learned spurious cor-
relations in image classification. For instance, SpRAy showed that the classifier
used four different strategies to classify images of horses, detect a horse and
rider, detect a source tag in landscape or portrait oriented images, and detect
hurdles and other contextual elements. This classifier was therefore unreli-
able in actual applications where source tags and contextual elements were not
present. Adding the source tag to images of other objects, such as car, they
could change the classification to horse.
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4 Evaluating explainable artificial
intelligence techniques
An often overlooked but important aspect of XAI is the ability to evaluate
the proposed XAI techniques. Section 4.1 introduces evaluation criteria from a
human factors perspective, where the user (e.g. operator or analyst) is central
for measuring the effects of XAI when added to the AI system. Moreover
Section 4.2 introduces tests that can be used to compare local XAI techniques,
such as the ones presented in Chapter 3.2, using heuristics.

4.1 Human factors evaluation
A human factors evaluation of XAI techniques tests whether the explanations
consider all factors that are important for users to fully utilize the AI system.
For example, users may have different goals, needs, knowledge, experience, task
contexts, use cases, etc. As in many types of system development, it is impor-
tant to consider these factors throughout the development of the AI system,
from system specifications to the final user testing. Since XAI techniques for
DL is an emerging research area, initial users of the techniques are often sys-
tem developers that are interested in evaluating model performance. Whether
these XAI techniques are also useful for military users is largely still an open
question. In [22], six metrics have been proposed to evaluate explanations:

• Explanation goodness: Consists of a checklist of important aspects to
consider from a user perspective in the development of XAI techniques.
The checklist is based on a thorough review of existing literature about
explanations and includes seven important aspects of explanations, for
example, whether the explanations help users understand how the AI sys-
tem works, whether the explanations are satisfying for users, and whether
the explanations are sufficiently detailed and complete.

• Explanation satisfaction: A scale to measure how users experience the
explanations with respect to explanation goodness. The scale consists
of eight items that are formulated as statements (the seven goodness
aspects and one item regarding whether the explanation is useful for the
users’ goals). A validity analysis shows that the scale is reliable and can
discriminate between good and bad explanations.

• Facilitation of mental models: Good explanations strengthen users’ un-
derstanding of how the AI system works and why it makes a particular
decision. Within cognitive psychology, such representation is called the
user’s mental model of the AI system. Four tasks are recommended to
measure users’ mental model of AI systems, for example, a cued ret-
rospection task where users are asked to describe their reasoning after
performing a task with the AI system, and a prediction task where users
predict what the AI system will do. A comparison between the user’s
mental model and an expert’s mental model shows the completeness of
the user’s mental model.

• Promotion of curiosity : Good explanations promote users’ curiosity to
investigate and resolve knowledge gaps in the mental model. It is recom-
mended to measure curiosity by asking users to identify the triggers that
motivated them to ask for an explanation. Some examples of triggers are:
justification of the AI system’s action, why other options were excluded,
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or the AI system not behaving as expected.
• Trust in explanations: A good mental model enables users to appropri-

ately trust the AI system and use it within its operating boundaries. A
scale with eight items to measure user trust in the AI system is recom-
mended. For example, the items address user confidence in using the
system and the system’s predictability and reliability.
• System performance: The ultimate goal of XAI is to improve overall sys-

tem performance compared to only using the AI system without XAI.
Examples of performance measures include completion of primary task
goals, user ability to predict the AI system’s responses, and user accep-
tance.

Future studies will provide more information on how to interpret these
metrics when evaluating XAI techniques for AI systems.

4.2 Evaluating local explanation techniques
The local XAI techniques described in Chapter 3.2 generate saliency maps
to highlight the importance of each input dimension. The saliency maps are
visualized differently depending on the type of data that is being processed by
the model. For instance, heatmaps are typically used when processing images,
whereas color coded characters and words are typical when processing text.

Figure 4.1 presents an example where saliency maps are visualized using
heatmaps. In this case the heatmaps were generated for the digit 0 (Figure
4.1a), using the gradient saliency (Figure 4.1b) and LRP techniques (Figure
4.1c). Important dimensions (i.e. pixels in the image) are represented by
warmer colors (e.g. red, orange, yellow, etc.), whereas non-important dimen-
sions are represented by colder colors (dark blue, blue, light blue, etc.). A
notable difference between the two techniques can be visually observed in the
placement of the highlighted dimensions. The remainder of this section intro-
duces techniques that can be used to quantitatively compare and evaluate local
explanations generated by different techniques. Ultimately, the goal is to find
out which explanation is the most accurate one.

(a) Digit 0 from MNIST (b) Gradient saliency (c) LRP

Figure 4.1 – An MNIST image and its corresponding heatmaps generated using
the gradient saliency and LRP techniques. The important dimensions, or pixels
in the image, are represented by warmer colors (e.g. red, orange, yellow, etc.).
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4.2.1 Deletion
Deletion [43, 34] is a metric that is calculated by measuring the model’s ability
to accurately make predictions while inputs are gradually distorted or deleted.
Note that deleted in this case means converting the values of the inputs into
something neutral (e.g. the background of an image). The deletion process is
guided by the saliency maps generated by the XAI techniques so that values
in more important dimensions are deleted prior to less important ones. The
intuition of this metric is that an explanation is better if the performance drop
is fast, as opposed to slow, when the deletion process progresses.

Figure 4.2 illustrates the deletion process using the gradient saliency map
from Figure 4.1b. In Figure 4.2b, 50 of the most salient pixels have been
deleted. At this stage it is easy to infer that the image is still representing a
0. In Figure 4.2f more than half of all pixels (400) have been deleted. At this
stage it is much more difficult to infer that the image actually represents the
digit 0.

(a) 0 pixels (b) 50 pixels (c) 100 pixels

(d) 200 pixels (e) 300 pixels (f) 400 pixels

Figure 4.2 – Images generated from the deletion procedure for an MNIST image,
where 0, 50, 100, 200, 300 and 400 pixels are deleted.

31



FOI-R--4849--SE

4.2.2 Insertion
The insertion metric [43] is the complementary approach to deletion. Figure
4.3 illustrates the insertion procedure for the same MNIST image used in the
deletion example. Starting with the initial input (represented by a black im-
age), the increase in accuracy is measured as more and more dimensions of the
input are inserted as prioritized by the saliency map. Here, the intuition is that
the accuracy of the model’s prediction should increase when more information
is inserted into the input. That is, when the increase is fast the explanation is
better compared to when it is slow.

(a) 0 pixels (b) 50 pixels (c) 100 pixels

(d) 200 pixels (e) 300 pixels (f) 400 pixels

Figure 4.3 – Images generated from the insertion procedure for an MNIST
image, where 0, 50, 100, 200, 300 and 400 pixels are inserted.
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4.2.3 Evaluation metrics
To demonstrate the use of deletion and insertion, these procedures were applied
using the gradient saliency and LRP techniques. In this case, the XAI tech-
niques were evaluated using a classifier with a batch of 100 randomly sampled
images drawn from the MNIST dataset.

The results of the deletion and insertion procedures are presented in Fig-
ure 4.4 and Figure 4.5 respectively. The area under the curve (AUC) is a
measurement that can be used to quantitatively compare XAI techniques with
each other. For deletion, smaller AUC values are better than larger values.
Similarly, for insertion, larger AUC values are better than smaller values.

In Figure 4.4 it can be observed that the decrease in the performance curve
from the LRP technique is sharper and converges to a lower average probability
value using the deletion procedure. This is in coherence with its heatmap,
which highlights fewer features compared to the heatmap from gradient saliency
(Figures 4.1c and 4.1b), indicating that LRP finds an explanation quicker with
fewer features compared to gradient saliency. The same conclusion can be
drawn from the results using the insertion procedure (Figure 4.5). Here, a
rapid increase in average probability is observed after just inserting tens of
features and reaching high performance after about 100 inserted features.
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Figure 4.4 – Deletion curves for gradient saliency and LRP.
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Figure 4.5 – Insertion curves for gradient saliency and LRP.
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5 Experimental results: A case study on
explaining natural language predictions
A common machine learning task within the area of natural language process-
ing (NLP) is to have the AI system evaluate to what extent a text expresses
negative, positive or neutral sentiment (i.e. sentiment analysis). A sentence
such as “I’m so happy and grateful!” clearly expresses positive sentiment,
whereas “I hope he meets his maker very soon” is clearly negative, and “He
arrived yesterday” could be considered neutral. The positive example contains
words that directly mark it out as positive, whereas the negative one requires
a deeper understanding of language to be able to catch its decidedly hateful
meaning. Thus, a text can vary both in terms of what kind and degree of
sentiment it expresses, as well as how directly it does so. To understand how
an AI system tries to make sense of the sentiment carried in texts that are fed
to it, the same kind of techniques used to explain the classification of images
in Chapter 4.2 can be applied.

5.1 The sentiment analysis predictor to be explained
The sentiment analysis model to be explained is a simplified version of the
so called SentimentTagger model, which has primarily been used in-house to
predict sentiment in tweets (that is, posts on Twitter). The SentimentTagger
model consists of a combination of a DNN and a more traditional NLP module.
In this work only the DNN part of the model was used. The DNN model was
designed using a combination of recurrent (i.e. RNN) and fully connected
(i.e. FCNN) neural network layers. The RNN part was implemented using
a technique called long short-term memory (LSTM) that specializes in the
modeling of distant dependencies between words or characters in a sentence,
or even across sentences. For instance, in the sentence “The car, which I bought
yesterday at a cheap price, broke down today.”, the event “broke down” refers
to “The car”, even though they are separated by other text.

The particular LSTM used in SentimentTagger looks at the incoming text
(a tweet) by breaking it down into its constituent letters. More precisely, it
looks at characters, such as letters, but it also includes punctuation marks,
whitespaces, emoticons, and so on. The model then extracts an intermediate
representation that is good at modeling sentiment. This intermediate repre-
sentation is then fed into the FCNN to produce the final sentiment prediction.
The prediction is a continuous value between 0 and 1, where 0 is the most
negative and 1 is the most positive. Hence, this is a regression model which
in terms of explanation means that the explanation is not what contributed to
predicting a particular class, but rather, what contributed to that particular
output value.

The SentimentTagger prediction process is illustrated in Figure 5.1. Some
examples of the model’s predictions are also provided in Table 5.1. The pre-
dictions of the first three tweets in Table 5.1 agree well with the true senti-
ment value, as assigned by human judgment. The next three are examples of
underestimation of positive sentiment, and the last three are examples of un-
derestimation of negative sentiment. For some examples, such as number six,
it might be argued that SentimentTagger is doing a better job than the human
labelers. In all cases it would be beneficial to know what SentimentTagger
based its estimation on.
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Tweet

LSTM-RNN

Intermediate representation

FCNN

Sentiment prediction

Figure 5.1 – Architecture of SentimentTagger. A tweet is fed into the LSTM-
RNN, which produces an intermediate representation. This is then fed into the
FCNN, which in turn produces the final sentiment prediction.
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Table 5.1 – Examples of sentiment predictions by SentimentTagger on tweets.

Nr Prediction True value Tweet
1 0.27 0.27 what do aquila, ajahnae, and euriechsa

have in common besides ridiculously
stupid,horrible,ugly, god awful names?
tracey is not their father

2 0.37 0.32 @usr cn seems like you only appreciate
good reviews. no apologies to my con-
cern years ago.

3 0.71 0.72 i am always ready to smile.
4 0.40 0.84 3:45am and off to the hospital! elouise’s

waters have gone! labour littlesister su-
perexcited

5 0.37 0.81 old bill free by the time the game with
chelsea comes around? tears of joy tears
of joy tears of joythat will be lively to
say the leastafc

6 0.50 0.90 but the lady at the store said i had nice
eyelashes so that is good, right? opti-
mism? @usr

7 0.43 0.12 @usr norwegian quite simply the worst
airline worstairline i have ever used!
shocking appauling dire dismal beyon-
dajoke useless

8 0.48 0.16 my irritation level is at an all time high
today

9 0.47 0.15 these people irritate tf out of me i swear
i am goin to sleep
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5.2 Explanation methods
To generate explanations for the predictions produced by SentimentTagger
the model-agnostic LIME and SHAP techniques were applied. The version
of SHAP (KernelSHAP) is actually a modification of LIME (according to the
general formula proposed in [38]), which makes the comparison interesting.
The reason for choosing model-agnostic methods in this case was that the con-
catenation of different types of neural networks makes applying model-specific
methods non-trivial.

SentimentTagger analyzes tweets in terms of the characters they contain
rather than at the word level. The most direct formulation of a saliency ex-
planation is to indicate how much each character of a tweet contributed to
the sentiment prediction on that tweet. An example of such an explanation
is given in Figure 5.2a, where the tweet in question was predicted to have
neutral sentiment (0.47) by SentimentTagger, whereas the value assigned by
human judgment was slightly negative (0.31). So, what drove the prediction?
Here, color coding is used to represent how each character contributed, ei-
ther to increasing or decreasing the sentiment prediction. Blue means negative
contributions (i.e. negative sentiment) and red means positive contributions
(i.e. positive sentiment). Colors closer to transparent purple represent neutral
sentiment.

The example seems to indicate that characters in the word “better” con-
tributed positively and that characters in “bad” contributed negatively, whereas
other characters provided a less clear picture. It is difficult to draw conclusions
from saliency attributions to individual characters, since characters by them-
selves do not really mean anything. Consequently, while there may be reasons
to have a sentiment prediction model work at the character level, explanations
should probably be provided at an aggregated level that maps better to actual
meaning.

If the character-level attributions are aggregated to each word containing
the respective characters, the result is instead the visualization that is shown
in Figure 5.2b. The picture that emerges is much clearer, and not only is it
possible to see how strongly “better” and “bad” are driving the prediction, but
the slightly positive role of “when” and the slightly negative role of “someone”
and “irritate” can also be discerned. Finally, it can also be noted that the
amounts of “redness” and “blueness” seem roughly equivalent, which explains
why SentimentTagger decided on a neutral evaluation of sentiment. In the
examples that follow, explanations aggregated to the word level are visualized,
as in this case.
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(a) Character level saliency

(b) Word level saliency

Figure 5.2 – A tweet where characters and words have been color coded ac-
cording to their contribution to the sentiment prediction on that tweet. Red
means contribution towards positive sentiment; blue means contribution to-
wards negative sentiment. In this case the model predicted neutral sentiment
(0.47), whereas the sentiment was judged slightly negative (0.31) by human
labelers. The word level saliency visualization appears to more clearly map the
importance of the semantics of the sentence.
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5.3 Qualitative results
Table 5.2 shows nine examples of tweets that are interesting in different ways.
The colors correspond to saliency attributions made by SHAP (and then ag-
gregated to word level as explained above). The Prediction column lists the
sentiment value predicted by SentimentTagger, and the True value column
shows the value assigned by human judgment. The more red a word, the more
characters composing it have collectively contributed to pushing the predicted
value up. Conversely, the more blue a word, the more its characters have
pushed the predictions down.

For the first three tweets, SentimentTagger agrees fairly well in its predic-
tions with human judgment of sentiment (in the True value column). Despite
the agreement, it is interesting to see what words SentimentTagger looked at
to arrive at its predictions. In the first tweet, “stupid”, “horrible”, “ugly”,
“awful” and “not” drive the sentiment in a negative direction, but the word
“father” is an even stronger negative driver. It could be queried whether Senti-
mentTagger picked up on the combination of negative adjectives with “father”,
or if it is sufficiently sophisticated as to identify “not their father” as a damning
statement. The third tweet is much clearer; “smile” does most of the positive
work.

Tweets 4 and 5 are examples of SentimentTagger assigning negative sen-
timent to tweets that are actually quite positive. Words such as “hospital”,
“gone” and “tears” have been superficially interpreted as negative, whereas a
proper understanding of context would negate that judgment. Tweet number
6 seems to show the same discrepancy between prediction and true sentiment.
However, it could be argued that the insecurity expressed by the interrogative
form actually has the prediction being closer to the truth than the assigned
label.

In examples 7 through 9 the relationship is reversed, in that the mellow
predictions have grossly underestimated the degree of negativity expressed in
the tweets. Some missed negativity could perhaps stem from misspelled words,
such as “appauling” (7), missing whitespace, such as “worstairline” and “be-
yondajoke” (7), and colloquial abbreviations, such as “tf” (9), even though a
character level LSTM would be expected to deal better with minor misspellings
and missing whitespaces than a word-level one. Other mistakes are more dif-
ficult to explain, such as “shocking”, “dire”, “dismal” (7) and “irritate” (9).
Example 8 seems to indicate that SentimentTagger has missed the connection
between “irritation” and “high”.

Saliency attributions produced by LIME for the same tweets are shown
in Table 5.3. While the SHAP attributions are largely intelligible, while not
perfectly matching intuition, the LIME versions are largely perplexing. A
few correspond to intuition, such as “ridiculously” (1), “appreciate” (2) and
“optimism” (6), of which the first two were not highlighted by SHAP. Some
directly contradict intuition, for example “useless” (7) and “smile” (3), the
second also contradicting SHAP. However, most just appear arbitrary, such
as “ajahnae” (1), “ago” (2), “will” (5) and “today” (8). Do these unintuitive
explanations indicate faults in SentimentTagger that SHAP does not find, or
are the more intuitive attributions by SHAP more accurate descriptions of
what the LSTM is actually doing? The fact that KernelSHAP is a theoretically
better grounded version of LIME would indicate the latter, but these qualitative
results cannot provide any proof to that effect. For a more objective comparison
between the two explanation methods, a quantitative analysis is deployed in
the next section.
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Table 5.2 – Selected tweets, colored by SHAP saliency values that have been
aggregated to word level.

Nr Prediction True value Tweet
1 0.27 0.27 what do aquila, ajahnae, and euriechsa

have in common besides ridiculously
stupid,horrible,ugly, god awful names?
tracey is not their father

2 0.37 0.32 @usr cn seems like you only appreciate
good reviews. no apologies to my con-
cern years ago.

3 0.71 0.72 i am always ready to smile.
4 0.40 0.84 3:45am and off to the hospital! elouise’s

waters have gone! labour littlesister su-
perexcited

5 0.37 0.81 old bill free by the time the game with
chelsea comes around? tears of joy tears
of joy tears of joythat will be lively to
say the leastafc

6 0.50 0.90 but the lady at the store said i had nice
eyelashes so that is good, right? opti-
mism? @usr

7 0.43 0.12 @usr norwegian quite simply the worst
airline worstairline i have ever used!
shocking appauling dire dismal beyon-
dajoke useless

8 0.48 0.16 my irritation level is at an all time high
today

9 0.47 0.15 these people irritate tf out of me i swear
i am goin to sleep
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Table 5.3 – Selected tweets, colored by LIME saliency values that have been
aggregated to word level.

Nr Prediction True value Tweet
1 0.27 0.27 what do aquila, ajahnae, and euriechsa

have in common besides ridiculously
stupid,horrible,ugly, god awful names?
tracey is not their father

2 0.37 0.32 @usr cn seems like you only appreciate
good reviews. no apologies to my con-
cern years ago.

3 0.71 0.72 i am always ready to smile.
4 0.40 0.84 3:45am and off to the hospital! elouise’s

waters have gone! labour littlesister su-
perexcited

5 0.37 0.81 old bill free by the time the game with
chelsea comes around? tears of joy tears
of joy tears of joythat will be lively to
say the leastafc

6 0.50 0.90 but the lady at the store said i had nice
eyelashes so that is good, right? opti-
mism? @usr

7 0.43 0.12 @usr norwegian quite simply the worst
airline worstairline i have ever used!
shocking appauling dire dismal beyon-
dajoke useless

8 0.48 0.16 my irritation level is at an all time high
today

9 0.47 0.15 these people irritate tf out of me i swear
i am goin to sleep
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5.4 Feature deletion analysis
As explained in Section 4.2.1, the deletion metric tests the performance of an
explanation method by removing features in order of the saliency attributed
to them by the XAI technique. A good XAI technique should attribute high
saliency to features that are important to the prediction model’s output, so
that removing features in that order causes the model’s performance to drop
sharply. In the present case, the features to be deleted in order of saliency
are characters, and deleting a feature in this case means replacing it with an
empty character, such as a tab or a whitespace, and the prediction model is
SentimentTagger. We applied deletion tests to both SHAP explanations and
LIME explanations of SentimentTagger on a batch of 500 tweet examples, and
then plotted how the prediction performance of the model falls as a function
of the number of features (characters) deleted. Additionally, as a baseline,
we performed deletion with a random mask, causing features to be deleted in
random order. Since SentimentTagger is a regression model, its performance
cannot be measured in accuracy. Instead, the R2 metric that represents a
measure of how well the trained model explains the variance in the test data
was used.

Figure 5.3 shows the R2 performance of SentimentTagger as a function of
the number of deletions, as ordered by SHAP, LIME and the random mask
respectively. It is immediately apparent that deletion tests favor SHAP, as
its curve rapidly drops in order of its saliency attributions, whereas the corre-
sponding curve for LIME is markedly less steep. LIME performs only slightly
better than the random mask on the deletion test. SHAP consequently seems
to be doing a better job at identifying a handful of features (characters) without
which the model is at a loss to predict anything accurately. This is perhaps not
surprising, as the Shapley formula is designed to do just that, whereas LIME
relies on more technically motivated heuristics. The fact that it is even pos-
sible to completely extinguish SentimentTagger’s performance by selectively
replacing just a handful of characters with whitespaces may, however, be an
interesting indication about the robustness (or lack thereof) of such models.

What is further noteworthy is that the R2 values in the SHAP case actually
drop below zero after the first ten or so deletions, and then move back towards
zero as more deletions are performed. This means that the first set of deletions
are actually causing the model to perform worse than a model that ignores
its input and always makes the same prediction. As even more deletions are
made, the model’s predictions will converge towards the neutral prediction that
corresponds to an empty tweet, which is equivalent to ignoring the input. Thus,
the R2 value converges back to zero.
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Figure 5.3 – Deletion analysis of SHAP and LIME explanations of the Senti-
mentTagger predictions. Deletion in random order is used as a baseline. The
graph plots the effect on model performance, as measured by the R2 metric, as
features are successively deleted (that is, characters are successively blanked
out) in order of saliency. The steep initial fall of the SHAP curve indicates
that SHAP is good at finding which features are most critical for model per-
formance. The dip below zero indicates that strategic deletions can cause the
model to make sentiment predictions that tend to contradict the true sentiment
as labeled by humans. The slow decline by LIME indicates that LIME saliency
values are less adept than SHAP values at finding which features are most
critical for model performance, and only slightly better than random deletion.
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6 Conclusions
Deep learning will be used to complement and replace functions in military sys-
tems. In fact, DL techniques are already being evaluated in military surveil-
lance systems to automatically detect and track objects of interest in large
volumes of imagery data [45]. There are several advantages with DL compared
to traditional software techniques. Most importantly, DL can be used to model
processes that are too complex to model using traditional software techniques.
It can also facilitate active learning, where an AI system interacts with its
users to acquire high-quality data that can be used to enhance the model in an
operative system (i.e. after deployment).

Unfortunately, these advantages also introduce major challenges that need
to be addressed, not only technically but also operationally. In this report,
the focus was on the challenge of explainability. A major drawback of DL is
that even though learning algorithms, model architecture and training data are
known and well understood, the behavior of the model itself is not. This is
typically not a problem in many real world civilian applications used for music
recommendation and advertisement purposes. However, in the military domain
the ability to understand and explain the behaviors of AI systems is critical. In
this context, the decisions and recommendations provided by the AI systems
may have a deep impact on human lives. This is valid at the tactical level
where autonomous weapons and drones are used, as well as at the operational
and the strategic level where long-term decisions are made by military leaders
and political decision makers.

It might be argued that complex military systems such as fighter jets, sub-
marines, tanks and decision support tools for command and control are also
difficult to grasp. Although this is true, the techniques used to build these sys-
tems are inherently interpretable. Hence, if something goes wrong it is possible
to systematically inspect the system to identify and correct the problem. This
is not the case in DL. The main reason is that DNNs in real world applications
often consist of millions or even billions of parameters. Hence, not even the
creators of these models are capable of systematically addressing errors that
may exist in the model.

In this report, several state-of-the-art XAI techniques that have been pro-
posed to address the challenge of explainability were explored. Although some
progress has been made, it can be concluded that XAI for DL applications in
the military domain is still in its infancy. Ultimately, even though many XAI
techniques have been proposed, they have not yet been evaluated in a military
context. Hence, there is no guarantee that existing XAI techniques will enable
the use of DL in high-stake military AI systems.

When developing AI systems for military purposes it is our recommendation
that explainability and interpretability requirements are identified early in the
acquisition and development processes. Foremost, it is important that such
requirements are defined so that they are feasible and verifiable. That is, the
requirements must be in line with what is practically possible to expect in
terms of explainability.

In future work, we intend to develop an evaluation framework that can be
used to support the development of XAI capabilities in military AI systems.
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Appendix A Gradient descent
optimization with backpropagation
This appendix demonstrates the training process described in Section 2.3.3.
The model used in this example is represented by a computational graph as
illustrated in Figure A.1. In this example, fθ(x) = ωx + b and θ = {ω, b}
represent the model and its trainable parameters respectively. x and ŷ represent
the input and its desired output (i.e. training data). The computational graph
represents the squared error loss function L = (fθ(x)− ŷ)2.
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+

− x2 L

dL
dω = dL

dm
dm
dω

m = x× ω
dL
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dn
dm

dL
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dn
db

n = m+ b

dL
dn = dL

do
do
dn

o = n− ŷ
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do = dL
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do

p = o2

dL
dp = 1

Figure A.1 – Computational graph representing the squared error loss function,
L = (fθ(x)− ŷ)2.

The general derivative rules for the subfunctions used in the graph are
presented in Table A.1. Note that it is only the derivative of the loss with
respect to the trainable parameters that are needed for training (i.e. ∇θL(fθ) ={
dL
dω ,

dL
db

}
). The backpropagation starts by setting dL

dp = 1. From there it is

easy to see how the chain rule propagates the error backwards (right to left)
to find dL

dω and dL
db .

To demonstrate the training process, several iterations of GD was performed
as illustrated below. In this case, training is performed with the settings:
{x, ŷ} = {2, 1}, {ω, b} = {0.5, 2} and α = 0.01. Note that the loss decreases in
every iteration. This is an indicator that the DNN is learning.
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Table A.1 – General derivative rules for the subfunctions used in the compu-
tational graph in Figure 2.8. The derivatives of the subfunctions are identified
with respect to each input (i.e. partial derivatives).

Operator Function Partial derivatives

× f(x1, x2) = x1 × x2 df
dx1

= x2
df
dx2

= x1

+ f(x1, x2) = x1 + x2
df
dx1

= 1
df
dx2

= 1

− f(x1, x2) = x1 − x2 df
dx1

= 1
df
dx2

= −1

x2 f(x) = x2 df
dx = 2x

x

ω

b

ŷ

×

+

− x2 L

2
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dL
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dL
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dL
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dL
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1 o = 2
dL
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dL
dp = 1

x

ω

b

ŷ

×

+

− x2 L

2

0.42
dL
dω = 7.2

m = 0.84
dL
dm = 3.6

1.96
dL
db = 3.6

n = 2.8
dL
dn = 3.6

1 o = 1.8
dL
do = 3.6

p = 3.24

dL
dp = 1
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x

ω
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ŷ

×

+

− x2 L

2

0.35
dL
dω = 6.48

m = 0.7
dL
dm = 3.24

1.92
dL
db = 3.24

n = 2.62
dL
dn = 3.24

1 o = 1.62
dL
do = 3.24

p = 2.63

dL
dp = 1

x

ω

b

ŷ

×

+

− x2 L

2

0.28
dL
dω = 5.83

m = 0.57
dL
dm = 2.92

1.89
dL
db = 2.92

n = 2.46
dL
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1 o = 1.46
dL
do = 2.92
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dL
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x

ω

b

ŷ

×

+

− x2 L

2
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dL
dω = 5.25

m = 0.45
dL
dm = 2.63

1.86
dL
db = 2.63

n = 2.31
dL
dn = 2.63

1 o = 1.31
dL
do = 2.63

p = 1.72

dL
dp = 1
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[24] Kristof T. Schütt, Farhad Arbabzadah, Stefan Chmiela, Klaus Muller,
and Alexandre Tkatchenko. Quantum-chemical insights from deep tensor
neural networks. Nature Communications, 8, 2017.

[25] Bryce Goodman and Seth Flaxman. European Union regulations on al-
gorithmic decision-making and a “right to explanation”. AI Magazine,
38(3):50–57, 2017.

[26] Kelley M. Sayler. Defense primer: U.s. policy on lethal autonomous
weaponsystems. Congressional Research Service, IF11150, Version 1,
pages 1–1, 2019.

[27] U.S. Government. Humanitarian benefits of emerging technologies in the
area of lethal autonomous weapon systems. CCW/CGE.1/2018/WP.4,
pages 1–6, 2018.

[28] Yun He, Soma Shirakabe, Yutaka Satoh, and Hirokatsu Kataoka. Human
action recognition without human. European Conference on Computer
Vision (ECCV) Workshop: Brave New Idea, 2016.

[29] Karl Pearson. On lines and planes of closest fit to systems of points in
space. Philosophical Magazine, 2:559–572, 1901.

[30] Diederik P Kingma and Max Welling. Auto-encoding variational Bayes.
In International Conference on Learning Representations (ICLR), 2014.

[31] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using
t-SNE. Journal of machine learning research, 9:2579–2605, 2008.
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