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Sammanfattning 
I denna rapport genomför vi en avskanning av forskningen inom inlärning och upptäckt 
av kausala relationer inom artificiell intelligens (AI). Motivationen för att undersöka 
detta forskningsfält är finna hur viktig kausalitet är i militärt beslutsfattande. Området 
maskininlärning inom AI har sett stora framsteg under de senaste åren. Det finns 
emellertid en inneboende begränsning i den dominerande sortens 
maskininlärningsmetoder, vilka bygger på att hitta korrelationer i data. En korrelation 
mellan två händelser säger inget om huruvida den ena har orsakat den andra eller om en 
tredje händelse orsakar båda två. Genom att även ge algoritmer en uppfattning om 
kausalitet blir det möjligt att bättre förstå och resonera om omvärlden. För att tillåta 
användning av maskininlärning i militära system som normalt endast identifierar 
korrelationer mellan händelser och fenomen så måste man veta alla möjliga 
orsakssamband på förhand. Detta kräver en mycket hög förståelse av alla möjliga 
händelser och fenomen. Om denna kunskap inte är tillgänglig så är metoder för att lära 
sig kausala relationer nödvändiga. 

 

Nyckelord: Artificiell intelligens, maskininlärning, kausal inlärning, kausal upptäckt, 
beslutsstöd, lägesbild, militär. 
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Summary 
In this report we perform a horizon scanning over the research field of causal learning 
and discovery within artificial intelligence (AI). The motivation for investigating this 
field of research is to find out how important causality is in military decision-making. 
The area of machine learning within AI has seen great progress in recent years. However, 
there is an inherent limitation in the machine learning methods that focus on finding 
correlations in data. If correlation between two events is detected, we do not know if 
either one has caused the other or whether a third event is causing both. By also giving 
algorithms an idea of causality, it becomes possible to better understand and reason about 
the outside world. In order to allow the use of machine learning in military systems that 
normally only identify correlations between events and phenomena, one must know all 
possible causal relationships in advance. This requires a very high understanding of all 
possible events and phenomena. If this knowledge is not available, methods for learning 
causal relationships are necessary. 

 

Keywords: Artificial intelligence, machine learning, causal learning, causal discovery, 
decision support, common operational picture, military. 
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1 Introduction 
The machine learning area has seen major breakthroughs and reaped significant successes 
in the 2010s (for example in image recognition, self-driving cars, Jeopardy profits, Go 
games, etc.) and thereby rekindled interest in the use of artificial intelligence (AI) in both 
the civilian and military arena [1][2]. The development of deep learning is probably the 
biggest success of AI of the decade. 

Casual learning is now a topic expanding into larger AI conferences. For example, at the 
annual 33rd Conference on Neural Information Processing Systems there was a workshop 
entitled “Do the right thing”: machine learning and causal inference for improved decision 
making1." 

Judea Pearl, one of the pioneers in the AI field, has long studied causality (i.e., causation) 
and believes that there is an inherent limitation in the AI methods currently being explored 
[3]. According to Pearl, the current research focus is on understanding associations, i.e., 
correlations in data. By also giving algorithms an idea of causality, it allows them to better 
understand and reason about our world [4][5] and thus take a proper step towards general 
artificial intelligence that the current direction cannot achieve. 

If the data under investigation (e.g., to make predictions) come from a time series or from a 
hierarchy of data sources (e.g., parts of a military organization) then a higher understanding 
is gained by looking for causal relationships instead of only correlations, by using machine 
learning methods that take causality into account. 

For the military sector, the benefit of AI is to deliver decisive support when time is too short 
or when the number of choices is too large for decision makers to analyze all alternative 
actions. Using machine learning that discovers correlations only may not be fully satisfying 
as a means of military decision support. With discovered correlations between two events, 
we do not know if one has caused the other or if a third event causes both. It is thus necessary 
to discover the actual causal effects involved and to describe them in decision support 
systems that interact with a decision maker and communicate the true causes of events. 

Consequently, the motivation to investigate this field of research is to find out just how 
important causality could be in military decision making by studying the research frontier 
in causal discovery and learning. This should be evaluated from the benefits that can be 
achieved by the adopting methodologies in the state-of-the-art of the field from a military 
perspective. Possible questions to consider are: What new applications will be possible? 
How can existing applications be adapted and improved upon? To what extent can a 
common operational picture (COP) be improved when causal relationships are considered 
between events in the COP? 

This document reports on the internal project Learning Causality conducted at the Swedish 
Defence Research Agency (FOI)2. 

                                                        

 

 
1 https://neurips.cc/Conferences/2019/Schedule?showEvent=13176 (december 2019) 
2 https://www.foi.se/en/foi.html (december 2019) 

https://neurips.cc/Conferences/2019/Schedule?showEvent=13176
https://www.foi.se/en/foi.html
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2 Horizon Scanning of Causal Learning 
and Discovery 

In this literature study, we performed horizon scanning in the area of learning causal 
relations within AI. This area is scanned with FOI’s computer tool HSTOOL [7][8]. It is a 
computer tool that implements a methodology for scanning scientific literature for the 
purpose of detecting scientific trends. With this methodology, literature within a research 
field can be automatically grouped into clusters by subject content, and ranked with respect 
to its influence within each subject area. 

With HSTOOL we have searched the literature in the Web of Science 3  (WOS) Core 
Collection database at Thomson Reuters. 

When we analyse the material found through a search on causal learning, we find a slowly 
rising trend in the number of publications per year from 2001 until 2011, followed by a 
rapidly increasing number of publications between 2011 and 2018, rising from 20 to 68 per 
year, see figure 1. This growth in publications coincides with the high growth observed 
within the larger area of machine learning in general. 

 
Figure 1. The number of research publications on learning causal relations per year 1993–2018. 

The search question used in the scanning of WOS is: 

TS = (causal* NEAR/2 (learn* OR discover*)) AND 
  SU = (Computer science OR Mathematics) 

where TS is a field label which means Topic. With TS we search with our own keywords in 
all subject fields. These subject fields include titles, abstracts, keywords and indexing fields 
such as systematics, taxonomic terms and descriptors for each scientific publication. The 
*-operator is a truncation wild card. The field label SU means Research Area. All scientific 
articles in WOS are classified with a specified research area. SU limits the search to the 
specified research areas. The NEAR/2 operator used above means that the surrounding 
search terms should not be separated by more than two intermediate words. AND and OR 
are logical operators. 

This search term is selected to catch both the causal learning and causal discovery terms 
used within the research area. We limit the search to computer science or mathematics to 
avoid research on learning in social science and the humanities. 

                                                        

 

 
3 http://www.webofknowledge.com (december 2019) 

http://www.webofknowledge.com/
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We find that most publications are within the computer science research area with a strong 
focus on AI, figure 2. 

 
Figure 2. Research areas of publications (i.e., WOS categories) with the number of publications 
for each area. 

The trend is even clearer when looking at the number of citations per year. We observe a 
strong citation trend since around 2010 rising from approximately 200 citations per year to 
more than 1800 citations in 2018 (figure 3). 

 
Figure 3. Number of citations per year. 

Looking at which countries are performing the majority of research within the area, we find 
the United States followed by Europe, China and Australia. Within Europe, there are 
significant contribution from Germany, UK, and the Netherlands (figure 4). 

 
Figure 4. Countries performing research on learning causal relations (with number of 
publications). 
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In China, research within the area tends to be funded by their National Natural Science 
Foundation. In the US, research is funded by the NSF, NIH, DoD, etc., and in Europe, by 
the EU, ERC and the Academy of Finland (figure 5). 

 
Figure 5. Funding agencies for research on learning causal relations. 

Finally, we list the largest research performers with the fields of causal learning and causal 
discovery. We notice Max Plank and ETH in Europe, and University of Pennsylvania, 
Carnegie Mellon, University of California, and the University Pittsburgh in the United 
States among the top seven performers. 

 
Figure 6. Research performing organizations. 
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3 The Field of Learning Causality 
Before we start investigating the research literature on causal learning, let us first provide 
an overview over the field of causality research. We briefly cover the concept of causality, 
representations, and different types of learning.  

3.1 The Concept of Causality 
We will not fully penetrate or dwell on the philosophical aspects of causality, such as “Is 
causality even a ‘real-thing’ in the world or is it just a tool for the conscious mind to interpret 
the world?” It is however, worth highlighting how elusive and relative the concept is. 

Merriam-Webster’s online dictionary4 provides the following definition of causality: 

1. a causal quality or agency, 
2. the relation between a cause and its effect or between regularly correlated events or 

phenomena. 

The definition emphasises a “relation between a cause and its effect”. In order to grasp the 
concept, also “cause” needs to be explained.  

Merriam-Webster proposes a number of explanations of “cause” including5: 

1. a reason for an action or condition : motive, 
2. something that brings about an effect or a result, 
3. a person or thing that is the occasion of an action or state, 
4. sufficient reason. 

We tend to have an intuitive understanding of causality, which perhaps best fits with the 
second definition of “cause” above, i.e. “something that brings about change”. For instance, 
due the cause “Rain”, “Wet lawn” became the effect. In a military context, “something” 
would, e.g., be an agent with the power to reason and act, such as an adversarial military 
force.  

Definitions one and three, i.e. motive or a person, as the cause, could also be considered 
depending on the needs of the reasoner. For instance, compare “Peter’s passion for bowling 
caused the bowling pin to fall” with “The ball that Peter rolled made the bowling pin fall”. 
Depending on the needs of the reasoner, either Peter, the rolling ball, or even the existence 
of the game of bowling, could be interpreted as the “cause”. Hence, inevitably causality 
incorporates a subjective sense of abstraction and interpretation.  

For further reading on various interpretations of causality, we refer to Waldmann and 
Mayrhofer [9] who present the contending dependency, dispositional and process 
frameworks for causality. 

  

                                                        

 

 
4 https://www.merriam-webster.com/dictionary/causality (december 2019) 
5 https://www.merriam-webster.com/dictionary/cause (december 2019) 

https://www.merriam-webster.com/dictionary/causality
https://www.merriam-webster.com/dictionary/cause
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3.2 Representation of causality 
A causal model is “a mathematical abstract that quantitatively describes the causal 
relationships between variables” [10]. A popular causal model is the so-called structural 
causal model [11], which consists of a causal graph and structural equations. A causal 
graph is Bayesian network (consisting of a set of nodes representing a set of variables, V, 
and a set of directed edges representing dependence, E, a so-called directed acyclic graph or 
DAG) with the requirement that a dependence strictly represents causality.6 The structural 
equations “specify the causal effects represented by the directed edges in the graph.” For 
instance, for the causal graph G in figure 7, with variables A, B and C, the structural equation 
for C, fC, yields 𝐶𝐶 =  𝑓𝑓𝐶𝐶(𝐴𝐴,𝐵𝐵,𝑋𝑋𝐶𝐶), where XC is a hidden random variable representing 
uncertainty concerning the causal relationship between A, B, and C. 

 
Figure 7. A causal graph is a special case of a Bayesian network 

Although causal graphs are frequently used to represent causality, it should be stressed that 
alternative types of representations also have the expressiveness to capture causality, 
including if-then-rules, finite state machines, and Petri nets. 

3.3 Types of Learning 
When categorizing the various forms of causal learning, we follow the presentation by Guo 
et al. (2019) [10].  

The domain of causal learning is subdivided into two categories: 

• Causal inference, 
• Causal discovery. 

Simply put, causal inference (also learning causal effects) deals with learning about how 
different variables respond to changes in other variables, given an existing causal model. 
For instance, how does the expected value of variable C (in Figure 7) vary with changes in 
variable B?  

According to [10], most research in causal learning has been devoted to causal inference. 
Our focus in this report, on the other hand, is on the second category, i.e. causal discovery 
(also learning causal relationships). Causal discovery concerns learning causal relationships 
based on a set of data, and possibly some assumptions. 

                                                        

 

 
6 Although in designing Bayesian networks it often assumed that directed edges represent causality, it is not compulsory. 
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There are basically two classes of methods for causal discovery: constraint-based and score-
based. Constraint-based7 methods try to learn a structure which respects the conditional 
independences between variables present in the data. For instance, the two-step Peter-Clark 
algorithm first learns an undirected causal graph (a so-called skeleton graph) from data, by 
starting with a fully connected graph, and then systematically removing edges between 
variables which are conditionally independent in the data. In the second step, the directions 
of the edges are estimated. Score-based methods tend to appear the optimization problem 

𝐺𝐺∗ = arg max𝐺𝐺 DAG over 𝑉𝑉 𝑄𝑄(𝑉𝑉,𝐺𝐺), where the typically enormous space of possible graphs 
is heuristically explored to find the best fit model, 𝐺𝐺∗(with respect to 𝑄𝑄). 

                                                        

 

 
7 Sometimes called independence-based. 
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4 Analysis of the Literature on Causality 
The papers downloaded from WOS are processed in several steps within HSTOOL. They are 
first clustered into groups by a Gibbs sampling Dirichlet multinomial mixture model 
(GSDMM) algorithm [6] for clustering and we introduce a complementary method to 
determine the optimal number of clusters [7][8]. We then use scientometric measures that 
identify articles that have made a significant impact. This influence is measured using 
citation statistics and is used to rank all articles within each group, see figure 8. 

 
Figure 8. Proposed workflow for horizon scanning of scientific literature. 

Using these methods we may be able to automatically discover previously unknown 
categories of research papers in the field of causal discovery and learning. Within each such 
category all articles are ranked by their importance.  

What follows next is a review of some of the most important findings of this study. In total 
we found 554 publications using the search question that was shown in section 2. These 
were automatically clustered into 89 different categories. The articles we mention below are 
the most highly cited articles in the last five years. Some of them are new, being the latest 
articles within an important trend, and some of them are slightly older and often are early 
articles that define the new trend of causal learning and discovery. 

Methods using causal discovery in situations with non-experimental data is a problem type 
with many different applications. While it is not possible prove the full correctness of any 
causal model derived from observational data, these methods are important in situations 
where it is impossible to conduct experiments. Shimizu et al. (2006) [12] have developed a 
methodology for discovery of the complete causal structure of a problem with continuous 
data. This method handles the situation when data is generated by a linear process and there 
are no non-observable confounding variables (including additional requirements). The 
methodology is based on independent component analysis (ICA) 8 . The authors have 
developed a complete MATLAB package to perform analysis with their method; linear non-
Gaussian acyclic model. Their paper is one of the most influential in causal discovery and 
learning to date, being cited 685 times since its publication (as of 3 December 2019). 

Shimizu et al. (2011) [13] has also developed a non-iterative method for estimating the 
causal order between multiple variables. Previous iterative methods using structural 
equation models and Bayesian networks to analyze causal relationships between continuous 
variables were never guaranteed to converge to a solution. Unlike the previous methods, this 
new method does not require any algorithmic parameters and is guaranteed to converge to 
the right solution within a small fixed number of steps if all model assumptions are met. 

Later Peters et al. (2014) [14] investigated how to learn causal acyclic graphs from a joint 
probability distribution9. Such graphs can be used to predict even developments when the 
available information is deficient. The authors show that if the observation probability 
                                                        

 

 
8 https://en.wikipedia.org/wiki/Independent_component_analysis (december 2019) 
9 https://en.wikipedia.org/wiki/Joint_probability_distribution (december 2019) 

https://en.wikipedia.org/wiki/Independent_component_analysis
https://en.wikipedia.org/wiki/Joint_probability_distribution
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distribution follows a structural equation model10 with added noise, the directed acyclic 
graph becomes identifiable from the distribution under simple conditions. Experiments 
indicate that methods based on restricted structural equation models can outperform 
traditional constraint-based methods. 

Bayesian networks may be used in data mining. Heckerman (1997) [15] demonstrated how 
to use Bayesian networks for learning causal relationships from prior knowledge. Later Ellis 
and Wong (2008) [16] studied directed acyclic graphs and developed a method for inference 
of directed acyclic graphical structures. They proposed a computationally fast algorithm 
using a combination of several methodologies including Markov chain Monte Carlo for 
determining Bayesian network structures from experimental data. 

In 2012 Colombo et al. (2012) [17] studied the problem of learning causal relations between 
random variables in a directed acyclic graph when allowing for any number of non-
observable variables and selection variables. They developed an algorithm called Really 
Fast Causal Inference Algorithm (RFCI). They compared it to a previous algorithm called 
Fast Causal Inference Algorithm (FCI) and they show in simulations that the two algorithms 
are similar in output but that RFCI is much faster than FCI. The new algorithm can be used 
to assess the impact of non-observable variables or selection variables. It can also be used 
to find boundaries for causal effects that are based on observational data from an unknown 
underlying causal graph. Also worth noticing is that Kalisch et al. (2012) [18] have 
developed an R-package11 for causal structure learning. 

There are various challenges associated with the causal discovery algorithms. Isozaki (2012) 
[19] addresses the issue that the conditional independence tests in constraint-based methods 
fail when data sizes are small. Isozaki presents a new conditional independence test based 
on results from thermodynamics and shows improvements when applied to the Peter-Clarks 
algorithm.  

Yu et al. (2018) [21] address another challenge. First they point out that the property of 
Markov blankets (MBs) of BNs is a useful tool for causal discovery. The MB of a node in 
a BN represents the “node neighbourhood” of the node in question. Hence, if the MBs of all 
nodes can be estimated, then the complete causal structure can be uncovered. The authors 
further point out that the discovery of MBs dictates an assumption of causal sufficiency, 
which means that there is a hidden factor (a latent variable) which makes two variables 
appear in a direct causal relation. This assumption is in many cases too strong and there is a 
need for MB discovery techniques that relax that assumption. To deal with the problem, the 
authors represent the problem using a structure called maximal ancestral graph which 
allows representing latent common causes. They then propose a method to efficiently 
discover the MB of a variable.    

Taken together, these publications demonstrate that, while this research area has a strongly 
growing trend (figure 1), the field has already reached some initial level of maturity with 
several approaches for different problem areas ready for engineering applications today. We 
do, however, expect several more years of growth, since the total number of publications is 
still very small compared to machine learning research, focusing only on finding 
correlations between events and phenomena. As machine learning is increasingly used to 
reason about high level events, causal explanations going beyond correlations become 
necessary. 

                                                        

 

 
10 https://en.wikipedia.org/wiki/Structural_equation_modeling (december 2019) 
11 https://www.r-project.org (december 2019) 

https://en.wikipedia.org/wiki/Structural_equation_modeling
https://www.r-project.org/
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5 The Military Perspective on Causality 
Understanding the causal relationships between different events and phenomena is crucial 
in decision support systems for both civil and military applications. Stigler [19] states that 
understanding causality is a critical issue for military officers. Casually assuming causal 
relationships or simply ignoring them may lead to erroneous conclusions and inappropriate, 
possibly catastrophic, action. On the other hand, understanding causality in collected data 
provides an opportunity to understand the relationships between events and thus a deeper 
understanding and explanation of the current situation picture and in prediction of future 
events. If the data is available, causal discovery could assist officers to discover unknown 
or unexpected causal relations and refute previous causal relations held to be true. Methods 
of causal discovery and learning can be used in any system that seeks to understand the 
outside world when data comes either from time series or from different parts of 
hierarchically ordered structures such as military units. 

To allow using machine learning in military systems that normally only identify correlations 
between events and phenomena, one must know all causal relations in advance. This 
requires a very high prior understanding of all possible events and phenomena. If this 
knowledge is unavailable, methods for learning causality are necessary. 

Although we have not yet found examples in the research literature of learning causality in 
military applications and of its use in military decision support systems, there are examples 
of civilian use. We therefore anticipate that causality learning and discovery will be of 
importance in future military systems if they have components that use machine learning. 

  



FOI-R--4882--SE 

17 (18) 

6 References 
[1] Schubert, J. (2017). Artificiell intelligens för militärt beslutsstöd. FOI-R--4552--SE. 

Swedish Defence Research Agency, Stockholm. [Online]. Available: https://www.
foi.se/rapportsammanfattning?reportNo=FOI-R--4552--SE 

[2] Allen, G., Chan, T. (2017). Artificial intelligence and national security. Cambridge, 
MA: Harvard Kennedy School. [Online]. Available: https://www.belfercenter.
org/publication/artificial-intelligence-and-national-security 

[3] Pearl, J. (2009). Causality. New York: Cambridge University Press. [Online]. 
Available: https://www.cambridge.org/9781139632997 

[4] Zhang, K., Schlpkopf, B., Spirtes, P., Glymor, C. (2018). Learning causality and 
causality-related learning: some recent progress, National science review 5(1):26–29. 
doi:10.1093/nsr/nwx137 

[5] Harnett, K. (2018, 15 May). To build truly intelligent machines, teach them cause and 
effect, Quanta Mag. [Online] Available: https://www.quantamagazine.org/to-build-
truly-intelligent-machines-teach-them-cause-and-effect-20180515/ 

[6] Yin, J., Wang, J. (2014). A Dirichlet multinomial mixture model-based approach for 
short text clustering, in Proceedings of the 20th ACM SIGKDD International 
Conference on Knowledge discovery and data mining (KDD’14). New York: ACM, 
pp. 233–242. doi:10.1145/2623330.2623715 

[7] Karasalo, M., Schubert, J. (2019). HSTOOL for Horizon Scanning of Scientific 
Literature. FOI-R--4760--SE, Swedish Defence Research Agency. [Online]. 
Available: https://www.foi.se/rapportsammanfattning?reportNo=FOI-R--4760--SE 

[8] Karasalo, M., Schubert, J. (2019). Developing horizon scanning methods for the 
discovery of scientific trends, in Proceedings of the 15th International Conference on 
Document Analysis and Recognition (ICDAR 2019), Sydney, Australia, 20–25 
September 2019. Piscataway, NJ: IEEE, pp. 1055–1062. doi:10.1109/ICDAR.
2019.00172 

[9] Waldmann, M. R., Mayrhofer, R. (2016). Hybrid causal representations, in Psychology 
of Learning and Motivation. Amsterdam: Elsevier (Vol. 65, Ch. 3). doi:10.1016/
bs.plm.2016.04.001. 

[10] Guo, R., Cheng, L., Li, J., Hahn, P.R., Liu, H. (2019). A survey of learning causality 
with data: problems and methods, under review. 

[11] Pearl, J. (2009). Causal inference in statistics: An overview, Statistics Surveys 3:96–
146. doi:10.1214/09-SS057 

[12] Shimizu, S., Hoyer, P. O., Hyvarinen, A., Kerminen, A. (2006). A linear non-Gaussian 
acyclic model for causal discovery, Journal of Machine Learning Research 7:2003–
2030. [Online] Available:  http://www.jmlr.org/papers/v7/shimizu06a.html 

[13] Shimizu, S., Inazumi, T., Sogawa, Y., Hyvärinen, A., Kawahara, Y., Washio, T., 
Hoyer, P. O., Bollen, K. (2011). DirectLiNGAM: A direct method for learning a linear 
non-Gaussian structural equation model, Journal of Machine Learning Research 
12:1225–1248. [Online] Available: http://www.jmlr.org/papers/v12/shimizu11a.html 

[14] Peters, J., Mooij, J. M., Janzing, D., Schölkopf, B. (2014). Causal discovery with 
continuous additive noise models, Journal of Machine Learning Research 15:2009–
2053. [Online] Available: http://www.jmlr.org/papers/v15/peters14a.html 

[15] Heckerman, D. (1997). Bayesian networks for data mining. Data mining and 
knowledge discovery 1(1):79–119. doi:10.1023/A:1009730122752 

[16] Ellis, B., Wong, W. H. (2008). Learning causal Bayesian network structures from 
experimental data, Journal of the American Statistical Association 103(482):778–789. 
doi:10.1198/016214508000000193 

https://www.foi.se/rapportsammanfattning?reportNo=FOI-R--4552--SE
https://www.foi.se/rapportsammanfattning?reportNo=FOI-R--4552--SE
https://www.belfercenter.org/publication/artificial-intelligence-and-national-security
https://www.belfercenter.org/publication/artificial-intelligence-and-national-security
https://www.cambridge.org/9781139632997
https://doi.org/10.1093/nsr/nwx137
https://doi.org/10.1145/2623330.2623715
https://www.foi.se/rapportsammanfattning?reportNo=FOI-R--4760--SE
https://doi.org/10.1109/ICDAR.2019.00172
https://doi.org/10.1109/ICDAR.2019.00172
http://dx.doi.org/10.1016/bs.plm.2016.04.001
http://dx.doi.org/10.1016/bs.plm.2016.04.001
https://doi.org/10.1214/09-SS057
http://www.jmlr.org/papers/v7/shimizu06a.html
http://www.jmlr.org/papers/v12/shimizu11a.html
http://www.jmlr.org/papers/v15/peters14a.html
https://doi.org/10.1023/A:1009730122752
https://doi.org/10.1198/016214508000000193


FOI-R--4882--SE 

18 (18) 

[17] Colombo, D., Maathuis, M. H., Kalisch, M., Richardson, T. S. (2012). Learning high-
dimensional directed acyclic graphs with latent and selection variables, The Annals of 
Statistics 40(1):294–321. [Online] Available: https://www.jstor.org/stable/41713636 

[18] Kalisch, M., Mächler, M., Colombo, D., Maathuis, M. H., Bühlmann, P. (2012). 
Causal inference using graphical models with the R package pcalg, Journal of 
Statistical Software 47(11):1–26. doi:10.18637/jss.v047.i11 

[19] Isozaki, T. (2012). Learning causal Bayesian networks using minimum free energy 
principle, New Generation Computing 30(1):17–52. doi:10.1007/s00354-012-
0103-1 

[20] Yu, K., Liu, L., Li, J., Chen, H. (2018). Mining Markov blankets without causal 
sufficiency, IEEE Transactions on Neural Networks and Learning Systems 
29(12):6333–6347, doi:10.1109/TNNLS.2018.2828982 

[21] Stigler, A. L. (2015). Asessing causality in a complex security environment, Joint 
Force Quarterly 76(1):35–39. [Online] Available: https://ndupress.ndu.edu/JFQ/
Joint-Force-Quarterly-76/Article/577586/assessing-causality-in-a-complex-security-
environment/ 

https://www.jstor.org/stable/41713636
https://doi.org/10.18637/jss.v047.i11
https://doi.org/10.1007/s00354-012-0103-1
https://doi.org/10.1007/s00354-012-0103-1
https://doi.org/10.1109/TNNLS.2018.2828982
https://ndupress.ndu.edu/JFQ/Joint-Force-Quarterly-76/Article/577586/%E2%80%8Cassessing-causality-in-a-complex-security-environment/
https://ndupress.ndu.edu/JFQ/Joint-Force-Quarterly-76/Article/577586/%E2%80%8Cassessing-causality-in-a-complex-security-environment/
https://ndupress.ndu.edu/JFQ/Joint-Force-Quarterly-76/Article/577586/%E2%80%8Cassessing-causality-in-a-complex-security-environment/


FOI, Swedish Defence Research Agency, is a mainly assignment-funded agency under the Ministry of Defence. The core activities are research, method and technology 
development, as well as studies conducted in the interests of Swedish defence and the safety and security of society. The organisation employs approximately 1000 per-
sonnel of whom about 800 are scientists. This makes FOI Sweden’s largest research institute. FOI gives its customers access to leading-edge expertise in a large number 
of fields such as security policy studies, defence and security related analyses, the assessment of various types of threat, systems for control and management of crises, 
protection against and management of hazardous substances, IT security and the potential offered by new sensors.

FOI 
Defence Research Agency Phone: +46 8 555 030 00 www.foi.se 
SE-164 90 Stockholm Fax: +46 8 555 031 00


	1 Introduction
	2 Horizon Scanning of Causal Learning and Discovery
	3 The Field of Learning Causality
	3.1 The Concept of Causality
	3.2 Representation of causality
	3.3 Types of Learning

	4 Analysis of the Literature on Causality
	5 The Military Perspective on Causality
	6 References



