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Summary 
 

In the year 2019, a boom is seen for the Quantum Radar. Theoretical thoughts are taken 
into experimental results claiming a supremacy for the Quantum Radar compared to its 
classical counterpart.  

In 2020, a race between the classical radar and the Quantum Radar continues. The 
2019 experimental results are not explicitly doubted. However, it is questioned if the 
experiments are organised taking the classical radar technology potential fully into 
account. It is argued, the classical radar, within the technology level of today, should 
be able to reach the same detection performance as its quantum counterpart.       

Simultaneously, the gedanken experiments fully taking the classical radars potential 
into account, implicitly reveals potential advantages of the Quantum Radar; to work as 
low-probability-of-intercept (LPI) radar and to retain performance in a heavily 
contested electromagnetically environment. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



FOI-R--5014--SE 

4 (45) 

Sammanfattning 
 

År 2019 får kvantradarn ett uppsving. Teoretiska tankegångar blir till experimentella 
resultat visande på kvantradarns fördelar jämfört med dess klassiska motsvarighet.   

År 2020 kommer argument på bordet som talar för en klassisk radar. Experimenten 
som visar på kvantradarns fördelar ifrågasätts inte, men argument framförs att 
experimenten inte är så utförda att den klassiska radarns fulla potentiella möjligheter 
utnyttjas. Den klassiska radarn skulle, i alla fall med dagens teknologi, kunna nå 
samma måldetektionsförmåga som dess kvantmotsvarighet. 

Samtidigt och implicit, yppar dessa tankeexperiment kvantradarfördelar; Kvantradarn 
kan fungera som smygradar (LPI-radar) samt behålla operabilitet i en elektromagnetisk 
omstridd miljö.    
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1 Introduction 
 

In Sweden, the European Union and the rest of the world, substantial efforts are now done 
with the purpose of realising properties arising from the use of (the second generation) 
quantum physics. Technology has reached the readiness of going from basic science into 
actual prototypes.  

In 2019 the company Google presented a quantum computer [1] getting an enormous 
amount of press all around the world. Examples of efforts are, in Sweden the 12 year 
SEK 1 billion Wallenberg Centre for Quantum Technology (WACT) [2] and in the EU, 
the 10 year EUR 1 billion Quantum Technologies Flagship program [3]. 

The largest efforts are put into areas like quantum computing and quantum simulation, but 
also quantum communication (quantum cryptography, quantum internet) and quantum 
sensing.  

A quantum radar is an example of a quantum sensor with the potential of improving sensor 
system performances. Its applications is initially assumed mostly military and scientific, 
potentially there is also medical applications.  

The main applications being suggested for a quantum radar as seen of today includes, 

 To intercept previously undetected targets 
 To gain further knowledge of the targets 
 To operate with less risk of being detected 
 To operate with less risk of interference 
 Improved ability to operate in a heavily electronically contested environment  

The first point suggest that objects not intercepted by a classical radar can be intercepted 
by a quantum radar. A PhD thesis [4] and a book [5] showing the very interesting results 
of a different radar cross section pattern in the quantum case has been questioned. In 2020 
the doubts were further augmented as the authors of [4] and [5] themselves put doubts on 
their results [6]. The radar cross section is still possibly different in the quantum case due 
to the material properties of the target being sensed differently in the quantum case, and 
the second point may be achievable. 

The third and fourth point make it possible to operate closer to the target without being 
intercepted or interfering with others. Consequently, the detection probability of the target 
is increased.    

The last point makes it possible for a quantum radar to act further into an 
electromagnetically contested environment still being operational. 

The scientific interest has been substantially more focused on the field of quantum 
information processing than the field of detection (e.g. radar), probably due to the larger 
and more non-military impact of quantum computing, quantum simulation and quantum 
communication. Similarities between the fields make it possible to harvest from the 
science developed in the field of quantum information processing, and some thereof 
presented in this report. Conversely, by studying and potentially unfolding the Quantum 
Radar, we are simultaneously given insight into the global race of developing and 
harvesting quantum technology. 

Our 2019 report [7], focused on understanding, evaluation and to some degree 
implications of using quantum physics in radar systems. The intended readership of the 
report was external and internal. This year’s report is written with an intended internal 
readership, and focusing on understanding and on key technologies.  

In chapter 2, we cover the major developments in the field since last year. In chapter 3, we 
describe and compare major methods to quantify the advantage of one radar system to 
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another. In chapter 4, we enlighten the difference between discrete and continuous 
variables in the quantum case, which was a shortcoming in the 2019 report. In chapter 5, 
we examine possible amplifiers. The possibility to generate sufficiently strong signals to 
get a practical radar system seems to be a challenge of today. In chapter 6 we review a few 
experimental realisations of a quantum radar. Our major conclusions are given in the last 
chapter. In the appendix, we explain the concept of coherent states and some common 
detection methods. 
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2 The quantum illumination story 
revisited  

 

One of the pioneers of quantum radar, Jeffrey Shapiro, has lately presented his view on 
Quantum Illumination (QI) in a series of paper [8-10]. Shapiro’s three papers have the 
same structure but become more and more detailed for each new version. The latest paper 
[10] includes more physics and equations to motivate his viewpoints. Most of the history 
and conclusions in his papers were presented in our previous report [7]. However, some of 
the findings in his paper can be stressed once more and he gives some comments on the 
latest all-microwave quantum radar systems [11, 12] that have not been published before.  

The general message from Shapiro is that it is difficult to gain an advantage with quantum 
illumination in realistic radar or lidar applications. It is difficult to achieve quantum 
receivers that outmatch the results from optimal and existing classical detections schemes. 
He see more possibilities of using quantum illumination in quantum communication and 
quantum key distribution [13-18].  

In our review of Shapiro’s papers, we start with some important points on the receiver 
difficulties of utilizing quantum illumination. Right after the original proposal by Lloyd 
using entangled single-photon states [19], Shapiro co-authored two papers. One of the 
papers showed that the original scheme will not be better than a classical coherent-state1 
radar [20]. The second paper by Tan et al. showed that it is possible to gain better 
performance than any classical system when starting with squeezed states from e.g. 
spontaneous parametric down-conversion [21]. It is possible to improve the error-
probability exponent2 by a factor of 4 (6 dB) with quantum illumination compared to a 
classical coherent state, but only in a lossy, noisy and low-brightness signal scenario. 
These first papers did not give any receiver realization that could use this advantage. None 
of the standard receivers, based on direct, homodyne or heterodyne detection3, could 
provide any advantage because the signature of the state proposed by Tan et al. [21] has a 
phase-sensitive cross correlation, as showed by Shapiro [10]. 

Guha and Erkmen proposed two receiver realizations that could partly utilize the quantum 
illumination advantage based on the optical parametric amplifier (OPA) or the phase-
conjugated (PC) receiver [22], but at best they could achieve a factor of 2 (3dB) 
improvement compare to classical schemes, i.e. half of what is theoretical possible. The 
receivers are possible to realize with today’s technology, but they are quite complex and 
susceptible to experimental nonidealities. For example, the experimental realization of 
quantum illumination that used the OPA receiver [23] only achieved a 20% (0.8 dB) error 
probability exponent advantage over a coherent state system although the set-up was 
idealized and simplified compared to a real lidar system.  

There are receiver schemes that in theory could exploit the full advantage. One requires a 
Schur transform on a quantum computer [24] and the other requires single-photon 
sensitive sum-frequency generation [25]. Since both of them still are beyond the reach of 
available technology these methods are mainly theoretical tools for the time being. 

                                                        

 

 
1 Coherent state is explained in the Appendix. 

2 The meaning of error-probability exponent measure can be found in Sec. 3.2. 

3 The different standard detection methods are described in the Appendix. 
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All of the above receivers require that the reflected signal interfere with the stored idler in 
the receiver. Shapiro formulates the concept as: “QI can only interrogate a single 
polarization-azimuth-elevation-range-Doppler resolution bin at a time if it derive its full 
performance advantage over a conventional radar” [10]. This is quite different to a 
conventional radar were all ranges can in principle be tested at once. Therefore, it is 
difficult to take advantage of the full quantum illumination gain when the position of the 
target is unknown. All ranges must be individually tested and furthermore, the target’s 
effects on polarization and frequency must be taken into account. An additional 
complication is that the best current idler storage technique, an optical-fibre delay line, has 
losses that only allow the quantum advantage to survive for ranges below 11 km [10, 26].  

During 2020, other approaches were published where they measured the signal and idler 
individually and performed the correlation digitally afterwards [11, 12]. This would allow 
for measuring multiple ranges simultaneously. These schemes should be compared to 
noise radars rather than a standard radar. The quantum noise radars show a detection 
improvement compared to their classical noise versions. Since the publications are quite 
new, preprints of these work occurred in 20194, the evaluation of them have just begun. 
Shapiro is one of the few that has critically analysed the systems [10]. He calls them 
quantum-correlated noise (QCN) respectively classically correlated-noise (CCN) radar. 
Shapiro states that the authors have not compared their quantum systems with the optimal 
classical version. In the classical case, it is possible to use a high-brightness classical noise 
source and using an asymmetric splitting ratio so that the signal is as weak as the quantum 
signal while keeping a high-brightness idler. In the quantum source the signal and the idler 
brightness is always equal. Therefore, the heterodyne detection of the quantum system 
introduce relative more noise in the receiver than the classical system with a high 
brightness idler. As a result, the gain from the quantum correlations is cancelled by the 
higher relative receiver noise. This matter is further discussed in Chapter 6. 

As seen from the above summary, Shapiro does not see much use of quantum illumination 
for practical lidar or radar systems. However, in his exposition he is only comparing the 
quantum radar with the optimal classical radar in terms of detection capability. This is not 
relevant in all cases. Other considerations may preclude the use of the optimal classical 
radar. It is however, safe to say that quantum illumination will not outcompete classical 
radar generally. 

Besides the discussion on detection capability, Shapiro treats the choice of wavelength for 
quantum illumination. Firstly, the technology for quantum system is more mature in the 
optical region compared to the microwave region. To achieve quantum illumination, the 
time-bandwidth product should be as large possible. The advantage of quantum 
illumination, compared to conventional lidar or radar degrades, at constant pulse duration 
and bandwidth, with increasing signal energy. To maintain the advantage, the time-
bandwidth product must increase with the increasing signal energy. The potential 
maximum time-bandwidth product is higher in the optical regime than in the microwave 
regime due to the four to five orders higher carrier frequency. On the other hand, quantum 
illumination only has an advantage over classical counterpart in the region of high loss, 
low signal brightness and high background. The high background is not normally the case 
in the optical regime but always the case for microwaves. Barzanjeh et al. presented an 
electro-opto-mechanical (EOM) converter to reach the microwave regime from a source in 
the optical regime [26], which arouse a large interest. This converter is however 
intrinsically narrow band so it will be difficult to reach the necessary time-bandwidth 
product. The Josephson parametric amplifiers (JPA) used in the all microwave 

                                                        

 

 
4 See https://arxiv.org/abs/1903.00101 and https://arxiv.org/abs/1908.03058. 
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experiments [11, 12] have a higher time-bandwidth product. The maximum dynamical 
bandwidth of the JPA today, is a few MHz. 

A final remark of Shapiro’s papers is that he points out that the receiver operating 
characteristics (ROC) is a far better measure than the normally used error probability, 
which is further discussed in Chapter 3. 

2.1 Microwave Quantum Radar Cross Section 
 

According to several authors [4, 27-29], there were a quantum gain obtained in the targets 
radar cross section when using a single or a few photons as a radar signal. Through 
simulations of various geometries it has been surmised that there probably do not exist an 
extra gain in the sidelobes of the QRCS [30]. This discrepancy is thought being caused by 
the assumption that the number of incident photon modes on the target has been 
diminished to one mode only. This would then give the wrong answer since the incident 
photon should be modelled as a continuous probability function. But in doing so the 
authors [30] make a new assumption that the probability wave function ψ of the photon 
behaves as if it is an electric field. 

This assumption may or may not be correct, which leads to the conclusion that more 
research is needed before it is possible to state if there is a gain in RCS or not when using 
a single or a few photons.  
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3 Quantification of Quantum Radar 
Supremacy 

 

3.1 Quantum Supremacy Number  
 

In the literature, there are efforts performed with the purpose of comparing the quantum 
illumination radar to classical radars. There is, not too uncommon, a will to condense the 
difference into one number. In the literature, the number 4, or equivalently 6 dB, is 
mentioned as a possible quantum radar supremacy over a classical radar. The origin of the 
number 6 dB is an article in Physical Review Letters by Tan et al. [21]5. The number also 
forms the basis in an attempt to give a system perspective of a quantum radar [31]. 

The relevant question is what does a number of quantum supremacy mean. In [21], it is 
described as, “… the quantum-illumination system realizes a 6 dB advantage in the error-
probability exponent over the optimum reception coherent-state system.” That give us at 
least three new questions.  

1. What is the “error-probability exponent”?  
2. Is the “error-probability exponent” the most relevant metric? 
3. Why is the comparison done relative to “the optimum reception coherent-state 

system”? 

To address these questions, we need to understand a bit of communication and detection 
theory. Knowledge thereof also give us abilities to understand the different supremacies 
claimed in the literature. Our understanding thereof is given in this chapter. 

 

3.2 Error probability bounds 
 

A radar typically has to make a decision whether a target is present or absent. One 
measure6 of a radars performance, is to calculate its probability to make a false 
judgement7,  

 

    1 0 1 1( ) ( ) ( ) 1 ( )ND FA ND FAe P H P H P H P H    P P P P P ,  (1) 

 

where (𝐻௫) denotes the probability of hypothesis 𝐻௫ being true. The hypothesis are, 

 

                                                        

 

 
5 It is a good article giving some of the limits of the quantum radar possibilities.   

6 The measure presented in this section, is common in the literature and relatively easy to use, though it is more 
designated to be used by the communication community and not so often used by the radar community. This topic is 
further discussed in section 3.3.  

7 The bold  denotes probability, and (𝑒) denotes the probability of making an error e.   
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0 : Target absentH , (2) 

 
1 : Target presentH , (3) 

 

The two remaining quantities in (1) are, 

 

 : Probability of not detecting a present target                 NDP ,      (4) 

 : Probability of detecting an absent target (False alarm)FAP  . (5) 

 

To find analytic expressions for 𝑃ே஽ and 𝑃ி஺ are in the classical [32], as well as in the 
quantum case [21], often daunting tasks. Fortunately, there are expressions giving bounds 
of the error probabilities. Below we shortly describe two of them, Chernov and 
Bhattacharyya bounds. 

3.2.1 Chernov bound 
 

The Chernov bounds give an upper limit of the probability of a random variable being 
outside a specific interval around the expectation value of the same random variable. 
Specific limits are given for both sides of the interval. Chernov bounds can be calculated 
both in the classical case [32] and in the quantum case [33]. Hence, upper limits can be 
calculated for both 𝑃ே஽ and 𝑃ி஺ in (1). 

If, 

 

 1 0

1
( ) ( )

2
H H P P ,  (6) 

 

is assumed, and the discrimination level between the hypothesis 𝐻଴ and 𝐻ଵ in (1) is chosen 
to minimize the total error probability ((𝑒)), an upper limit for the total error probability 
can be calculated as well. 

Due to the inherent construction of the Chernov bounds [32, 33], the upper limit of the 
total error probabilities will (when also the above assumptions are included) be of an 
exponential form, 

 

 ( ) ee P ,  (7) 

 

where γ is the signal to noise ratio, and α is factor dependent on the technology at use. The 
question at point 1 in section 3.1 can now be answered; the “error-probability exponent” is 
the product αγ.  

The in section 3.1 also mentioned, “6 dB advantage in the error-probability exponent” 
implies an increase of α by 6 dB, corresponding to a decrease in total error probability by 
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17 dB8. Equally, it could be described as a processing gain of 6 dB making it possible to 
detect 6 dB weaker signals. 

3.2.2 Bhattacharyya bound 
 

Bhattacharyya bounds are weaker than Chernov bounds. The advantage of Bhattacharyya 
bounds is that not only upper bounds for the error probability is provided but also lower 
bounds. The upper Bhattacharyya bound is looser than the upper Chernov bound but may 
coincide [21]. The lower Bhattacharyya bound is always loose [10]. Examples on 
Bhattacharyya bounds is given in [21], where the upper bound on error probability for a 
quantum illumination radar is shown to be below the lower Bhattacharyya bound for a 
coherent state radar9.          

 

3.3 Measure of performance 
 

3.3.1 Receiver Operating Characteristics 
 

The second question in section 3.1: is the “error-probability exponent” the most relevant 
metric? From a radar community perspective, the short answer is a clear no. Firstly, the 
assumption in (6) of the two hypothesis being equally probable is good in a 
communication scenario. In a radar scenario, it is not reasonably good; there are often not 
even good estimates of the probabilities of the two outcomes at hand.  

Secondly, a radar engineer does also typically not find the threshold level between the two 
hypothesis in (2) and (3) by minimising the error probability according to (1). Instead, the 
trade-off between a low probability of false alarm (𝑃ி஺) and high probability of detection 
(𝑃஽),  

 

 1D NDP P  ,  (8) 

 

is recognized, and described by a Receiver Operating Characteristic (ROC) curve, see 
Figure 1. The false alarm probability is most often prescribed to be low. A typical 
prescribed value may be as low as 10ିଽ (false alarm rate of one in a billion), or sometimes 
ever lower.  

 

                                                        

 

 
8 10*log10(exp(10^(-6/10))) = -17.3 dB 

9 The coherent state radar is according to the authors, the toughest benchmark. 
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Figure 1: A Receiver Operating Characteristic (ROC) curve shows the trade-off in a detector 
between the acceptance level of false alarm (𝑃ி஺) and the probability of detection of a present 
target (𝑃஽). The blue ROC-curve can be pushed toward the red ROC-curve, by accepting decreases 
in radar performances like shorter range and longer reaction time. Alternatively, the improvement 
can be reached by new detection algorithms and technologies, whereof the quantum radar is one 
opportunity.       

 

With a prescribed false alarm probability, the detection probability is in principal given by 
the ROC. However, there are techniques to push the ROC curve toward the upper left 
corner. One is to get a higher signal to noise ratio, typically corresponding to a shorter 
range of the radar. Another to increase the bandwidth10 and/or increase the (coherent) 
integration time, corresponding to a longer reaction time of the radar. Still another 
possibility is to introduce new methods and technologies, whereof the quantum radar is 
one opportunity. 

 

3.3.2 Performance metric in use 
 

The supremacy of using ROC as a performance metric is fully recognized by Shapiro, “… 
ROC is crucial because it is a far better target-detection performance metric than error 
probability, as radar targets should not be presumed equally likely to be absent or present.” 
[9, 10]. It is somewhat surprising that a substantial part of Shapiro’s article [10] focus on 
error probability and the error-probability exponent. Two reasons therefore, Shapiro in 
[10] reviews important work by other authors11. Secondly, the ROC curve describe the 
detection performance exhaustively, but it may be hard to quantify the advantage of one 
ROC curve to another.  

An attempt to quantify the difference of two experimental ROC curves is done by Luong 
et al. [11, 34]. They compare their quantum radar with a classical radar having as similar 
properties (including integration time) as possible. The quantum ROC curve shows 
substantially better properties than the classical one, see Fig. 10 and 12 in [11]. By 

                                                        

 

 
10 Practical limitations may limit the use of a larger bandwidth. 

11 A closer look upon the articles quoted by Shapiro will however in many cases reveals Jeffrey Shapiro as a co-author.  
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reducing the integration time of the quantum radar by a factor of eight, while keeping the 
integration time of the classical radar constant, the ROC curves of the quantum radar and 
the classical radar show similar performances, see Fig. 12 in [11]. Hence, one could say 
that in the specific experiment in [11], the quantum radar shows an experimental factor of 
8 or 9 dB supremacy over the correspondent classical radar. 

However, the comparison method applied by Luong et al. assumes the form of the ROC 
curve being the same in the two cases. The ROC curve data in [11] is somewhat limited12 
and it is not completely clear the assumption being fulfilled.  

Finally, even it is not possible to condense the comparison between different technologies 
into one number; the comparison of ROC curves will provide the radar engineer with a 
tool to evaluate different radar technologies. 

  

                                                        

 

 
12 The limited amount of data is not surprising. To perform measurements of small probabilities are time consuming.  
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4 Discrete and Continuous Variables 
 

In our 2019 report [7], we describe the key physical concepts, Quantum Superposition and 
Entanglement. These concepts are fundamental physical properties and essential for 
understanding the Quantum Radar experiments described in the latter part of the 2019 
report. 

However, there is a missing point not addressed. Quantum superposition is presented using 
polarization as an example. Polarization has two degrees of freedom, exemplified by 
vertical  (|𝑉⟩) and horizontal polarization (|𝐻⟩). In contrast, in the described experiments, 
the in-phase and quadrature components of the field are used. They may take any value 
and span an infinite dimensional space.    

In this chapter, we put light onto this discrepancy, and address why the continuous field 
components rather than the discrete polarization have been used in the articles described 
in [7]. Essential references to this presentation are [35-39]. Substantial lists of further 
references are given in [35-37]. The focus of [35-39] is Quantum Information Processing 
(QIP) reflecting its general larger technological impact relative to Quantum Radar. 
However, much of the physics is the same, and the description can be reused. 

4.1 Introduction to Discrete and Continuous 
Variables   

 

Field values, like the electric and magnetic field, have a continuous degree of freedom. At 
the same time, the electromagnetic interaction may be described by photons, who have a 
discrete degree of freedom (1, 2, 3 …). It is somewhat similar to the classical difference 
between an analog and digital description (technology).  

Quantum mechanics is assumed giving a complete description of physics13. Most quantum 
systems have both discrete and continuous degrees of freedom. A complete description of 
the electromagnetic field are to take into account all degrees of freedom, i.e. photon 
number, wavelength, polarization and wave vector [38].  

If the variable we choose to encode and observe is discrete (having discretized 
eigenvalues), we have a discrete variable (DV) technology. Similarly, if the variable we 
choose to encode and observe have a continuum of eigenvalues, we have a continuous 
variable (CV) technology.  

Ultimately, the choice of measurement decides if we have a discrete variable or continuous 
variable. As an example [38], take a single-photon state, it is obviously discrete, but we 
may choose to measure quadrature components of the electromagnetic field which are 
continuous variables. However, in most, not to say all, practical technologies it is 
preferable to generate and measure the same kind of variable (CV or DV). The 
polarization has always a binary degree of freedom14. 

Simultaneous use of discrete and continuous variables is at the focus of both theoretical 
and experimental research [39], but outside the scope of this report.  

                                                        

 

 
13 Gravity is an exception, where a good quantum physics model is missing. 

14 The polarization binary degree of freedom is probably a reason why it is often used both as a standard example in 
textbooks as well as in practical applications.  
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4.2 Measurement of discrete and continuous 
variables 

 

In section 4.1, we saw that a single photon could be information carrier of both discrete 
and continuous variables. Detection of discrete variables (DV) are inherently connected to 
the use of photon counting detectors. Continuous variables (CV) may be detected using 
homodyne detection, where the signal is multiplied with a (strong) local oscillator. 

In principal, there is no correlation between the choice of CV or DV and the choice of 
numbers of photons (signal strength) in the set-up. From a measurement perspective, the 
opposite is true; at least today. Photon detectors works well for a small number of photons 
but for large photon number states, they fail to measure the photon state [38]. On the other 
hand, measuring quadrature components of the field, can preferably be done with strong 
signals and standard measurement equipment may be used [11]. The challenge is to 
generate strong signals being entangled [7], or signals at least possessing a remaining 
correlation at the detector larger than what is classically achievable [21]. 

 

4.3 Conditionalness and uncertainty 
 

We now look upon pros and cons of continuous and discrete variables from a more 
theoretical viewpoint [35]. A typical discrete variable case is a single photon carrying 
information in its polarization. The polarization information can be reliably received in the 
detector. However, the detection is conditional. The generation of single photons is 
random in time. The same goes for lost photons in the transmission from generator to 
detector. Detection can be performed “once in a while” [19].  

Contrary, continuous variables can be unconditional. E.g. entangled states of field 
quadrature components can be generated every inverse bandwidth time [35]. However, the 
unconditionalness comes with a price, uncertainty, prescribed by the Heisenberg 
uncertainty relation. There is always a quantum uncertainty associated with e.g. the 
quadrature components of the electromagnetic field.  

The uncertainty in one of the quadrature components can however be decreased at the 
expense of a higher uncertainty in the orthogonal quadrature component. The phenomenon 
is called squeezing and we will look into it in the section 4.4.   

In Table 1, we have summarized pros and cons of discrete variables (DV) and continuous 
variables (CV). In addition, discrete variables in practice imply low signal levels but 
continuous variables imply higher signal levels. As of today, continuous variables seem to 
be the most promising technology, and it has been used in reported experiments [11, 12].  

 

Table 1: Pros and cons of using discrete variables (DV) and continuous variables (CV). 

 DV CV 
Pros No uncertainty Unconditional 
Cons Conditional on rare events  Heisenberg uncertainty 
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4.4 Squeezing 

4.4.1 Squeezed vacuum state 
 

As described in section 4.3, continuous variables come with an inherent uncertainty. Even 
the vacuum state (|0⟩), having zero photons, has an uncertainty. The left part of Figure 2 
shows samples of the quadrature components (i and q) of the vacuum state field. Every 
little blue dot corresponds to one sample of a field measurement. In total, there are 4000 
samples in the figure. The quadrature components are Heisenberg minimum uncertainty 
states fulfilling15, 

 

 
0 0 1i q   ,  (9) 

 

where ∆𝑖଴ and ∆𝑞଴ are the vacuum state standard deviations of 𝑖 and 𝑞, respectively.  

 

Figure 2: The left figure show 4000 samples from a Heisenberg minimum uncertainty vacuum state. 
In the right figure, 4000 samples (in red) of a squeezed Heisenberg minimum uncertainty vacuum 
state has been added.     

 

The left part of Figure 2 shows the uncertainty being equally distributed on both 
quadrature components. 

 

 
0 0 1i q    .  (10) 

 

However, the uncertainty does not need to be equally distributed on the two quadrature 
components. In squeezing, the uncertainty is increased in one quadrature component and 
decreased in the other. In the right part of Figure 2, the red dots are samples from a 

                                                        

 

 
15 The quadrature components have been normalized making the minimum uncertainty product equal to 1. 
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squeezed vacuum state (|𝑠⟩). The blue dots is the original vacuum state of the left figure. 
The squeezed vacuum state is still a minimum uncertainty state fulfilling,  

 

 1s si q   .  (11) 

 

However, the standard deviations of the two quadrature components are now different,  

 

 0er
si i   ,  (12) 

 0e r
sq i   ,  (13) 

 

where 𝑟 is called the squeezing parameter [35]. The squeezed vacuum state, in contrast to 
the vacuum state, does not have zero photons, but instead the expectation value is sinhଶ 𝑟. 

 

4.4.2 Two mode squeezed vacuum (TMSV) state 
 

In the reported experiments by Luong et al [11] and Barzanjeh et al [12], the two mode 
squeezed state generated by the Josephson Parametric Amplifier (JPA) is the epicentre of 
the technology. In the JPA the two signals, called signal and idler, are generated. In 
similarity to Figure 2, we have in Figure 3 plotted quadrature values of 4000 samples of 
both the signal (left) and idler (right). They both look very similar to the vacuum state in 
Figure 2, both with a Gaussian distribution of both quadrature components. However, they 
are thermal states, with a larger standard deviation, which can be noticed in Figure 3 by 
the larger spread of the samples from the origin, compared to Figure 2. The expected 
number of signal photons (𝑛௦) and idler photons (𝑛௜) is [35],  

 

      2sinhs in n r E E .  (14) 

 

Again, the squeezing parameter (𝑟) has been introduced indicating that squeezing and 
entanglement is in some way involved in the generation of the signal and idler in the JPA.  

Separately, the signal and idler are in thermal states, but any linear combination of them 
will reveal they being entangled, and the linear combination being in a squeezed state. In 
Figure 4, the sum of the signal and idler in Figure 3 is shown in the left part, the difference 
in the right part. These are squeezed states with standard deviations [35],  

 

   2er
s ii i   ,  (15) 

   2e r
s iq q    ,  (16) 

   2e r
s ii i    ,  (17) 

   2er
s iq q   .  (18) 
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Figure 3: The left (right) figure shows the quadrature components of the signal (idler) generated by 
the Josephson Parametric Amplifier. They are both in a thermal state.  

    

 
 

Figure 4: The left (right) figure shows the sum (difference) of the signal and idler in Figure 3. These 
are squeezed states. The signal and idler are entangled. These states can only be generated by 
access to both signal and idler.     

 

Anyone having access to only the signal or idler can only measure nothing but the thermal 
noise in Figure 3, but having access to both the signal and idler makes it possible to 
measure a much smaller uncertainty according to (16) and (17). Differently stated, a strong 
correlation can be found between the signal and idler, stronger than any possible classical 
correlation. 

 

4.4.3 Entanglement for continuous variables and beyond 
 

In section 4.4.2, it was stated that the outcome of a JPA is a signal and idler whose pairs of 
quadrature components can be strongly correlated. The definition of entanglement for 
continuous variables is a correlation stronger than what is possible to achieve by any 
classical state. 
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However, in practical set-ups in the microwave regime [11, 12], there is a need for noise-
adding amplifiers and the environment will add further noise. With the technology of 
today, the entanglement criterion is broken before reaching the detector [11, 12]. How can 
a quantum gain compared to the classical benchmark still be reported [11, 12]? 

Tan [21] gives one answer. To the classical signal, the same noise will be added as to 
quantum signal. The entanglement criterion might be broken, but there is still a remaining 
correlation in the quantum case, stronger than achievable in the classical case. 
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5 Amplification of entangled states 
 

5.1 Background 
 

With the invention of masers in the 1950’s it was possible to amplify signals with much 
less added noise. This triggered the race to find a lower limit of the added noise in an 
amplifier, and a lot of interest in the quantum limit, since it now seemed possible to reach.  

5.1.1 Noise 
 

For classical electronics, the thermal Johnson noise generated by thermal agitation of 
charged carriers inside a conducting material is normally modelled as additive white 
Gaussian noise (AWGN) and its power spectral density as 𝑃ேబ

= 𝑘஻𝑇 [W/Hz], where 𝑘஻ 
is Boltzmann’s constant and T is the temperature in Kelvin.  

A more general model [40, 41], which include quantum systems can be modelled as the 
probability that a system (e.g., an amplifier) spontaneously will go from one energy state 
to another. This is given by the probability density function ൫𝑒௛௙ ௞ಳ்⁄ − 1൯

ିଵ
  (“shot noise”) 

and will then result in the power spectral density of the noise [42, 43], 

 

  
0 0

11
,

1
B

B

hf k T
N N Bhf k T

P f T hf P k T
e

   


.  (19) 

 

In the limit of high temperature and low frequency (𝑘஻𝑇 ≫ ℎ𝑓), see Figure 5, 𝑃ேబ
is 

reduced to Johnson thermal noise which is the optimal classical noise. In the opposite 
limit, low temperature and high frequency (𝑘஻𝑇 ≪ ℎ𝑓), 𝑃ேబ

is reduced to quantum noise 
which is the optimal case in quantum systems.  

 
Figure 5. Showing the power distribution and the boundary between Johnson Thermal Noise and 
Quantum Noise. This boundary is where kbT is not sufficient to describe the distribution. In this 
example frequency is fixed at 10 GHz and the temperature is varied between 4.8 mK and 48 K. The 
boundary is in this example at 0.48 K. 
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From this follows that if, e.g., we want a quantum amplifier for 1-10 GHz with optimal 
noise performance the noise-temperature of the amplifier must not be higher than 48 mK.  

Further, the bandwidth B of the noise must be much smaller than the carrier-frequency, 
(𝐵 ≪ 𝑓, the narrow band approximation), so that each frequency can be treated as a single 
complex-valued number.  

 

5.2 Amplifiers 

5.2.1 MASER 
 

The Microwave Amplification by Stimulated Emission of Radiation is a type of low-
temperature (low-noise) amplifier that was invented in the 1950s and is the same principle 
as a LASER but for microwave frequencies instead of light. Pros: This is a high gain ultra 
low-noise amplifier with a lower noise level limit of ~1-2 photons per mode at milliKelvin 
temperatures. Recently [44], a solid state continuous wave maser has been developed that 
can operate at room-temperature and could potentially give a high gain at ultra low-noise 
levels of about 4-5 photons per mode. Cons: Very narrow bandwidth, a complex device 
and needs cooling because of the high-powered supply providing the power of the 
amplifier. 

5.2.2 HEMT 
 

High-Electron-Mobility-Transistor amplifiers is a solid-state transistor that has a 
possibility of wide-band power amplification. Pros: can amplify up to several 10’s of 
Watts and have extremely high bandwidth. Cons: The lower noise level limit for this type 
of amplifiers is about 20 photons per mode at milliKelvin temperatures.  

 

5.2.3 Parametric amplifiers 
 

The parametric process works by modulating an energy-storing component like a 
capacitance or inductance with a harmonic signal. This will result in a mixing process that 
will transfer energy between the resonant modes of the system. This can be used for 
amplification of a signal or the creation of entanglement. The device often used for this in 
quantum technology is the Josephson Parametric Amplifier. See [7] for an introduction to 
the JPA. 

There are two types of parametric amplifiers:  

 Phase-preserving amplifiers, which amplifies with the same gain G no matter 
what the phase value is.   

 Phase-sensitive amplifiers, which amplifies with different gain I QG G G  

depending on the phase value, where GI and GQ are the quadrature gains.  
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These amplifiers can operate in either degenerate or non-degenerate mode of operation:  

 Non-degenerate parametric amplifiers use different frequencies for the input- and 
idler-signals, and its operation was described in [7]. Consequently, the output 
from the amplifier separates into signal- and idler-frequencies. 

 Degenerate parametric amplifiers use the same frequency for signal and idler, so 
there is only one signal in to the amplifier and one amplified output signal. 

Both these modes of operation have a pump-signal on twice the frequency of the mean 
frequency between signal and idler, to supply the energy for the amplification. 

5.2.3.1 Low-Noise amplification of weak signals using JPA    
Assuming the narrowband approximation applies, the input signal is modelled as a 
narrowband signal and therefore allows us to model it as an analytical signal, 

 

 
       

    
( cos cos ) ( sin sin )

Re

in in in in in
I I Q Q

in in j t in in j t
I Q I Q

S X t N t X t N t

X jX e N jN e 

   
 

    

   
,  (20) 

 

where  in in
I QX jX  is the baseband signal that modulate the carrier signal j te  . The 

quantities in
IX  and in

QX  are the amplitudes of the two quadratures of the signal and 

 in in
I QN jN  is a complex-valued noise. The statistical properties of the noise process 

does not change when multiplied with a complex exponential.  

The most common amplifier type is a degenerate phase-preserving parametric amplifier, 
which means that it will amplify both quadratures by the same gain G and the output 
signal is on the same frequency f as the input signal (no idler signal), 

 

 
     Re

,

out in in in in j t
I Q I Q

out in out out in out
I I I Q Q Q

S G X jX N jN e

X G X N X G X N

     

      
.  (21) 

 

Assuming that we have a narrowband signal the quantum-limit for a phase-preserving 
amplifier can be described by a single number of added noise photons N per mode [40], 
see also (24). 

The minimum noise power at the amplifier output can be defined as [45],  

 

    min 1out
NP G hfB  ,  (22) 

 

and the minimum noise added by the amplifier can then be written as the minimum noise 
at the output of the amplifier divided by the amplifier gain, 

 

    1
min 1in

NP G hfB
G

  .  (23) 
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Dividing both sides with hfB will give the added minimum number of noise photons per 
mode in the amplifier,  

 

 
1

1inN
G

   
 

.  (24) 

 

The temperature that must be attained to reach this limit can be calculated from,  

 

 

1

1

1
21 1

1 ln
11 1

B

G

hf k T
B

hf GT
G ke

G




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,  (25) 

 

and, e.g. with f =10 GHz and an amplification of G = 3 we need an amplifier temperature 

of ~0.52 K to get minimum noise. The term ൫𝑒௛௙ ௞ಳ்⁄ − 1൯
ିଵ

is the radiation density of 
thermal noise at the temperature T, see section 5.1.1 and [46]. 

Since the input signal quantum limit is ½ photon (i.e. the Heisenberg limit) then for the 
case of G = 1, the amplifier adds no extra noise photons to the signal and the output 
quantum limit will be ½ photon (but to reach this limit it is necessary to cool the amplifier 
to absolute zero). For gains higher than unity, the added noise is about one photon. 

The corresponding quantum limit for a phase-sensitive parametric amplifier is when we 
replace the single gain G with the geometric mean of the quadrature gains GI  and GQ and 
get [46],  

 

   21 21
1

4I Q I QN N G G


  .  (26) 

 

Substituting NI and NQ by N/2, and 𝐺ூ and 𝐺ொ by 𝐺, gives (24). The expression in (26) can 
be seen as the phase-sensitive parametric amplifier uncertainty principle. In this operating 
mode, it is possible for one of the noise numbers (NI  or NQ) to be lower than the quantum 
limit (but it also means that the other noise number must increase with a corresponding 
amount). This represents a squeezing of the total noise. 

5.2.3.2 Generation of Entanglement 
As was shown in [7], to generate entangled photons, the JPA is set to work as a non-
degenerate phase-sensitive parametric amplifier. In a non-degenerate amplifier, the 
amplified signal is split into two signals on different frequencies. Therefore, the mixing 
process results in squeezing of the noise difference instead of squeezing the noise itself, as 
is done in a degenerate amplifier with only one output signal and one output frequency.  

The input signal to the amplifier is connected to a cavity that generates a vacuum noise 
signal, which is amplified by the energy of the pump-signal and split into the two different 
frequencies. This is then called two-mode squeezing. If the squeezing result in a noise 
quadrature-difference that is below the quantum limit, then there is entanglement between 
the signal and idler output. 
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5.2.3.3 Cooling of quantum devices 
To achieve the low-noise operations necessary in sections 5.2.3.1 and 5.2.3.2 it is required 
to reach at least below 50 mK in operating temperature of the amplifier. This is done by 
cooling the device in several steps, for example, 

step 1. cool down to 77K using liquid Nitrogen 
step 2. using a liquid Helium (4He) bath to get to 4.2K 
step 3. A vacuum pumped (4He) bath to get ~1K 
step 4. A (3He) refrigerator to get ~600 mK 
step 5. A (3He+4He) mixing bath to reach ~20 mK    

This cryogenic dilution freezer is a complicated device that is both expensive and bulky to 
build, but is commercially available from a few companies.    

 

5.3 Transmitter power of a Quantum radar 
 

Photons have an intrinsic energy of E=hf , where h is Planck’s constant and f is the 
frequency. In the radar application there is a compromise concerning frequency that it is 
necessary to optimize if the radar is to have any practical purpose, see [7]. This 
approximately result in a frequency in the microwave range of 3 – 10 GHz. 

The amplification obtained by the JPA is dependent of the;  

 Bandwidth of the JPA cavity (since Q ≈  𝑓௖ 𝐵𝑊⁄ , where fc is the carrier 
frequency and BW is the bandwidth).  

 Power of the pump-signal (since the JPA transfers power from the pump-signal to 
the amplification process). 

 Power-limit of the non-linearity of the JPA (the amplification process only work 
when the JPA operates in the non-linear region).  

The non-linearity is the main limiting factor, so the power output from the JPA will, for a 
carrier frequency of 10 GHz, be in the range of -201 dBm to -130 dBm  (which 
corresponds to an amplification of 0 – 70 dB) using components at the present level of 
research. As an example [11] a power of -146 – -141 dBm is attainable from the JPA for 
the chosen carrier frequency range of 3 to 10 GHz.  

5.3.1 Preserving Quantum Correlation in Amplification 
 

The entanglement created in the JPA between photons start to degrade immediately as 
soon as they leave the JPA, but a lingering extra correlation remains between the photons 
that can be exploited in the signal processing.  

To assess this extra correlation from the quantum entanglement, two radar transmitter 
systems will be compared. The classical system transmitting a two-mode classical noise 
signal and a quantum system transmitting a two-mode squeezed vacuum signal 
(entangled). 

The simple set-up can be seen in Figure 6 [47]. For simplicity, both modes in both systems 
are amplified by the same amount G and the signals of the two systems are processed in 
the same way. 
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Figure 6. Showing the two radar types, classical type a) where Signal 2 (or 1) is a copy of the 
generated noise in Signal 1 (or 2) but on different frequencies (modes), and the quantum type b), 
where two entangled noise signals are created (signal and idler) on two different frequencies 
(modes). In both cases the signals are amplified with the same gain G. 

 

To compare the input signal/Signal 1 and idler/Signal 2 of both amplifier systems a 
covariance matrix for the radar receiver is set-up for each system that can then be 
compared. 

If input signals to the classical amplifier is (index 1 is the input signal, and index 2 is the 

idler) 1 1 2 2 T

I Q I QC X X X X    , the covariance matrix  H
CR E CC  for the classical 

two-mode noise radar is [47],  
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and 𝜎ଵ
ଶ = 𝜎ଶ

ଶ = (𝑁௦ + 𝑛஼)/2, where Ns is the number of signal photons (or signal power if 
multiplied by hfB) of the source and nC is the added number of noise photons (or noise 
power if multiplied by hfB) due to the amplifier. If 𝜌஼𝜎ଵ𝜎ଶ = 𝑁௦ 2⁄ , the correlation can be 
calculated as [47],  

 

a) 

b) 
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,  (28) 

 

where SNRC =NS /nC (the number of signal photons relative to the number of amplifier 
added noise photons). Figure 7 shows the correlation as function of the input signal power 
(NS⋅hfB). The number of noise photons (nC) is assumed approximately one photon per 
mode as an example of a JPA. Hence, the noise power is nC⋅hfB≈hfB.  

 
Figure 7. The correlation coefficient dependency on source power (signal power). The noise power is 
assumed constant at approximately one photon per mode. The frequency is 10 GHz and the 
bandwidth 100 MHz. 

 

For the quantum system, the covariance matrix RQ looks almost identical to the classical 
one, in (27), except for a negative sign that will add an anti-correlation,  
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The correlation coefficient 𝜌ொ will therefore be slightly different [47],  
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for the two-mode squeezed vacuum [47]. The enhancement 𝑄ா achieved at the receiver by 
using quantum entanglement is 𝑄ா = 𝜌ொ 𝜌஼⁄ , as can be seen in Figure 8. This quantum 
enhancement does not rely on whether there remain any entanglement in the signal at 
reception and is related to the quantum information concept of Quantum Discord [48]. 
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Since the noise is about ~1 photon in a JPA, the increase of signal power means that the 
SNR increase. So, from Figure 8b, it can be seen that if amplification of the signal and 
thereby the increase of SNR is achieved through extra amplifiers, the quantum 
enhancement will be lost and we only have classical correlation [11, 46-49]. 

 

 
Figure 8. The ‘blue’ graph in figure a) is the same as the graph in Figure 7, but with a logarithmic axis 
for the correlation and SNR instead of the signal power on the x-axis. The top figure a) show the 
dependency between correlation and SNR for classical and quantum systems. The quantum 
enhancement at the receiver is the ratio between the ‘red’ and ‘blue’ graphs in a), and is shown in b). 

 

 

 

 

a) 

b) 
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5.4 Concluding remarks on amplification of an 
entangled signal 

 

The only amplifier of today that can amplify an entangled signal with very little added 
noise is the JPA, and even a higher power can be achieved through connecting several JPA 
together or using a Josephson Travelling Wave Transmission Parametric 
Amplifier (JTWTA) [50]. Theoretically, this will not be enough since when the power of 
the signals increases, the correlation gain decreases. 

This conclusion is based on the assumption that both signal/Signal 1 and idler/Signal 2 are 
amplified with the same gain. This does, however, not seem to be the optimal 
solution [47]. According to Agarwal et al. [51], for a two-mode squeezing laser 
amplification the results show that the quantum enhancement is more robust if only the 
signal (or idler) is amplified while the idler (or signal) is not amplified. This might be a 
way to amplify the quantum radar signal so that it can be used at normal radar target 
distances. 
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6 Experimental realizations of quantum 
radar 

 

The recent experimental results of Luong et al. [11] and Barzanjeh et al. [12] are 
interesting for many reasons. They are in the microwave regime were quantum 
illumination has the highest potential due to the intrinsic high background. They are all 
microwave set-up, which means that the complex electro-opto-mechanical (EOM) 
converter [26] is not necessary. The JPA used as entanglement source, which potentially 
has a broader bandwidth compare to the EOM. The most important advantage is that their 
scheme allow for separate measurement of the idler and reflected signal and the 
correlations are tested in the digital regime afterwards. In this way, it is possible to probe 
all ranges in the post processing stage in contrast to previous quantum illumination 
schemes where one range can be tested at a time since the reflected signal must be 
overlapped with idler at the detector. 

The two schemes are quite similar. Both groups are using a Josephson Parametric 
Amplifier (JPA) as a source of entangled two mode squeezing and amplifying both the 
signal and idler using HEMT amplifiers before leaving the cryostat. The quadrature 
components (i and q) of the idler is measured directly in a heterodyne detection digitizer 
while the signal is sent to an antenna. The return signal is collected with a second antenna 
and the quadrature components measured in another heterodyne detection digitizer. The 
correlation between the returned signal and idler is investigated digitally. They compare 
the quantum set-up with a classical set-up where they replace the JPA source with a 
classical noise source with the same output power as the JPA. Otherwise, the set-up is 
identical for the two set-up, i.e. the signal and idler are amplified and detected with the 
same components as before. Both groups saw a detection improvement with the quantum 
source (JPA) compared to the classical noise source. Barzanjeh et al. [12] also compared 
the two set-ups with coherent-state illumination using both heterodyne and homodyne 
detection. The results show that both the coherent-state illumination schemes is better than 
quantum and classical noise radar. However, when calibrated for the noise in the idler arm, 
the quantum noise radar give similar results as the homodyne detection and outperforms 
the heterodyne detection. The calibration is not an option in a real radar system, but shows 
the potential of the quantum noise radar if the idler can be measured without amplification. 
Anyway, the coherent-state illumination is not a good option in application where you 
normally use noise radars, since it is easier for an adversary to detect a coherent-state 
signal compared to a noise signal. 

None of the groups compared their results with the scheme suggested by Shapiro [10], 
where the noise signal is asymmetric divided to a high brightness idler and a weak signal 
that matches the output of the noise radar. He claims that the quantum noise radar cannot 
outperform this scheme (see also Chapter 2). It is still unclear for us if Shapiro’s argument 
hold for all possible ways to perform the heterodyne measurement of the idler and we need 
to investigate it further. 

Even though it would be possible to circumvent Shapiro's objection, the experimental 
systems described above have merits that is far from what is needed in a useful radar for 
longer ranges. As described in Chapter 5 it is difficult to simply amplify the signals to 
useful levels and retain the quantum advantage. Asymmetric amplifications of the signal 
and idler might be a solution [47, 51], especially if the idler could be measured without 
amplification. A larger time-bandwidth product of the source and the detection system will 
allow for quantum advantage at higher output power. There are several ways to improve 
the components in the system. Some suggestions are presented in a recent paper of Luong 
et al. [34]. 
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7 Conclusions and Future Work 
 

To generate entangled continuous variables (in contrast to discrete variables) seems to be 
the most promising technology due to higher signal levels and unconditional generation 
and measurements of entangles states.    

Error probabilities are often used to quantify the performance of a quantum radar. A 
plausible reason is the demand for a simple metric of performance. However, error 
probabilities being a good metric in the quantum case is not a good metric in the radar 
case. The use of Receiver Operating Characteristic curves is more adequate, but it leaves 
the radar engineer with a more complex task in comparing a quantum radar to a classical 
radar.   

To utilize the full 6 dB advantage of a quantum radar suggested by Tan et al. [21] is not 
possible with today’s technology and not useful for most practical radar application since 
it can only interrogate one distance at the time. More interesting is the quantum version of 
a noise radar [11, 12] where it is possible to interrogate all distances similar to a 
conventional radar. There are however doubts if this scheme can be superior to an optimal 
designed classical noise radar [10]. This objection needs to be further analysed. 
Furthermore, there might be other protocols for quantum illumination that could avoid the 
objection [52]. 

A crucial question to be addressed is how large time-bandwidth spreading of the radar 
signal energy we need to see the supremacy of the quantum radar compared to its classical 
counterpart. Is it possible to see a further improvement by spreading also in the space 
domain? 

The use of a Quantum Radar as a low-probability-of-intercept (LPI) radar seems to be 
revealed as a key field of application, and is to be addressed. Likewise the supremacy in 
use in a heavily electromagnetically contested environment. 

Uses of a Quantum Radar being more futuristic have been suggested. One is, that 
Quantum Illumination target detection could be used to unveil a cloaked target16 [53]. 

      

  

                                                        

 

 
16 An electromagnetically cloaked target has been given such material properties that an electromagnetic field incident 

on the target is bent around it.  



FOI-R--5014--SE 

38 (45) 

   



FOI-R--5014--SE 

39 (45) 

References 
 

[1] "Demonstrating Quantum Supremacy," ed: YouTube. 
[2] "WACQT | Wallenberg Centre for Quantum Technology." Chalmers. 

https://www.chalmers.se/en/centres/wacqt/Pages/default.aspx (accessed 2020-06-15). 
[3] "Quantum Technologies Flagship." The European Commission. 

https://ec.europa.eu/digital-single-market/en/quantum-technologies (accessed 2020-
06-15). 

[4] M. J. Brandsema, "Formulation and Analysis of the Quantum Radar Cross Section," 
Ph. D. thesis, The Graduate School College of Engineering, The Pennsylvania State 
University, 2017.  

[5] M. Lanzagorta, Quantum Radar. Morgan \& Claypool Publishers, 2011, p. 140. 
[6] M. J. Brandsema, M. Lanzagorta, and R. M. Narayanan, "Quantum Electromagnetic 

Scattering and the Sidelobe Advantage," in 2020 IEEE International Radar 
Conference (RADAR), 28-30 April 2020 2020, pp. 755-760, doi: 
10.1109/RADAR42522.2020.9114591.  

[7] M. Höijer, T. Hult, and P. Jonsson, "Quantum Radar - A survey of the science, 
technology and litterature," Swedish Defence Research Agency FOI, Linköping, FOI-
R--4854--SE, 2019. [Online]. Available: https://www.foi.se/en/foi/reports/report-
summary.html?reportNo=FOI-R--4854--SE 

[8] J. H. Shapiro, "Quantum illumination: From enhanced target detection to Gbps 
quantum key distribution," in 2017 Conference on Lasers and Electro-Optics (CLEO), 
San Jose, CA, USA, 14-19 May 2017 2017: IEEE, p. FTu3F.1. [Online]. Available: 
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8083312&isnumber=8082
845. [Online]. Available: 
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8083312&isnumber=8082
845 

[9] J. H. Shapiro, "The Quantum Illumination Story : (Invited Paper)," in 2019 IEEE 
International Conference on Microwaves, Antennas, Communications and Electronic 
Systems (COMCAS), 4-6 Nov. 2019 2019, pp. 1-4, doi: 
10.1109/COMCAS44984.2019.8958368.  

[10] J. H. Shapiro, "The Quantum Illumination Story," IEEE Aerospace and Electronic 
Systems Magazine, vol. 35, no. 4, pp. 8-20, 2020, doi: 10.1109/MAES.2019.2957870. 

[11] D. Luong, C. W. S. Chang, A. M. Vadiraj, A. Damini, C. M. Wilson, and B. Balaji, 
"Receiver Operating Characteristics for a Prototype Quantum Two-Mode Squeezing 
Radar," IEEE Transactions on Aerospace and Electronic Systems, vol. 56, no. 3, pp. 
2041-2060, 2020, doi: 10.1109/TAES.2019.2951213. 

[12] S. Barzanjeh, S. Pirandola, D. Vitali, and J. M. Fink, "Microwave quantum 
illumination using a digital receiver," Science Advances, vol. 6, no. 19, p. eabb0451, 
08 May 2020, doi: 10.1126/sciadv.abb0451. 

[13] J. H. Shapiro, "Defeating passive eavesdropping with quantum illumination," Physical 
Review A, vol. 80, no. 2, p. 022320, 08/17/ 2009, doi: 10.1103/PhysRevA.80.022320. 

[14] J. H. Shapiro, Z. Zhang, and F. N. C. Wong, "Secure communication via quantum 
illumination," Quantum Information Processing, vol. 13, no. 10, pp. 2171-2193, 
2014/10/01 2014, doi: 10.1007/s11128-013-0662-1. 

[15] Q. Zhuang, Z. Zhang, J. Dove, F. N. C. Wong, and J. H. Shapiro, "Floodlight quantum 
key distribution: A practical route to gigabit-per-second secret-key rates," Physical 
Review A, vol. 94, no. 1, p. 012322, 07/14/ 2016, doi: 10.1103/PhysRevA.94.012322. 

[16] Z. Zhang, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, "Floodlight quantum key 
distribution: Demonstrating a framework for high-rate secure communication," 
Physical Review A, vol. 95, no. 1, p. 012332, 01/26/ 2017, doi: 
10.1103/PhysRevA.95.012332. 

[17] Z. Zhang, C. Chen, Q. Zhuang, F. N. C. Wong, and J. H. Shapiro, "Experimental 
quantum key distribution at 1.3 gigabit-per-second secret-key rate over a 10 dB loss 
channel," Quantum Science and Technology, vol. 3, no. 2, p. 025007, 2018/04 2018, 
doi: 10.1088/2058-9565/aab623. 



FOI-R--5014--SE 

40 (45) 

[18] J. H. Shapiro, D. M. Boroson, P. B. Dixon, M. E. Grein, and S. A. Hamilton, 
"Quantum low probability of intercept," J. Opt. Soc. Am. B, vol. 36, no. 3, pp. B41-
B50, 2019/03/01 2019, doi: 10.1364/JOSAB.36.000B41. 

[19] S. Lloyd, "Enhanced Sensitivity of Photodetection via Quantum Illumination," 
Science, vol. 321, no. 5895, p. 1463, 2008, doi: 10.1126/science.1160627. 

[20] J. H. Shapiro and S. Lloyd, "Quantum illumination versus coherent-state target 
detection," New Journal of Physics, vol. 11, no. 6, p. 063045, 2009/06/24 2009, doi: 
10.1088/1367-2630/11/6/063045. 

[21] S.-H. Tan et al., "Quantum Illumination with Gaussian States," Physical Review 
Letters, vol. 101, no. 25, p. 253601, 12/18/ 2008, doi: 
10.1103/PhysRevLett.101.253601. 

[22] S. Guha and B. I. Erkmen, "Gaussian-state quantum-illumination receivers for target 
detection," Physical Review A, vol. 80, no. 5, p. 052310, 11/10/ 2009, doi: 
10.1103/PhysRevA.80.052310. 

[23] Z. Zhang, S. Mouradian, F. N. C. Wong, and J. H. Shapiro, "Entanglement-Enhanced 
Sensing in a Lossy and Noisy Environment," Physical Review Letters, vol. 114, no. 
11, p. 110506, 03/20/ 2015, doi: 10.1103/PhysRevLett.114.110506. 

[24] D. Bacon, I. L. Chuang, and A. W. Harrow, "Efficient Quantum Circuits for Schur 
and Clebsch-Gordan Transforms," Physical Review Letters, vol. 97, no. 17, p. 170502, 
10/27/ 2006, doi: 10.1103/PhysRevLett.97.170502. 

[25] Q. Zhuang, Z. Zhang, and J. H. Shapiro, "Optimum Mixed-State Discrimination for 
Noisy Entanglement-Enhanced Sensing," Physical Review Letters, vol. 118, no. 4, p. 
040801, 01/27/ 2017, doi: 10.1103/PhysRevLett.118.040801. 

[26] S. Barzanjeh, S. Guha, C. Weedbrook, D. Vitali, J. H. Shapiro, and S. Pirandola, 
"Microwave Quantum Illumination," Physical Review Letters, vol. 114, no. 8, p. 
080503, 02/27/ 2015, doi: 10.1103/PhysRevLett.114.080503. 

[27] M. Lanzagorta, J. Uhlmann, O. Jitrik, S. E. Venegas-Andraca, and S. Wiesman, 
"Quantum computation of the Electromagnetic Cross Section of Dielectric targets," 
SPIE Defence + Security, vol. The International Society of optics and photonics, 
2016. 

[28] M. Lanzagorta and S. E. Venegas-Andraca, "Algorithmic analysis of Quantum Radar 
Sections," SPIE Defence + Security, vol. The International Society of optics and 
photonics, 2016. 

[29] K. Liu, H. Xiao, H. Fan, and Q. Fu, "Analysis of Quantum Radar Cross Section and 
its Influence on Target Detection Performance," IEEE Photonics Technology Letters, 
vol. 26, no. 11, 2014. 

[30] M. J. Brandsema, M. Lanzagorta, and R. M. Narayanan, "Equivalence of Classical 
and Quantum Electromagnetic Scattering in the Far-Field Regime," IEEE Aerospace 
and Electronic Systems Magazine, vol. 35, no. 4, pp. 58-73, 2020. 

[31] F. Daum, "A system engineering perspective on quantum radar," in 2020 IEEE 
International Radar Conference (RADAR), Washington DC cahnged to online due to 
Covid-19, April 28 - 30, 2020, pp. 958-963.  

[32] P. Massoud Salehi and J. Proakis, Digital Communications. McGraw-Hill Education, 
2007. 

[33] K. M. R. Audenaert et al., "Discriminating States: The Quantum Chernoff Bound," 
Physical Review Letters, vol. 98, no. 16, p. 160501, 04/17/ 2007, doi: 
10.1103/PhysRevLett.98.160501. 

[34] D. Luong, S. Rajan, and B. Balaji, "Entanglement-Based Quantum Radar: From Myth 
to Reality," IEEE Aerospace and Electronic Systems Magazine, vol. 35, no. 4, pp. 22-
35, 2020, doi: 10.1109/MAES.2020.2970261. 

[35] S. L. Braunstein and P. van Loock, "Quantum information with continuous variables," 
Reviews of Modern Physics, vol. 77, no. 2, pp. 513-577, 06/29/ 2005, doi: 
10.1103/RevModPhys.77.513. 

[36] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 
10th Anniversary Edition. Cambridge University Press, 2010. 

[37] C. Weedbrook et al., "Gaussian quantum information," Reviews of Modern Physics, 
vol. 84, no. 2, pp. 621-669, 05/01/ 2012, doi: 10.1103/RevModPhys.84.621. 



FOI-R--5014--SE 

41 (45) 

[38] U. L. Andersen, G. Leuchs, and C. Silberhorn, "Continuous-variable quantum 
information processing," Laser & Photonics Reviews, vol. 4, no. 3, pp. 337-354, 
2010/04/28 2010, doi: 10.1002/lpor.200910010. 

[39] U. Andersen, J. Neergaard-Nielsen, P. Loock, and A. Furusawa, "Hybrid discrete- and 
continuous-variable quantum information," Nature Physics, vol. 11, pp. 713-719, 
09/01 2015, doi: 10.1038/nphys3410. 

[40] J. W. Gibbs, Elementary Principles in Statistical Mechanics. New York: Charles 
Scribner's Sons, 1902. 

[41] L. Boltzmann, K. Sharp, and F. Matschinsky, "Translation of Ludwig Boltzmann’s 
Paper: On the Relationship between the Second Fundamental Theorem of the 
Mechanical Theory of Heat and Probability Calculations Regarding the Conditions for 
Thermal Equilibrium," Mathematisch-Naturwissen Classe. Abt. II, LXXVI 1877, pp. 
373-435. 

[42] J. B. Johnson, "Thermal Agitation of Electricity in Conductors," Physical Review, vol. 
32, no. 110, pp. 97-109, 1928. 

[43] H. Nyquist, "Thermal Agitation of Electric Charge in Conductors," Physical Review, 
vol. 32, no. 110, pp. 110-113, 1928. 

[44] J. D. Breeze, E. Salvadori, J. Sathian, N. M. Alford, and C. W. M. Kay, "Continuous-
wave room-temperature diamond maser," Nature, vol. 555, no. 7697, pp. 493-496, 
2018/03/01 2018, doi: 10.1038/nature25970. 

[45] H. Heffner, "The Fundamental Noise Limit of Linear Amplifiers," Proceedings of the 
IRE, vol. 50, no. 7, pp. 1604-1608, 1962, doi: 10.1109/JRPROC.1962.288130. 

[46] C. M. Caves, "Quantum limits on noise in linear amplifiers," Physical Review D, vol. 
26, no. 8, pp. 1817-1839, 1982. 

[47]  J. Bourassa and C. M. Wilson, "Amplification Requirements For Quantum Radar 
Signals," in 2020 IEEE International Radar Conference (RADAR), Washington, DC, 
USA, 28-30 April 2020: IEEE, pp. 973-978, doi: 
10.1109/RADAR42522.2020.9114574.  

[48] D. Braun et al., "Quantum-enhanced measurements without entanglement," Reviews 
of Modern Physics, vol. 90, 2018. 

[49] C. W. S. Chang, A. M. Vadiraj, J. Bourassa, B. Balaji, and C. M. Wilson, "Quantum-
enhanced noise radar," Applied Physics Letters, vol. 114, no. 11, 2019. 

[50] T. C. White et al., "Traveling wave parametric amplifier with Josephson junctions," 
Applied Physics Letters, vol. 106, 2015. 

[51] G. S. Agarwal and S. Chaturvedi, "How much quantum noise is detrimental to 
entanglement," Elsevier Optics Communications, vol. 283, no. 5, pp. 839-842, 2009. 

[52] R. G. Torromé, N. B. Bekhti-Winkel, and P. Knott, "Introduction to quantum radar," 
arXiv preprint arXiv:2006.14238, 2020. [Online]. Available: 
https://arxiv.org/abs/2002.12252. 

[53] U. Las Heras, R. Di Candia, K. G. Fedorov, F. Deppe, M. Sanz, and E. Solano, 
"Quantum illumination reveals phase-shift inducing cloaking," Scientific Reports, vol. 
7, no. 1, p. 9333, 2017/08/24 2017, doi: 10.1038/s41598-017-08505-w. 

[54] R. J. Glauber, "Photon Correlations," Physical Review Letters, vol. 10, no. 3, pp. 84-
86, 02/01/ 1963, doi: 10.1103/PhysRevLett.10.84. 

[55] G. Björk and J. Söderholm. "The Dirac notation in quantum optics." 
https://www.kth.se/social/files/54b2a1fdf2765442623b878b/Dirac_notation_pm_r4.p
df (accessed 2020-09-25). 

 

  



FOI-R--5014--SE 

42 (45) 

 



FOI-R--5014--SE 

43 (45) 

Appendix – Coherent states and common 
detection methods 
 

The coherent state 
 

The coherent state was introduced by Glauber17 [54] and is the quantum mechanical 
description of the state that most resembles a classical description of a coherent 
electromagnetic field with phase and intensity. The Heisenberg uncertainty principle is 
embedded in the state and the shot noise is explained by the state itself rather than in the 
detection process as in the semiclassical description. A state that could be described as a 
coherent state, or mixture of several coherent states, is often called a classical state in 
quantum mechanics. Such states can be treated with the semiclassical theory and give the 
same results as the quantum description, and therefore, the term coherent states is 
sometimes used as equivalent to classical states. However, if the state breaks any of the 
restrictions of a classical field description, e.g. number states (fixed number of photons) or 
the squeezed state (see section 4.4), the semiclassical theory will not give the correct 
result. The strength with quantum mechanical description of the coherent state is that 
theory previously explained in the semiclassical picture can be treated in quantum theory 
in a straightforward way. It also gives a good picture of the implication the Heisenberg 
uncertainty principle. To show some characteristics of the coherent state we use Dirac 
notation. A good introduction for those not familiar with the notation is given in a PM 
from KTH [55].  

The coherent state is denoted by |𝛼⟩, where 𝛼 is a complex number, and the coherent state 
is defined by,  

𝑎ො|𝛼⟩ =  𝛼|𝛼⟩, 

where 𝑎ො is the annihilation operator. The number-state expansion of the coherent state is 

|𝛼⟩ = exp ቀ
|ఈ|మ

ଶ
ቁ ∑

ఈ೙

√௡!
|𝑛⟩௡   . 

Note, the coherent state has an indefinite number of photons and a Poison distribution, 

𝑃(𝑛) = |〈𝑛|𝛼〉|ଶ =
|ఈ|మ೙

௡!
exp (−|𝛼|ଶ) .  

The expectation value and the variance, respectively, of the photon number is 

〈𝑛ො〉 = 〈(∆𝑛ො)ଶ〉 = |𝛼|ଶ. 

Hence, the shot noise is a result of the Poison distribution of the photon numbers in the 
coherent state.  

If we instead are interested in the phase of the coherent state, we use the quadrature 
operators 

𝑎ොଵ ≡
ଵ

ଶ
൫𝑎ො + 𝑎ොற൯ and 𝑎ොଶ ≡

ଵ

ଶ௜
൫𝑎ො − 𝑎ොற൯, 

                                                        

 

 
17 Glauber was awarded the Nobel Prize in Physics in 2005 for his development of the coherent state. 
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where 𝑎ො and 𝑎ොற are the annihilation and creator operators, respectively. The quadrature 
operators do not commute, which results in a Heisenberg’s uncertainty when measuring 
both quadratures of a state. The expectation values for the quadrature operators on a 
coherent state |𝛼⟩ are  

〈𝑎ොଵ〉 = Re{𝛼} and 〈𝑎ොଶ〉 = Im{𝛼} 

and the variances are 

〈∆𝑎ොଵ
ଶ〉 = 〈∆𝑎ොଶ

ଶ〉 =
ଵ

ସ
. 

In quantum mechanics several notations of the quadrature, such as 𝑋ଵ and 𝑋ଶ; 𝑄 and P, are 
used, but here we use 𝐼 and 𝑄, in-phase and the quadrature components, respectively. 

 

Figure 9 shows examples of samples of two coherent states. The blue dots show |𝛼 = 0⟩, 
the vacuum state, which is the same as the Heisenberg minimum uncertainty vacuum state. 
The red dots show |𝛼 = 10 √2⁄ + 𝑖 10 √2⁄ ൿ, where |𝛼|ଶ = 100, i.e. the expectation value 
and the variance of the photon number is 100. The graph can be seen as frozen in time and 
space. If we measure a moment later the red dots have rotated along the circle and after 
one period 𝑇 = 1/𝑓, where 𝑓 is the frequency of the electromagnetic field, the dots are 
back on the same position.  

 

 

 

 

Figure 9. In the figure 4000 samples of two different coherent states are shown. The blue samples 
show 𝛼 = 0, which is the same as the Heisenberg minimum uncertainty vacuum state. The red 
samples show 𝛼 = 10 √2⁄ + 𝑖 10 √2⁄  , where the amplitude of 𝛼 is 10. 
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Common detection methods 
 

The most common receivers are shown in Figure 10. These are closely related to the 
operators described in the previous section, the number-state operator and the quadrature 
operators.  

Direct detection is a photon number measurement letting the number state operator operate 
on the signal. In practice, it is an energy detector measuring directly on the signal s. No 
phase information is obtained in the measurement.  

In the homodyne and heterodyne detection, one or two quadratures of the state are 
measured. This is done by mixing the signal with a strong local oscillator (LO). In 
homodyne the LO has the same frequency as the signal whereas in heterodyne the LO has 
a different frequency than the signal. After the mixing, the combined state are normally 
measured with an energy detector and the quadrature can be determined in respect to the 
phase of the LO. It can be shown that in a balanced homodyne measurement (50/50 
mixing), one quadrature in signal s can be measured without introducing extra noise by 
subtracting the measurement in d1 with the measurement in d2.  

Normally, both quadratures are measured by use of heterodyne detection. It can also be 
measured in a double homodyne detector by dividing the signal s in two parts and 
performing homodyne detection on each part where the two LOs are phase shifted by 
ninety degrees. Measuring both quadratures of the same signal will always introduce an 
extra 3 dB noise regardless which method is used, heterodyne or a double homodyne 
detection. The reason is that the quadrature operators do not commute. Hence, they cannot 
be perfectly measured due to the Heisenberg’s uncertainty principle. 

Sometimes in the quantum literature, heterodyne detection is equated with measuring both 
quadratures rather than measuring with different signal and LO frequencies. This can 
cause some confusion. 

 
Figure 10. Common detection methods, direct, homodyne and heterodyne detection, where s is the 
signal or state that is measured, d(x) are detectors, LO is a local oscillator, 𝑓௦ and 𝑓௅ை  are the 
frequency of the signal and local oscillator respectively.  
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