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Sammanfattning 

I den här rapporten utvidgar vi en tidigare utvecklad metodik för avskanning av 

forskningsfronten (horizon scanning) av vetenskaplig litteratur vars syfte är att upptäcka 

vetenskapliga trender. Med denna metodik grupperas vetenskapliga artiklar automatiskt 

inom ett brett definierat forskningsfält baserat på ämne. Vi utvecklar här en ny metod för 

att låta en analytiker hantera antalet kluster som följer av den automatiska grupperingen 

av artiklar. Metoden utnyttjar att det går att beräkna ett informationsteoretiskt avstånd 

mellan alla möjliga par av kluster. Var och en av de vetenskapliga artiklarna har en 

sannolikhetsfördelning av tillhörighet över alla möjliga kluster som härrör från 

klusterprocessen. Med hjälp av dessa undersöker vi möjliga parvisa sammanslagningar 

mellan alla par av befintliga kluster och beräknar entropierna av sannolikhets-

fördelningarna av alla artiklar efter varje möjlig sammanslagning av två kluster. Dessa 

entropier visualiseras i ett dendritiskt träd och ett klusterdiagram. Sammanslagningen 

med minimal total entropi är det klusterpar som föreslås slås samman. 

 

Nyckelord: avskanning av forskningsfronten, horizon scanning, scientometri, Gibbs 

sampling, Dirichlet multinomial mixture model, entropi, klustring, HSTOOL. 
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Summary 

In this report, we expand a methodology for horizon scanning of scientific literature to 

discover scientific trends. In this methodology, scientific articles are automatically 

clustered within a broadly defined field of research based on the topic. We develop a 

new method to allow an analyst to handle the large number of clusters that result from 

the automatic clustering of articles. The method is based on estimating an information-

theoretical distance between all possible pairs of clusters. Each of the scientific articles 

has a probability distribution of affiliation over all possible clusters arising from the 

clustering process. Using these, we investigate possible pairwise mergers between all 

pairs of existing clusters and calculate the entropies of the probability distributions of all 

articles after each possible merger of two clusters. These entropies are visualized in a 

dendritic tree and a cluster graph. The merger with minimal total entropy is the proposed 

cluster pair to be merged. 

 

Keywords: horizon scanning, scientometrics, Gibbs sampling, Dirichlet multinomial 

mixture model, entropy, clustering, HSTOOL. 
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1 Introduction 
Methods for scanning scientific literature to discover new scientific trends are important in 

research. These methods are designed to discover changes, disruptions, and trends with the 

potential to significantly affect the development of a certain area of interest. For scientific 

literature, our goal is to discover emerging or rapidly growing research areas and to identify 

technologies that have reached a level of preparedness that is suitable for industrial 

applications. 

For this purpose, we have developed a methodology and a computer system called the 

Horizon Scanning Tool (HSTOOL) [1, 2]. HSTOOL is a system for scanning scientific 

literature in databases to discover scientific trends within a broadly defined field of research. 

With search queries specified by subject matter experts and iteratively tested by studying 

the results of multiple scans, we let HSTOOL retrieve titles and abstracts from the Web of 

Science (WOS) Core Collection in a format that enables automatic data processing. We can 

then automatically group research articles into clusters by subject content. The focus is on 

identifying groups of research articles that together constitute a research topic, studying the 

development of the topic over time, and using the research community’s citation statistics 

regarding the included articles to identify the most important contributions within each 

research topic. 

An observation resulting from using HSTOOL has been that there is a need to be able to 

handle the number of clusters in different ways. This problem emerges when several 

analysts have to jointly analyze a large number of clusters. The question becomes who takes 

which clusters for further analysis. Each analyst should take clusters of a similar type. In 

another situation, an individual analyst may want to merge a large number of clusters into a 

smaller number of clusters to manage the resolution before starting to analyze the 

documents. In this situation, the question becomes which clusters should be merged? That 

is, which clusters are close to each other in an information theory sense? 

In this report, we develop a mathematical method for assessing the information theory 

distance between each pair of clusters. The method is based on output from the completed 

clustering process and uses each article’s probability distribution that each article has about 

which cluster it belongs to. This method tests different mergers and assesses the effects on 

the articles’ probability distributions. Thereafter, all assessments are aggregated. The 

merging of clusters that provides the best partitioning of articles is preferable and can be 

observed in a cluster graph and a dendritic tree. 

In Section 2, we describe the method of clustering articles [1, 2] using a Dirichlet 

multinomial mixture model (GSDMM) algorithm [3, 4] and a method we developed to 

automatically determine the numbers of clusters. In Section 3, we develop a method that 

allows an analyst to manage the number of clusters based on visualization of cluster 

distances in a dendritic tree and a cluster graph. Finally, conclusions are drawn (Section 4). 
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2 Clustering of scientific articles 
Once a search result has been downloaded from WOS with HSTOOL, we want to group all 

articles that touch on the same subject area into a cluster that will be treated as a separate 

subproblem. 

In the following two subsections, we describe how to use a Gibbs sampling algorithm for a 

Dirichlet multinomial mixture model (GSDMM) [3, 4] to organize articles into clusters with 

common subject areas and how to determine the optimal number of clusters. 

2.1 Clustering with GSDMM 
To group articles within the same sub-area, we use the above-mentioned GSDMM 

algorithm. Simply described, this method starts with a large number of clusters and a random 

distribution of articles between clusters. The method then examines each article to determine 

if it is a better fit in any other cluster than in its current placement. This procedure is repeated 

iteratively for all articles until no further changes are made. 

The method proceeds by comparing all words in each article title and abstract with the 

corresponding words in all other articles. If a word is missing or appears a different number 

of times than in another article, then the probability that these articles belong together is 

assigned a lower value. These probabilities are combined for all articles in each cluster. This 

results in an evaluation of each cluster regarding how well each article fits into all the 

different clusters. Then, the article is moved to a cluster where it fits well according to these 

probabilities. The procedure is applied to all articles and iteratively repeated until all articles 

are placed in their best matched clusters. 

The clustering process is performed by a sequence of Gibbs sampling iterations. During 

each iteration, we calculate, for each article, the probability that it belongs to each cluster k, 

which results in the probability that the article will be moved to that cluster. 

We have [3] 

𝑝𝑑𝑘𝑖(𝑘𝑑 = 𝑘|𝑘⃗ ¬𝑑, 𝑑 ) ∝
𝑚𝑘,¬𝑑 + 𝛼

𝐷 − 1 + 𝐾𝛼
∙
∏ ∏ (𝑛𝑘,¬𝑑

𝑤 + 𝛽 + 𝑗 − 1)
𝑁𝑑

𝑤

𝑗=1𝑤∈𝑑

∏ (𝑛𝑘,¬𝑑 + 𝑉𝛽 + 𝑖 − 1)
𝑁𝑑

𝑖=1

,           (1) 

 

where on the left-hand side, 𝑘𝑑 is the cluster position of article d, k is the kth cluster, 𝑘⃗ ¬𝑑 is 

the set of cluster positions of all other articles excluding d, and 𝑑  is the set of all articles. In 

the first factor on the right-hand side, 𝑚𝑘,¬𝑑  is the number of articles in cluster k not 

including d, is a cluster parameter set to 0.1 in our test case, D is the total number of 

articles under consideration, and K is the initial number of clusters. In the second factor on 

the right-hand side, w is the wth word of article d, 𝑁𝑑
𝑤 is the number of times word w appears 

in article d, 𝑛𝑘,¬𝑑
𝑤  is the number of times word w appears in cluster k when article d has been 

removed, β is a cluster parameter that will determine the number of final clusters, 𝑁𝑑 is the 

number of words in article d, 𝑛𝑘,¬𝑑 is the number of words in cluster k when article d has 

been removed, and V is the number of words in the vocabulary. Thus, |{𝑝𝑑𝑘𝑖}𝑖=14| = 𝐾. We 

choose i = 14 based on the observation that the algorithm usually converges in 10–12 

iterations. 
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2.2 Select the number of clusters 
To choose the best number of clusters, we need to evaluate different options. For this 

purpose, we evaluate different numbers of clusters based on the quality of the clustering. 

The GSDMM algorithm does not require a predetermined number of clusters to assign the 

articles to a given corpus 1 . However, the number of clusters depends on parameter 

𝛽 ∈  (0, 1), as shown in Equation (1). A value of β near zero results in many clusters, while 

a value of β near one produces fewer clusters. 

We focus on the articles that have been clustered and examine how well they fit into the 

clusters where they have been placed. Each article has a probability distribution across all 

clusters that indicates the probability that each cluster is the optimal location for that article 

as defined in Equation (1). This distribution is calculated and used in the clustering process 

for GSDMM and is recalculated in each step of the clustering process for all articles. At the 

end of the clustering process, we use the final calculated probability distribution for each 

article. 

We consider {𝑝𝑑𝑘𝑖}, where 𝑝𝑑𝑘𝑖  is the probability that article d belongs to cluster k at 

iteration i in Equation (1), with 

∑ 𝑝𝑑𝑘𝑖

𝐾

𝑘=1

= 1                                                                 (2) 

 

for any constant d and i, where K is the initial number of clusters. 

If the placement of a particular article is almost certain, that article will have a probability 

value of close to one for that cluster. To study the convergence of the GSDMM algorithm, 

we calculate at each Gibbs sampling iteration i the entropy [5] for each article d as 

 

𝐸𝑛𝑡𝑑𝑖 = − ∑ 𝑝𝑑𝑘𝑖(𝑘𝑑 = 𝑘|𝑘⃗ ¬𝑑 , 𝑑 ) ∙ log[𝑝𝑑𝑘𝑖(𝑘𝑑 = 𝑘|𝑘⃗ ¬𝑑, 𝑑 )]

𝐾

𝑘=1

.                 (3) 

 

To determine the quality of a specific clustering (i.e., the clustering at a specific iteration i 

for a specific value of β), we calculate its entropy as 

 

𝐸𝑛𝑡𝑖 = ∑ 𝐸𝑛𝑡𝑑𝑖

𝐷

𝑑=1

.                                                           (4) 

 

A good measure of the quality of the entire partition of all articles for a particular clustering 

process is the sum of entropy over all articles after the final iteration, where 𝐸𝑛𝑡14 is the 

target entropy to be minimized. 

As β increases, there is a decline in the final entropy for each clustering process. 

The number of clusters keeps decreasing as β approaches 1. Ideally, we want to find a 

partition that has well-defined clusters that correspond to subject areas and yet has the lowest 

possible entropy. 

  

                                                        

1 The collection of all articles from a particular search. 
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To estimate the correct number of clusters, the final entropy derived from clustering with 

different values of β is calculated. If β is small, then entropy is high; as β increases, entropy 

decreases with a small residual entropy at high β. This is similar to what we did in [6], where 

alternative partitions were evaluated using the entropy of another probability measure. The 

entropy’s behavioral change occurs at a point that we believe provides the best number of 

clusters [7]. In Fig. 1, we observe a change in the behavior of the entropy at a point 

corresponding to the smallest acute angle between the left and right line segments of the 

concave lower envelope of entropy. This point corresponds to the best number of clusters, 

and the β used in this clustering is selected. 

 

 

Figure 1. The red line is the concave lower envelope of the black dots, and green is the minimizing 
angle. 

 

β 

𝐸𝑛𝑡14 
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3 Cluster management 
Often, there is a reason to choose a different number of clusters than what resulted from the 

automatic determination of the number of clusters. One such reason may be that the 

subsequent analysis is to be performed by a group of analysts who will carry out different 

parts of the analysis. In this situation, it may be appropriate to merge several clusters so that 

each analyst obtains a set of related clusters that cover a broader area rather than many 

unrelated clusters. Another such reason is that one may want a uniform resolution in all 

subareas of the subject. Clustering can lead to a resolution within one subarea that differs 

from another. For example, a search for vehicles may result in a cluster of articles regarding 

trucks, while articles relating to passenger cars have been divided into different clusters 

according to car brands. If one wants to keep a consistent resolution in all clusters, then the 

clusters with articles about different car brands can be merged. 

Of course, there may be other reasons why we want to change the number of clusters or why 

we may want to merge the articles found in certain clusters into one single cluster. 

Regardless of the reason to merge certain clusters, it is important to obtain information about 

how consistent the articles are in different clusters. Therefore, we calculate the distance 

between each pair of clusters and visualize the results of these calculations in a dendritic 

tree and a cluster graph. 

3.1 Distance between clusters 
To estimate the distance between clusters, we examine the consequence of merging each 

possible pair of clusters. This is done by estimating the change in entropy across all articles 

with regards to a possible merger of the two clusters. Remember that while each article is 

placed in a cluster based on the probability that the article belongs to that cluster, each article 

has a probability distribution of belonging to each cluster. 

Let us first write 𝑝𝑑𝑠 = 𝑝𝑑𝑠𝑖  because i = 14 is treated as a constant after the clustering 

process is completed. Second, 𝑝𝑑𝑠 is a filtered version of 𝑝𝑑𝑘𝑖 of Eq. (1) with cluster position 

for each article containing only R index values (𝑅 ≤ 𝐾) corresponding to the R number of 

clusters that contain at least one article after the last sampling of (1), with i = 14, i.e., 

|{𝑝𝑑𝑠}| = 𝑅 . Note that in most clustering processes, the final number of clusters R is 

significantly less than the original number of clusters, which is 500 in our settings. 

In Figure 2, article number 1 is placed in cluster number 1, 𝜒1. However, it has a probability 

distribution {𝑝1𝑖}𝑖=1
3  over all clusters {𝜒𝑖}𝑖=1

3 . 

 

 

Figure 2. An article with probability p11 placed in cluster 𝜒1 still has a probability distribution over all 
clusters. 

  

𝜒1 

𝜒2 

𝜒3 

𝑝11 

𝑝13 

𝑝12 
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If we merge clusters 𝜒1 and 𝜒2, article 1 would have a probability for the merged cluster of 

𝑝11 + 𝑝12 while keeping the probability 𝑝13 for cluster 𝜒3 unchanged. 

We have 

 

∀𝑑𝑠𝑡𝑟|𝑑 ∈ {1,… , |𝑑⃗ |}, 𝑠 ∈ {1,… , 𝑅 − 1}, 𝑡 ∈ {𝑠 + 1,… , 𝑅}, 𝑟 ∈ {1,… , 𝑅}. 

𝑞𝑑𝑠𝑡𝑟 = {

𝑝𝑑𝑠 + 𝑝𝑑𝑡, 𝑟 = 𝑠

0, 𝑟 = 𝑡
𝑝𝑑𝑟, 𝑟 ≠ 𝑠, 𝑡

.                                                 (5) 

 

where q is the probability of two merged clusters, d is an article index, s and t are indices 

that control the cluster merging of clusters s and t, and r is the cluster index. Thus, 𝑞𝑑𝑠𝑡𝑟 are 

elements of a three-dimensional matrix q where each dimension depends on d, the pair (s, t) 

and r, respectively, with dimension |𝑑 | 𝑥 
𝑅(𝑅−1)

2
 𝑥 𝑅. As an example, if we have 100 articles 

(|𝑑 | = 100) and 10 nonempty clusters ( 𝑅 = 10 ), then q will have dimension 

100 𝑥 
10∙9

2
 𝑥 10 = 100 𝑥 45 𝑥 10 = 45 000. 

To be able to compare how suitable different partitions of articles are, we need to be able to 

evaluate each possible merger of two clusters. The idea is that we can find which clusters 

are close to each other in terms of information theory. Directly comparing different clusters 

with each other when they have widely differing numbers of articles can be difficult to do 

objectively. Instead, we view the problem from an article’s perspective and study how 

different articles are affected by merging two clusters. Since each article has a probability 

distribution over R clusters, we can measure the effect when two clusters are merged using 

the entropy for the new resulting probability distribution after the merger. A merger that 

entails minimum entropy is preferable because it corresponds to a probability distribution 

that is closest to a determination of the article’s affiliation with a particular cluster. 

We calculate the entropy for each article’s probability distribution given each possible 

merger of two clusters, i.e., for the entire set {(𝑠, 𝑡)}. We have 

 

∀𝑑𝑠𝑡|𝑑 ∈ {1,… , |𝑑⃗ |}, 𝑠 ∈ {1,… , 𝑅 − 1}, 𝑡 ∈ {𝑠 + 1,… , 𝑅}. 

𝐸𝑛𝑡𝑑𝑠𝑡 = −∑𝑞𝑑𝑠𝑡𝑟

𝑅

𝑟=1

∙ log 𝑞𝑑𝑠𝑡𝑟 .                                              (6) 

 

where 𝐸𝑛𝑡𝑑𝑠𝑡 is the entropy of article d given a merger of clusters s and t. Thus, 𝐸𝑛𝑡𝑑𝑠𝑡 are 

elements of a two-dimensional matrix 𝐸𝑛𝑡 where each dimension depends on d and (s, t), 

respectively, with dimension |𝑑 | 𝑥 𝑅(𝑅 − 1) 2⁄ . 

To evaluate all possible mergers of two clusters against each other, we sum for each possible 

merger of two clusters the entropies for the new probability distribution of all articles after 

the merger. In this way, we can observe how each alternative merging of two clusters affects 

the resulting probability distributions for all articles. The merger that has the lowest sum of 

entropy calculated over the probability distribution for all articles is the preferred merger. 
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We calculate the sum of entropy from all articles d and each possible cluster merging (s, t). 

We have 

 

∀𝑠𝑡|𝑠 ∈ {1,… , 𝑅 − 1}, 𝑡 ∈ {𝑠 + 1,… , 𝑅}. 𝑆𝐸𝑛𝑡𝑠𝑡 = ∑ 𝐸𝑛𝑡𝑑𝑠𝑡              (7)

𝑑∈{1,…,|𝑑 |}

 

 

where 𝑆𝐸𝑛𝑡𝑠𝑡 is the total entropy over all articles given a merger of clusters s and t. Thus, 

𝑆𝐸𝑛𝑡𝑠𝑡 are elements of a one-dimensional vector 𝑆𝐸𝑛𝑡 whose length depends on the pair (s, 

t). The length of 𝑆𝐸𝑛𝑡 is 𝑅(𝑅 − 1) 2⁄ . 

The estimated sum of entropy 𝑆𝐸𝑛𝑡𝑠𝑡 over all articles d given the merger of clusters s and t 

is the distance sought between the two clusters. The two closest clusters are the pair (s, t) 

given by argmins,t 𝑆𝐸𝑛𝑡𝑠𝑡, where 𝑠 ∈ {1,… , 𝑅 − 1}, 𝑡 ∈ {𝑠 + 1,… , 𝑅}. 

An example of a graph of clusters with arcs is presented in Figure 3. The width of the arcs 

corresponds to the distance between the clusters, 𝑆𝐸𝑛𝑡𝑠𝑡. Based on the width of the arcs in 

the cluster diagram, the analyst can choose which clusters to merge. After each selection, 

equations (1–4) are recalculated, and the cluster diagram is updated. Usually, we do not 

work directly with such sizable cluster diagrams. In the next section, we will introduce a 

dendritic tree that presents a proposed order for cluster mergers. 

 

 

Figure 3. A cluster graph where the node size corresponds to the number of articles in the cluster and 
the width of the arcs corresponds to the distance between the clusters (wide arches mean that the 
clusters are close). 
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The pseudocode of an algorithm for calculating equations (2–4) is given in Table 1. This 

algorithm calculates the sum of entropy over the probability distribution of all articles for 

each possible merger of two clusters. That sum is considered to be the distance between 

each pair of clusters. 

Table 1. Pseudocode of an algorithm for calculating the distances between all clusters. 

Algorithm 1: The sum of the entropy of the probability distribution for all paired clusters of articles. 

algorithm calculateSENT(D,R,P) 

    input: D integer, 

           R integer, 

           P array(D,R) 

    var: Q array(D,R), 

         ENT array(D), 

         SENT array(R,R) 

    output: SENT array 

 

    for s := 0 to R - 1 

        for t := s + 1 to R 

            for d := 0 to D 

                for r := 0 to R 

                    // Compute Eq. (5) 

                    if r = s 

                        Q(d,r):= P(d,s) + P(d,t) 

                    elseif r = t 

                        Q(d,r):= 0 

                    else 

                        Q(d,r):= P(d,r) 

                end 

                // Compute Eq. (6) 

                ENT(d):= 0.0 

                for r := 0 to R 

                    if Q(d,r) > 0.0 

                        ENT(d) := ENT(d) - Q(d,r) * log(Q(d,r)) 

                end 

            end 

            // Compute Eq. (7) 

            SENT(s,t) := 0.0 

            for d := 0 to D 

                SENT(s,t) := SENT(s,t) + ENT(d) 

            end 

        end 

    end 

    return SENT 

end 

 

3.2 Managing the number of clusters 
Clustering can be visualized with both a cluster graph and a dendritic tree in HSTOOL 

software. This allows the analyst to see how closely related different clusters are to each 

other and choose which clusters to merge. 

A dendritic tree corresponding to the cluster graph of Figure 3 is shown in Figure 4. 
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Figure 4. A dendritic tree of the same problem as shown in the cluster graph in Figure 3. The length 
of the vertical branches corresponds to the distance between the respective clusters. The node labels 
contain the cluster-ID. 

When two clusters are merged through interaction with the dendritic tree or with the cluster 

graph, the clustering algorithm (Table 1) is initiated recursively with all documents and the 

new cluster. If two clusters were merged in the interaction, the new cluster would contain 

all documents from the merged clusters but no other documents. 

3.2.1 Interaction with a dendritic tree 

The dendritic tree is produced by iteratively calling the clustering algorithm. First, the 

cluster pairs with the lowest entropy (i.e., distance) according to 𝑆𝐸𝑛𝑡𝑠𝑡 (7) are identified. 

The probability distributions for these clusters are added to a joint cluster, and the clustering 

algorithm is then called again. This procedure is repeated until all distances are obtained, 

and a dendritic tree can be constructed, as shown in Figure 5. 

 

 

Figure 5. The dendritic tree from HSTOOL clustering where the entropies between clusters correspond 
to the distances in the tree. The node labels contain the cluster-ID (which varies between 0 and 499) 
with the cluster number of documents within parentheses. 

The interaction in the dendritic tree is done by double-clicking on a node. If the action is 

performed on an unlabeled node, the child clusters will merge, and the dendritic tree will be 
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recreated based on the new entropies (Figure 6). The action can be reversed by double-

clicking on the merged node. 

 

 

Figure 6. A dendritic tree where several clusters (with cluster-IDs 224, 289, 297, 152, and 159) from 
the example in Figure 4 have been merged into one cluster with 12 documents (cluster-ID 1000). 

3.2.2 Interaction with a cluster graph 

A cluster graph enables the visualization of the relationship between all clusters according 

to 𝑆𝐸𝑛𝑡𝑠𝑡 and makes it possible to merge clusters that are further apart according to the 

dendritic tree; for example, clusters that belong to different branches. Interaction with the 

cluster graph is performed either by double-clicking on an arc to merge two clusters or by 

double-clicking on a node corresponding to two merged clusters to unmerge them. Figure 7 

shows the cluster graphs for the corresponding HSTOOL clustering shown in Figures 5 and 

6. 

 

  

Figure 7. The figure on the left shows the cluster graph corresponding to the dendritic tree in Figure 5. 
The figure on the right shows the cluster graph after merging the five clusters. 
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4 Conclusions 
In this report, we develop an approach to managing the large number of clusters resulting 

from the clustering of articles using a GSDMM algorithm. The method is based on 

estimating an information-theoretical distance between all possible pairs of clusters. Instead 

of making a direct comparison based solely on the content of the clusters, we take a reverse 

approach where we see possible mergers between all pairs of clusters from the perspective 

of the articles. These articles have a complete probability distribution of affiliation that spans 

all clusters. When we evaluate a possible merger between two clusters, we compute the 

effect it has on the probability distributions of affiliation for all articles in the given corpus. 

By calculating the entropy of all articles for each possible merger of two clusters, we can 

estimate how close two clusters are to each other. Merged clusters that result in lower 

entropies of the probability distributions for all articles are close in an information theory 

sense. 

We conclude that by using the two visualization models known as dendritic trees and cluster 

graphs, based on the calculated entropy-based information theory distances, an analyst can 

better manage the number of clusters by selecting proposed cluster pairs to merge in a 

sequence of decisions. 
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