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Sammanfattning 

I detta arbete utvecklas en lösning för analys av ett gravitationsbelastat väggelement 

som utsätts för luftstötvåg från sprängladdning. Lösningen är baserad på 

vidareutveckling av den konventionella metoden för analys med  hjälp av ett 

enfrihetsgradssystem (SDOF) för dynamisk responsanalys av strukturella 

komponenter. Gravitationsbelastningen appliceras på toppen av väggen med en 

motsvarande massa. Både kriterierna för böj- och skjuvbrott ingår i lösningen när den 

axiella belastningseffekten beaktas. Lösningen valideras med  finit 

elementmetodanalys och några experimentella data för att utforska potentialen för 

allmänna utvärderingar av dynamisk respons hos en gravitationsbelastad vägg som 

utsätts för luftstötsvågsbelastning. 

 

Nyckelord: byggnader, luftstötsvåg, SDOF, gravitation, axial belastning, betongvägg. 
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Summary 

In this work, a solution for the response of a gravity loaded wall element subjected to 

blast load is developed. The solution is based on the extension of the conventional 

single-degree-of-freedom (SDOF) method for the dynamic response analysis of 

structural components. The gravity axial load is applied on the top of the wall with an 

equivalent mass. Both the bending and shear failure criteria are included in the solution 

when the axial load effect is accounted for. The solution is validated with finite 

element analyses and some experimental data to explore potential of the solution for 

general engineering evaluations of the dynamic response of a gravity loaded wall 

subjected to the blast load. 

 

Keywords: Blast, SDOF, gravity load, axial loaded, walls, reinforced concrete. 
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1 Introduction 
For many buildings, the walls are constructed to carry the gravity load from the floors and 

roofs above them. Failure of such load bearing walls are often catastrophic, likely leading 

to the collapse of the construction. 

While structure elements such as the load bearing columns have received significant 

research efforts [1-13], the research on the load bearing walls are rather limited and 

inadequate [14-15]. The construction guidelines and rules often do not cover the load 

bearing walls [16] when they are subjected to severe airblast load. 

During the transient blast load from an explosion of high explosives or gases, walls often 

experience significant  pressure with very short durations in the time scale of miliseconds. 

The response of the walls will become very complex and differ significantly from that for 

static loads. Various experiments have indicated that the gravity load along the walls will 

significantly affect the response of the walls [17]. Design rules based on the quasi-static 

interaction diagram [16] are inadequate to ensure a reliable analysis of the dynamic 

response of the load bearing walls. 

Unlike the load bearing columns that are designed to carry significant gravity load and 

often having large thickness to height ratio, the walls often are relatively thin, compared to 

their width. For an explosion event, the main concerns for the columns are often the close 

and contact detonations that cause great local damages. The blast pressure against a wall  

surface will be a major concern due to the large surface area and small thickness. In 

addition, the reinforcement is often different for the walls compared to that for the load 

bearing columns. 

To understand the failure behavior of load bearing walls, experiment series have been 

performed [14-15]. These experiments indicated significant effect of the axial load on the 

response of the walls under the blast loading condition. 

Various numerical simulations based on the explicit dynamic code have been performed to 

analyze the experimental results [18-20]. It is shown that the numerical simulations are 

capable of capturing characteristics of the dynamic response of various reinforced concrete 

structures. The simulations are however rather complex and time consuming. For a timely 

evaluation, reasonable sizing tools and construction guidelines are needed. To establish 

guidelines, parametric studies are needed to investigate the effect of various parameters. 

Such work will need reliable fast-running solutions. 

The single degree of freedom solution (SDOF [21-24]) seems to be a good candidate for 

the analyses of wall response under the blast loading condition. In this work, the 

conventional SDOF solution is extended to include the gravity effect for the analysis of the 

characteristics of the load bearing walls under the blast loading condition. The solution is 

validated with both the experimental results from [14-15] and numerical simulations. 
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2 SDOF solution 
The equivalent single degree of freedom (SDOF) model is based on the energy 

equivalence of the actual and the single degree dynamic systems. The method has been 

developed since the 50’s. It has been proved that the solution is a reasonable method for a 

timely evaluation of the dynamic response of structural elements under the blast loading 

conditions [22-24]. 

With this solution, the actual pressure, mass, and stiffness of the wall (𝑝(𝑡) , 𝑀, and 𝐾) are 

transformed into the equivalent force, mass, stiffness (𝐹𝑒(𝑡), 𝑀𝑒, and 𝐾𝑒), and damping 

characteristics (𝑐𝑒) for a SDOF system as shown schematically in Fig.1. 

 

 

Figure 1: Schematic of the single degree of freedom (SDOF) representation of the 

dynamic structural response. 

 

The dynamic response of the structural element is approximated with a one-dimensional 

analytical solution of: 

 

𝑀𝑒
𝑑2𝑤

𝑑𝑡2
+ 𝑐𝑒

𝑑𝑤

𝑑𝑡
+ 𝐾𝑒𝑤 = 𝐹𝑒(𝑡)   (1) 

 

where 𝑤 is the characteristic movement of the structure. 𝑤 can be used to respresent the 

the maximum deflection of the structure. The keys for this solution is to determine the 

equivalent quantities for the mass (𝑀𝑒), stiffness (𝐾𝑒), force (𝐹𝑒), and the damping 

coefficient (𝑐𝑒). The energy equivalence is considered so that the equivalent system will 

have the same energy balance as the structure [25]. 

2.1 Energy equivalence 
To establish a SDOF system for the structural response analyses of a component, the 

following steps [23][25] is considered: 

1) Assume an appropriate deformed shape of the structural component 

2) Differentiate the deformed shape to obtain strains 

3) Substitute the strains into the appropriate relationship for strain energy 

per unit volume 

4) Integrate the strain energy per unit volume over the volume of the 

structural element to obtain the total strain energy 

5) Compute the kinetic energy  
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6) Compute the maximum work by integrating over the loaded area for the 

pressure times the deflection 

7) Obtain the deformation by equating the work and kinetic energy to the 

strain energy, and 

8) Substitute deformation into strain equation to obtain strains in the 

structure element. 

 

2.2 SDOF of walls 
It is assumed that the wall will have its thickness and maximum deflection considerably 

smaller than its height. The equivalent system is chosen so that the movement of the 

equivalent mass is the same as the maximum deflection of the wall. To consider a 

deflection function 𝜙(𝑥, 𝑡) for the neutral axis of a wall such as: 

 

𝜙(𝑥, 𝑡) = 𝑤0(𝑡)𝑓(𝑥/𝐿)    (2) 

 

In this equation, the height of the wall is 𝐿 and the length coordinate is 𝑥. 𝑤0(𝑡) is a 

characteristic deflection magnitude (the maximum deflection), and 𝑓(𝑥/𝐿)is the deflection 

shape function for 0 < 𝑓(𝑥/𝐿) < 1. It is a dimensionless function of the deformation of 

the wall for 0 < 𝑥 < 𝐿. 

The external work done by a blast load on the surface of the wall with a pressure 

distribution of 𝑝(𝑥, 𝑡) = 𝑁(𝑥)𝑔(𝑡) is computed by the integration of the pressure 

multiplied by the deflection according to: 

 

𝑊 = ∫ 𝑁(𝑥)𝑔(𝑡)𝜙(𝑥)𝑑𝑥
𝐿

0
    (3) 

 

In this equation: 

𝑁(𝑥) : is the pressure distribution function, 

𝑔(𝑡) :  is the time history of the blast load, 

𝜙(𝑥) : is the wall deflection function (the shape function). 

With a shape function 𝑓(𝑥/𝐿) for the deflection, the external work 𝑊 is determined by the 

following integration. 

 

𝑊 = 𝑔(𝑡)𝑤0(𝑡)𝐿 ∫ 𝑁(𝑥′)𝑓(𝑥′)𝑑𝑥′
1

0
   (4) 

 

In this equation, 𝑥′ = 𝑥/𝐿 is a normalized coordinate along the axis of the wall. 

For a uniform pressure on the surface of the wall, 𝑝(𝑥, 𝑡) = 𝑁(𝑥)𝑔(𝑡) = 𝑝(𝑡), The 

external work is determined by: 

 

𝑊 = 𝑝(𝑡)𝐿𝑤0 ∫ 𝑓(𝑥′)𝑑𝑥′
1

0
= 𝑝(𝑡)𝐿𝑤0𝐾𝐿   (5) 
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In this equation, 𝐾𝐿is a geometry constant determined by the shape function according to: 

 

𝐾𝐿 = ∫ 𝑓(𝑥′)𝑑𝑥′
1

0
    (6) 

 

The kinetic energy (𝐾.𝐸.) of the wall is determined by integrating the mass and velocity of 

the wall: 

 

𝐾.𝐸. =
1

2
∫ 𝑚(𝑥) [

𝑑

𝑑𝑡
𝜙(𝑥)]

2
𝑑𝑥

𝐿

0
   (7) 

 

In this equation, 𝑚(𝑥) is the distribution of mass along the length of the wall. 

Again, this equation is defined according to the dimensionless shape function 𝑓(𝑥′): 

 

𝐾.𝐸. =
1

2
(
𝑑𝑤0

𝑑𝑡
)
2
𝐿 ∫ 𝑚(𝑥′)[𝑓(𝑥′)]2𝑑𝑥′

1

0
   (8) 

 

For a uniformly distributed mass along the length of the wall. The solution for kinetic 

energy during the deflection becomes: 

 

𝐾.𝐸. =
1

2
(
𝑑𝑤0

𝑑𝑡
)
2
𝑀∫ [𝑓(𝑥)]2𝑑𝑥

1

0
=

1

2
(
𝑑𝑤0

𝑑𝑡
)
2
𝑀𝐾𝑀  (9) 

 

In this function, 𝑀 is the total mass, and 𝐾𝑀 is a geometry constant determined by the 

shape function according to: 

 

𝐾𝑀 = ∫ [𝑓(𝑥
′)]2𝑑𝑥′

1

0
    (10) 

 

During the dynamic deflection, the strain energy 𝑆. 𝐸. of the beam is determined by the 

beam theory based on the curvature of the deflection along the wall according to: 

 

𝑆. 𝐸.=
1

2
∫ 𝐸𝐼(𝑥) [

𝑑2

𝑑𝑥2
𝜙(𝑥)]

2

𝑑𝑥
𝐿

0
   (11) 

 

For a given deflection function of  𝑓(𝑥′), eq.(11) is solved: 

 

𝑆. 𝐸.=
1

2𝐿3
𝑤0
2(𝑡) ∫ 𝐸𝐼(𝑥′)[𝑓′′(𝑥′)]2𝑑𝑥′

1

0
   (12) 

 

For the wall with a constant section along its length, 𝐸𝐼(𝑥) = 𝐸𝐼 = 𝑐𝑜𝑛𝑠𝑡., the strain 

energy is determined by: 
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𝑆. 𝐸.=
𝐸𝐼

2𝐿3
𝑤0
2(𝑡) ∫ [𝑓′′(𝑥′)]2𝑑𝑥′

1

0
=

𝐸𝐼

2𝐿3
𝑤0
2(𝑡)𝐾𝐾  (13) 

 

Again in this equation, 𝐾𝐾 is a geometry constant determined by the shape function 

according to: 

 

𝐾𝐾 = ∫ [𝑓′′(𝑥
′)]2𝑑𝑥′

1

0
    (14) 

 

For the wall subjected to a blast load, the external work on the corresponding SDOF 

system should be: 

 

𝑊 = 𝐹𝑒𝑤0     (15) 

 

With 𝑤0 as a characteristic displacement determined by the equivalence of work according 

to: 

 

𝐹𝑒𝑔(𝑡)𝜙0 = ∫ 𝑁(𝑥)𝑔(𝑡)𝜙(𝑥)𝑑𝑥
𝐿

0
   (16) 

 

The equivalent force for the blast load  𝑝(𝑡) will be determined with the constant 𝐾𝐿 

determined by eq.(6): 

 

𝐹𝑒𝑤0 = 𝑝(𝑡)𝐿𝑤0𝐾𝐿    (17) 

 

This gives a solution for the equivalent force 𝐹𝑒: 

 

𝐹𝑒 = 𝑝(𝑡)𝐿𝐾𝐿 = 𝐾𝐿𝑃(𝑡)    (18) 

 

Here, 𝑃(𝑡) = ∫ 𝑁(𝑥)𝑔(𝑡)𝑑𝑥
𝐿

0
 is the total force on the surface of the wall. 

The equivalent kinetic energy of the wall for the SDOF system is defined by the 

characteristic displacement 𝜙0 and the equivalent mass 𝑀𝑒 according to: 

 

𝐾.𝐸. =
1

2
𝑀𝑒 (

𝑑𝜙0

𝑑𝑡
)
2
    (19) 

 

The equivalent kinetic energy of the SDOF (eq.(19)) should be equal to the kinetic energy 

of the wall: 

 

𝐾.𝐸. =
1

2
𝑀𝑒 (

𝑑𝜙0

𝑑𝑡
)
2
=

1

2
(
𝑑𝑤0

𝑑𝑡
)
2
𝑀𝐾𝐿   (20) 
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Assume the displacement of the SDOF representing the maximum deflection of the wall 

(𝜙0 = 𝑤0), the equivalent mass 𝑀𝑒 is solved: 

 

𝑀𝑒 = 𝐾𝑀𝑀     (21) 

 

The equivalent strain energy of the SDOF is defined by: 

 

𝑆. 𝐸.=
1

2
𝐾𝑒𝑤0

2     (22) 

 

The equivalent strain energy should be equal to the strain energy of the wall according to: 

 

𝑆. 𝐸.=
1

2
𝐾𝑒𝑤0

2 =
𝐸𝐼

2𝐿3
𝑤0
2𝐾𝐾    (23) 

 

The equivalent stiffness of SDOF is thus solved according to: 

 

𝐾𝑒 = 𝐾𝐾
𝐸𝐼

𝐿3
     (24) 

 

According to the beam theory, the sectional bending moment in the wall is determined for 

small deflection based on the curvature: 

 

𝑀𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 𝐸𝐼
𝑑2

𝑑𝑥2
𝜙(𝑥)    (25) 

 

With the shape function 𝑓(𝑥′), the bending moment is determined with the curvature of 

the deformation (𝑓′′(𝑥)) by: 

 

𝑀𝑏𝑒𝑛𝑑𝑖𝑛𝑔 = 𝑤0
𝐸𝐼

𝐿2
𝑓′′(𝑥′)    (26) 

 

The equivalent SDOF dynamic system of the wall will be determined by a motion function 

of: 

 

𝑀𝑒
𝑑2𝑤0

𝑑𝑡2
+ 𝑐𝑒

𝑑𝑤0

𝑑𝑡
+𝐾𝑒𝑤0 = 𝐹𝑒(𝑡)   (27) 

 

For the wall, the equivalent motion function becomes: 

 

𝐾𝑀𝑀
𝑑2𝑤0

𝑑𝑡2
+ 𝑐𝑒

𝑑𝑤0

𝑑𝑡
+𝐾𝐾

𝐸𝐼

𝐿3
𝑤0 = 𝐾𝐿𝑝(𝑡)𝐿   (28) 
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As long as the shape function 𝑓(𝑥′) is deterimined, 𝐾𝑀, 𝐾𝐾, and 𝐾𝐿 are determined 

according to eq.(21), eq.(14), and eq.(6). The single degree equivalent dynamic system is 

determined by eq.(27-28) for the characteristic deflection of the wall, 𝑤0, as a function of 

time for a blast pressure of 𝑝(𝑡). 

When the SDOF method first was proposed [23][25], the computational capability and 

experimental evidence was inadequate, the dynamic damping was often ignored for the 

following arguments: 

1) Only one cycle of response of the structure was of interest. 

2) In one cycle, the attenuation of the response produced by structural 

damping is small. 

3) Ignoring damping is a conservative approach. 

4) Damping values for structures are seldom known. 

5) The energy dissipated through plastic deformation is much greater than 

that dissipated by normal structural damping. 

However, the blast pressure due to detonation of explosives is often characterized with 

very high magnitude and short duration. For such a load, the effect of system damping will 

often be significant. Today, the computational capability has been significantly improved. 

Many experiments have indicated the importance of the damping in the response. With an 

asymmetrically reinforced wall, the response during several cycles has often to be 

considered to capture the rebound failure that may occur for certain types of blast load. 

None of the above arguments will be defendable anymore.  

To include the damping effect will greatly improve the understanding of the structural 

response under the blast loading condition. In this work, the damping effect is included for 

the SDOF solution. 

2.3 Reaction force 
It is not unusual to consider the shear failure for the walls subjected to the blast load [26-

27]. The shear failure may sometimes reduce the resistance of a wall against blast load 

[28-29]. To study the shear failure, the reaction forces at the supports of the wall have to 

be considered. 

During the blast load, the reaction force of the wall consists of both the inertial and 

reaction force. For a simple supported wall, a schematic of the forces on the wall is shown 

in Fig. 2. In this figure, 𝑁𝑔(𝑡) is the blast pressure, and 𝑉(𝑡) is the reaction force on the 

support. Only a part of the beam is considered in the figure covering the distance of 𝑋 until 

the shear force becomes zero. Within this section, the maximum inertial force occurs at the 

location with the largest deflection. 
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Figure 2: Schematic of the forces acting on a supported wall under the dynamic loading 

condition. 

 

The inertia forces is determined by the acceleration of the wall according to: 

 

𝐹𝐼𝑛𝑒𝑟𝑡𝑖𝑎 = ∫ 𝜌𝐴𝜙′′(𝑥)𝑑𝑥
𝑋

0
    (29) 

 

In this equation, A is the cross sectional area of the wall and 𝜌 is the density of the wall. 𝑋 

is the distance along the wall from the support to where the shear force becomes zero. For 

example for the simply supported wall subjected to a uniform pressure, the shear force will 

become zero at 𝑋 = 𝐿/2. 

Consider the moment equilibrium with respect to the inertia force center for section 𝑋. 

There is a condition of: 

 

𝑉(𝑡)𝑎 +𝑀𝐴 −𝑀𝐵 − 𝑝(𝑡)𝑋 (𝑎 −
𝑋

2
) = 0   (30) 

 

In this equation, 𝑝(𝑡) = 𝑁𝑔(𝑡) is the blast pressure. 𝑉(𝑡) is the reaction force at the 

support, 𝑀𝐴 is the sectional bending moment on the left hand end at the support, and 𝑀𝐵 is 

the sectional bending moment at a distance 𝑋 from the support. 𝑎 is the center of inertia 

force. Eq.(30) gives a general solution for the reaction force at the support: 

 

𝑉(𝑡) =
𝑀𝐵−𝑀𝐴

𝑎
+ 𝑝(𝑡)𝑋 (1 −

𝑋

2𝑎
)   (31) 

 

To determine the center 𝑎 of inertia force, the deformation function of the wall has to be 

considered. At the location through the center of inertia load, the equilibrium of bending 

moment requires: 

 

∫ 𝜌𝐴𝜙̈(𝑥)(𝑎 − 𝑥)𝑑𝑥 −
𝑎

0
∫ 𝜌𝐴𝜙̈(𝑥)(𝑥 − 𝑎)𝑑𝑥 = 0
𝑋

𝑎
  (32) 

 

This gives a solution for the center of inertia force: 
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𝑎

𝐿
=

∫ 𝑓(𝑥′)𝑥′𝑑𝑥′
𝑋/𝐿

0

∫ 𝑓(𝑥′)𝑑𝑥′
𝑋/𝐿

0

    (33) 

 

In this function, 𝑓(𝑥′) is the shape function of the wall. For example for a symmetrical 

deflection with respect to the center of the wall, the reaction force at the support is solved 

as: 

 

𝑉(𝑡) =
3(𝑀𝐵−𝑀𝐴)

2𝑋
+
𝑋

4
𝑝(𝑡)    (34) 

 

According to this solution, the reaction force will be determined by the pressure 𝑝(𝑡), the 

shear free distance 𝑋 , and the sectional moment at the support and at  𝑋. For multiple 

supported walls, the sectional moment 𝑀𝐴 and 𝑀𝐵 are determined by the curvature of the 

shape function according to eq.(26). 

2.4 Numerical solution 
The general SDOF motion function is governed by: 

 

𝑑2𝑤(𝑡)

𝑑𝑡2
+ 2𝛽

𝑑𝑤(𝑡)

𝑑𝑡
+𝜔0

2(𝑡)𝑤(𝑡) = 𝑓(𝑡)   (35) 

 

In this equation: 

𝛽 =
𝑐

2𝑚(𝑡)
: is the half of the damping parameter 

𝜔0 = √
𝑘(𝑡)

𝑚(𝑡)
: is the nominal frequency 

𝑓(𝑡) =
𝑝(𝑡)

𝑚(𝑡)
: is the nominal load 

𝑚(𝑡): is the mass as a function of time for the SDOF system 

𝑘(𝑡): is the stiffeness of the SDOF 

 

The damping in eq.(35) accounts for the viscous effect due to the movement (velocity) of 

the mass. The damping may be further characterized with a damping coefficient 𝜁 defined 

by the nominal frequency 𝜔0 of the motion equation: 

 

𝛽 = 𝜁𝜔0     (36) 

 

The damping coefficient has a value range 𝜁 = 0 − 1. For 𝜁 = 0 there will be no damping 

in the system while for 𝜁 = 1, the system will be fully damped. It is generally accepted 

that for buildings, damping coefficient falls between 2 percent and 10 percent of critical 

damping value (𝜁 = 0.02 − 0.1). 

The basic dynamic system becomes: 

 

𝑑2𝑤(𝑡)

𝑑𝑡2
+ 2𝜁𝜔0(𝑡)

𝑑𝑤(𝑡)

𝑑𝑡
+ 𝜔0

2(𝑡)𝑤(𝑡) = 𝑓(𝑡)   (37) 
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Generally, the equation has to be solved numerically when the coefficient for the mass, 

nominal frequency, and damping are a function of the force 𝑓(𝑡), time 𝑡 and movement 

𝑤(𝑡). There are many different time integration numerical methods to solve the above 

function. In this work, the average acceleration method is used [30]. 

To solve the dynamic system numerically, the simulation period is determined at first 

according to the number of response periods 𝑛 needed to be studied: 

 

𝑡_𝑒𝑛𝑑 = 𝑛(2𝜋)/𝜔0    (38) 

 

The time step for the numerical simulation is determined with the total steps 𝑁 according 

to: 

 

∆𝑡 =
𝑛(2𝜋)

𝜔0𝑁
     (39) 

 

The numerical solution consists of the following steps. 

 

Step 1. At 𝑡 = 0: compute the initial acceleration based on the initial 

pressure and mass: 

 

𝑤̈(0) =
𝑝(0)

𝑚(0)
    (40) 

 

For this step, the initial velocity and displacement are given for 𝑤̇(0) = 0  

and 𝑤(0) = 0. 

Step 2. Increment for a time step to 𝑡 = 𝑡 + ∆𝑡, 

Step 3. At 𝑡 = 𝑡 + ∆𝑡, compute the acceleration according to: 

 

𝑤̈𝑡 =
1

𝑚+
1

2
𝑐∆𝑡+

1

4
𝑘∆𝑡2

[𝑓(𝑡) − 𝑘 (𝑤𝑡−∆𝑡 + 𝑤̇𝑡−∆𝑡∆𝑡 +
1

4
𝑤̈𝑡−∆𝑡∆𝑡

2) −

𝑐 (𝑤̇𝑡−∆𝑡 +
1

2
𝑤̈𝑡−∆𝑡∆𝑡)]   (41a) 

 

The velocity is determined by the acceleration according to: 

 

𝑤̇𝑡 = 𝑤̇𝑡−∆𝑡 +
1

2
(𝑤̈𝑡 + 𝑤̈𝑡−∆𝑡)∆𝑡  (41b) 

 

The displacement is determined by: 

 

𝑤𝑡 = 𝑤𝑡−∆𝑡 +
1

2
(𝑤̇𝑡 + 𝑤̇𝑡−∆𝑡)∆𝑡  (41c) 
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Step 4. Repeat Step 2 and Step 3 until 𝑡_𝑒𝑛𝑑 defined by eq.(38). 

 

Note that if 𝑤𝑡=0 and 𝑤̇𝑡=0 are zero, the mass will not move as long as 𝑝(𝑡) = 0. However 

when 𝑓(𝑡) ≠ 0, eq.(40) will give an acceleration and the motion will start. Thus, this 

system of equations is self-starting and requires no special starting provisions. 
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3 Gravity effect 
For walls subjected to the gravity load from the upper structure, the SDOF solution in 

Section 2.2 has to be modified to take account for the effect of gravity. A reasonable 

simplification is to consider the wall subjected to the gravity load from a mass acting at the 

top, equivalent to the mass of the upper structures that the wall has to bear, see the right 

hand side of the schematic as shown in Fig.3. 

 

 

Figure 3: Schematic of the simplification for a gravity loaded wall. 

 

During the bending of the wall, the height of the wall will change due to the horizontal 

deflection of its axis, leading to acceleration of the mass above the wall. The acceleration 

will create an inertia force in the mass that may significantly change the axial force acting 

on the top of the wall. This effect may be negligible for a quasi-static load, but for a blast 

load, considerable acceleration may occur on the mass and the load on the top of the wall 

can be significantly different from that for a static loading condition. 

 

3.1 Mass movement 
Two major types of the axial displacement of the mass are considered. When the wall is 

subjected to the blast pressure, the height of the wall will change due to the transverse 

deflection (bending) of the wall. There will also be an arching effect due to the rigid 

rotation of the wall. The arching effect is illustrated in Fig.4. In this paper the former is 

called the flexural axial displacement, and the latter (rigid rotation) is called the arching 

displacement. 
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Figure 4: Deflection due to arching effect,the rigid rotation of the axis. 

 

For the flexural displacement, the axial dimension of the neutral axis is considered. For a 

given deflection 𝑤 = 𝜙(𝑥), the axial dimension of the beam is determined by an integral 

of: 

 

𝑆 = ∫ 𝑑𝑆
𝐿

0
= ∫ √1 + (

𝑑𝑤

𝑑𝑥
)
2𝐿

0
𝑑𝑥   (42) 

 

With a series extension, the differential length 𝑑𝑆 is approximated according to: 

 

𝑑𝑆 = 𝑑𝑥√1 + (
𝑑𝑤

𝑑𝑥
)
2
= 𝑑𝑥 [1 +

1

2
(
𝑑𝑤

𝑑𝑥
)
2
−

1

2∙4
(
𝑑𝑤

𝑑𝑥
)
4
+⋯]  (43) 

 

At small curvature (𝑑𝑤/𝑑𝑥), the length given in eq.(42) may be approximate with the first 

two terms of the series extension of eq.(43): 

 

𝑆 ≈ ∫ [1 +
1

2
(
𝑑𝑤

𝑑𝑥
)
2
]𝑑𝑥

𝐿

0
≈ 𝐿 +

1

2
∫ (

𝑑𝑤

𝑑𝑥
)
2
𝑑𝑥

𝐿

0
   (44) 

 

The axial flexural displacement of the neutral axis 𝛿0 is then approximated according to: 

 

𝛿0 = 𝑆 − 𝐿 =
1

2
∫ (

𝑑𝑦

𝑑𝑥
)
2
𝑑𝑥

𝐿

0
=

1

2𝐿
𝑤0
2 ∫ [𝑓′(𝑥′)]2𝑑𝑥′

1

0
=

1

2𝐿
𝐾𝐴𝑤0

2 (45) 

 

This axial displacement will be determined with a constant: 

 

𝐾𝐴 = ∫ [𝑓
′(𝑥′)]2𝑑𝑥′

1

0
    (46) 

 

This parameter is determined by the shape function 𝑓(𝑥′) of the wall. 
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The axial displacement will consist of both the deflection of the neutral axis, and the 

displacement due to the arching effect. According to the model as shown in Fig.4, the 

deflection due to arching may be approximated by considering the rigid rotation of the 

wall due to non-uniform transverse deflection. Due to the rigid rotation, an axial 

displacement 𝛿𝑎𝑟𝑐ℎwill occur at the end. The displacement can be approximated by: 

 

𝛿𝑎𝑟𝑐ℎ =
2𝐷

𝑑
|𝑤0| (1 −

|𝑤0|

2𝑑
)    (47) 

 

In this function, 𝐷 is approximated according to: 

 

𝐷 = √𝑙0
2 + 𝑑2 − 𝑙0    (48) 

 

Here, 𝑙0 is the Euler’s effective length and 𝑑 is the thickness of the wall. The length 𝑙0 will 

depend on the bending mode. 

The arching effect occurs after the rigid rotation. This effect will be affected by plastic 

yield or tension failure. The equivalent axial movement of the mass is thus determined by 

both the flexural and arching displacement according to: 

 

𝛿𝑎𝑥𝑖𝑎𝑙 = {
0                               after tension failure 
−𝛿0                                after plastic yield
𝛿𝑎𝑟𝑐ℎ − 𝛿0                                  otherwise

  (49) 

 

From eq.(45) and eq.(48), the elastic axial displacement will be expressed as: 

 

𝛿𝑎𝑥𝑖𝑎𝑙 =
2𝐷

𝑑
|𝑤0| (1 −

|𝑤0|

2𝑑
) −

1

2𝐿
𝐾𝐴𝑤0

2   (50) 

 

This displacement is determined by both the shape (𝐾𝐴) and deflection (𝑤0) of the wall. 

3.2 Eigenvalue 
The axial load will change the nature frequency of the wall.  For a beam subjected to an 

axial compression, Galef [31] gives an equation for the response frequency. Due to the 

axial load 𝑇, the nature frequency of the beam will be changed to: 

 

𝜔(𝑇) = 𝜔0 (1 +
𝑇

𝑃𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
)
1/2

    (51) 

 

In this equation, 𝑇 is the axial load and 𝑃𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 is the Euler’s elastic buckling load for the 

wall. The buckling load is determined by: 

 

𝑃𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔 =
𝜋2𝐸𝐼

𝑙0
2     (52) 
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Again, 𝑙0 in this equation is the Euler’s effect beam length. 

Further improvement is made by Bokaian [32] to introduce a parameter γb to account for 

the effect of tension for a more general case: 

 

𝜔(𝑇) = 𝜔0 (1 + 𝛾𝑏
𝑇

𝑃𝑏𝑢𝑐𝑘𝑙𝑖𝑛𝑔
)
1/2

   (53) 

 

Eq.(53) can be used in the numerical simulation to modify the eigenvalue 𝜔0 for the 

SDOF system of eq.(35)-(38). 

3.3 SDOF for gravity loaded walls 
For a gravity loaded wall simplified with the mass model as shown in left hand side of 

Fig.3, the work done by the blast load consists of both the deflection of the wall and the 

movement of the mass: 

 

𝑊 = ∫ 𝑁(𝑥)𝑔(𝑡)𝜙(𝑥)𝑑𝑥
𝐿

0
+𝑚0𝑔(𝛿0 − 𝛿𝑎𝑥𝑖𝑎𝑙) (54) 

 

In this equation, 𝑚0 is the mass on the top of the wall. In addition to the bending 

deflection, the work done by gravity from the movement of the mass should be considered. 

According to the solution for the axial movement of the mass according to eq.(50), the 

total work will be determined as a function of the bending deflection 𝑤0: 

 

𝑊 = {

𝑝(𝑡)𝑤0𝐿𝐾𝐿                                                      after tension failure

𝑝(𝑡)𝑤0𝐿𝐾𝐿 +
𝑚0𝑔

2𝐿
𝐾𝐴𝑤0

2                                           after crushing 

𝑝(𝑡)𝑤0𝐿𝐾𝐿 +𝑚0𝑔 [
1

2𝐿
𝐾𝐴𝑤0

2 −
2𝐷

𝑑
|𝑤0| (1 −

|𝑤0|

2𝑑
)]       otherwise

 (55) 

 

Consequently according to eq.(15), the equivalent load for SDOF becomes: 

 

𝐹𝑒(𝑡) =

{
 

 
𝐾𝐿𝑃(𝑡)                                                         after tension failure

𝐾𝐿𝑃(𝑡) +
1

2𝐿
𝑚0𝑔𝐾𝐴|𝑤0|                                       after crushing

𝐾𝐿𝑃(𝑡) +𝑚0𝑔 [
𝐾𝐴

2𝐿
|𝑤0| −

2𝐷

𝑑
(1 −

|𝑤0|

2𝑑
)]                    otherwise

 (56) 

 

According to the solution for the axial displacement of eq.(50), the solution for the kinetic 

energy of the wall with the top mass becomes: 

 

𝐾.𝐸. =
1

2
[
𝑑𝑤0

𝑑𝑡
]
2
𝐾𝑀𝑀+

{
 
 

 
 0                                                  after tension failure
1

2
𝑚𝑎 [

𝑑𝑤0

𝑑𝑡
]
2
(
|𝑤0|

𝐿
𝐾𝐴)

2

                       after crushing

1

2
𝑚𝑎 [

𝑑𝑤0

𝑑𝑡
]
2
[
2𝐷

𝑑
[(1 −

|𝑤0|

𝑑
)] −

|𝑤0|

𝐿
𝐾𝐴]

2

 otherwise

 (57) 
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The equivalent mass (𝑀𝑒) for the SDOF system will become: 

 

𝑀𝑒 = 𝐾𝑀𝑀+

{
 
 

 
 0                                                               after tension failure

𝑚0 (
|𝑤0|

𝐿
𝐾𝐴)

2

                                                   after crushing 

𝑚0 [
2𝐷

𝑑
[(1 −

|𝑤0|

𝑑
)] −

|𝑤0|

𝐿
𝐾𝐴]

2

                              otherwise

     (58) 

 

Again for small deformations, the strain energy for the wall is assumed to be dominant by 

bending according to eq.(11) and the equivalent stiffness will be the same as eq.(24). 
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4 Sectional quantities 
A typical reinforced concrete wall consists of both the concrete and the reinforcement 

bars. A schematic is  shown in Fig.5. In this figure, 𝑑 is the thickness.  The concrete is 

shown as the shaded section and the reinforcement bars are shown as solid dots. The 

reinforcement may be sized according to the expected loading condition of the wall. More 

rebars may be placed close to the surface that is expected to be subjected to the tension 

stress. In this figure, 𝑐𝑡is the covering distance on the tension side of the wall, and  𝑐𝑐 is 

the covering distance on the compression side. In this figure, 𝑎 is the distance from the 

compression surface to the rotation plane. This dimension is determined by the mechanical 

property of both the rebar and the concrete. 

 

 

Figure 5: Schematic of a reinforced concrete wall cross section. 

4.1 Area moment of inertia 
The area moment of inertia with respect to the rotation plane should be determine to 

determine the bending resistance of a wall. For a reinforced concrete wall, the 

superposition method is considered. 

 

 

Figure 6: Basic geometry of the concrete and rebar. 

 

To determine the moment of inertia for the wall section as shown in Fig.5, the basic 

geometry of the concrete and rebar for the wall as well as the parallel axis theorem are 

considered, see Fig.6. In this figure, 𝑤 is the coordinate through the thickness, and 𝑦 is the 

coordinate along the width of the wall. This results in a solution for the area moment of 

inertia with respect to the rotation axis 𝑎  (Fig.5) to be: 

 

𝐼𝑎 =
𝑊𝑑3

12
+𝑊𝑑 (𝑎 −

𝑑

2
)
2
+ ∑ 𝜋𝑟𝑖

2 [
𝜋𝑟𝑖

2

4
+ (𝑎 − 𝑒𝑖)

2]𝑁
𝑖=1   (59) 
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In this equation, 𝑁 is the number of rebars. For each rebqar, 𝑟𝑖 and 𝑒𝑖 are the radius and its 

offset from the compression side of the wall surface, see the dimensions shown in Fig.5. 

4.2 Equivalent elastic modulus 
It is assumed that both rebars and the concrete will have the same strain under the bending 

load. The sectional forces will consist of the forces in the concrete and in rebars: 

 

𝑁𝑑 = 𝑁𝑠 +𝑁𝑐     (60) 

 

In this relation, 𝑁𝑑 is the total axial load. 𝑁𝑠 is the load on the rebar (steel), and 𝑁𝑐 is the 

load on the concrete. 

According to Hook’s law, the equivalent Young’s modulus 𝐸𝑒 of the wall can be 

determined such as: 

 

𝐸𝑒 =
𝐴𝑠𝐸𝑠+𝐴𝑐𝐸𝑐

𝑊𝑑
     (61) 

 

In this equation, 𝐴𝑠 is the section area of the sum of the rebar, and 𝐴𝑐 is the section area of 

the concrete. 

4.3 Whitney’s solution 
The remaining quantity is the location of the rotation plane, as shown in Fig.5. According 

to the construction rule [16], the Whitney solution [33-34] is considered. 

 

 

Figure 7: Schematic of the Whitney solution to determine the moment capability of a 

reinforced beam or wall section. 

 

In the 1930s, Whitney [33] proposed a method for the use of a rectangular compressive 

stress distribution to approximate the bending capability of a reinforced wall. It was 

assumed that the concrete will not contribute to the tensile strength due to its low value 

compared to either the compression strength of the concrete or the tension strength of the 

rebar. The model is shown schematically in Fig.7. 

According to this model, the compression capability 𝐶 of the concrete is determined 

[16][32] according to an empirical approximation of: 
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𝐶 = 0.85𝑎𝑏𝑓𝑐     (62) 

 

For which: 

 

𝑎 = 𝛽1𝑐     (62a) 

 

𝛽1 = {
0.85,                                                                 𝑓𝑐 ≤ 28 MPa 

𝑚𝑎𝑥 [0.85 − 0.05 (
𝑓𝑐−28

6.9
) , 0.65]                 otherwise

  (62b) 

 

In these relations, 𝑐, as shown in Fig.7, is the effective section for the compression stress 

determined by the compression strength of the concrete. 

The tensile capability of the reinforced wall is determined by the tension strength of rebar 

on the tensile part of wall. The tension strength is determined by: 

 

𝑇 = 𝐴𝑠𝑡𝜎𝑦     (63) 

 

In this relation, 𝐴𝑠𝑡 is the area of rebars subjected to the tensile load and 𝜎𝑦 is the yield 

strength of the rebar. 

To ensure that failure occurs when the tension strength of rebars and the compression 

strength of the concrete are simultaneously reached, it requires: 

 

𝐶 (𝑐 −
𝑎

2
) = 𝑇(𝑑 − 𝑐)    (64) 

 

In this relation, 𝑑 = ℎ − 𝑐𝑡  is the effective depth of the rebar. Eq.(64) results in a 

condition: 

 

0.85𝛽1𝑏𝑓𝑐(1 − 0.5𝛽1)𝑐
2 + 𝐴𝑠𝑡𝜎𝑦𝑐 − 𝐴𝑠𝑡𝜎𝑦𝑑 = 0  (65) 

 

Solution of this equation for the effective compression length results in: 

 

𝑐 =
−𝐵±√𝐵2−4𝐴𝐶′

2𝐴
    (66) 

 

In this solution: 

 

𝐴 = 0.85𝛽1𝑊𝑓𝑐(1 − 0.5𝛽1)   (66a) 

𝐵 = 𝐴𝑠𝑡𝜎𝑦    (66b) 

𝐶′ = −𝐴𝑠𝑡𝜎𝑦(𝑑 − 𝑐𝑡)   (66c) 
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For a balanced solution when the rebar and concrete both reach their respective maximum 

capability, there will be a residual axial force. The axial force at the maximum bending 

capability will be determined according to: 

 

𝑁𝑑 = 𝐶 − 𝑇     (67) 

 

This results in a solution for the axial load at the maximum bending capability of the 

reinforced wall: 

 

𝑁𝑑 = 0.85𝛽1𝑐𝑏𝑓𝑐 − 𝐴𝑠𝑡𝜎𝑦    (68) 

 

By sizing the reinforcement bars according to𝑁𝑑 = 0, the optimal rebar will be determined 

according to: 

 

𝐴𝑠𝑡 =
0.85𝛽1𝑐𝑏𝑓𝑐

𝜎𝑦
    (68a) 

 

Note that 𝑐 is a function of 𝐴𝑠𝑡, iterative solution is required for eq.(68a). The 

reinforcement determined by eq.(68a) will ensure the maximum bending capability is 

reached for a wall without the axial load. 



      FOI-R—5202--SE 

27 

 

5 Sectional capability 
The sectional moment capability of a reinforced concrete wall is determined by both the 

strength of concrete and the strength of rebar. For a given wall, the maximum tension and 

compressive capability, and thus the maximum moment capability will be different 

depending on which parameter is strongest. They are determined by the construction of the 

wall. In the following sections, these strengths will be separately discussed. 

5.1 Tension capability 
The maximum sectional tension capacity of the wall with a constant section is determined 

by either the strength of the rebar or the strength of the concrete, whichever is strongest. 

The maximum tensile load that a wall can take is determined by: 

 

(𝑁𝑑)𝑚𝑖𝑛 = −𝑚𝑎𝑥(𝐴𝑐𝑓𝑡, 𝐴𝑠𝜎𝑦  )   (69) 

 

In this relation, 𝐴𝑐𝑓𝑡 is the tension capability of the concrete, and 𝐴𝑠𝜎𝑦 is the tension 

capability of the rebar. They are determined by the strength of the material and their 

respective sectional area. In eq.(69), 𝐴𝑐 and 𝑓𝑡 are the sectional area and the tensile 

strength of the concrete. 𝐴𝑠 and 𝜎𝑦 are the sectional area and tension strength of the rebar. 

The sectional tension capability will be determined by the maximum value of the tension 

capability of either the concrete or the rebar. 

5.2 Compression capability 
The maximum sectional compression capacity is determined by both the strength of the 

concrete and rebar: 

 

(𝑁𝑑)𝑚𝑎𝑥 = 𝐴𝑐𝑓𝑐 + 𝐴𝑠𝜎𝑦    (70) 

 

At compression, both the reinforcement and the concrete will contribute to the strength of 

the wall. In this equation: 

 

𝐴𝑐: is the concrete cross area 𝐴𝑐 = 𝑊𝑑 − 𝐴𝑠 

𝐴𝑠: is the rebar cross area 

𝑓𝑐: is the concrete compression strength 

𝜎𝑦: is the rebar yield stress 

 

5.3 Moment capability 
The moment capability is determined by the Whitney’s solution as given in 4.3. According 

to the solution, the maximum sectional bending capability is determined by: 

 

𝑀𝑑 = 𝐴𝑠𝑡𝜎𝑦(𝑑 − 𝑐𝑡 − 𝑐)    (71) 



  FOI-R—5202--SE 

28 

 

At the maximum sectional bending capability, there will be an axial load determined by 

eq.(68). 

5.4 Euler’s buckling limit 
For a wall with a considerable height to thickness ratio, the buckling of the wall will limit 

its sectional load bearing capability. The buckling is determined by the condition when the 

work done by the axial load becomes larger than the strain energy of the wall due to 

deflection. At this condition, the wall loses its load bearing capability. The Euler’s elastic 

buckling load is determined according to eq.(52). 

5.5 Interaction diagram 
The axial loaded wall will be subjected to both the bending moment due to the blast load 

and the axial load due to gravity and dynamic response of the mass above the wall. A 

simplified, but yet conservative, solution is to consider a general interaction diagram as 

shown in Fig.8, with straight interpolation between the limit load cases. 

 

 

Figure 8: Interaction diagram for the axial loaded wall subjected to the blast loading 

condition. 

 

In this diagram, the vertical axis is the axial load and the horizontal axis is the bending 

moment. The sectional capability of the wall is limited by the shaded area. This area is 

determined by tension, compression, as well as the moment capability of the wall. The 

buckling will put anoother limit on the sectional capability. 

For a given wall, the maximum tension capability is given in eq.(69), the maximum 

compression capability is given in eq.(70). The balanced bending capability is determined 

by eq.(68) and eq.(71). Notice that the diagram may not be symmetric for the 

asymmetrically reinforced walls. The buckling load determined by eq.(52)  may limit the 

compression capability of thin walls.. 

An even more conservative solution is shown in Fig.8 as the boundary limited by the 

dashed red lines. This solution is often found in the literature. It is however considered to 

be over-conservative even though it is simpler to apply the solution. 
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6 Failure criteria 
The SDOF solution will not directly provide failure criteria for a wall under the blast 

loading condition. The failure should be considered according to the sectional capability of 

the wall. From the SDOF simulation, the deflection of the wall is estimated. From the 

deflection, the sectional moment is determined according to the beam theory. Together 

with the axial load determined by the gravity solution, the critical sectional moment will 

be determined by the interaction diagram as shown in Fig.8. The critical section will turn 

into a plastic hinge [23] when the sectional moment exceeds its capability. At the plastic 

hinge, the moment resistance will reach its maximum value and become constant. 

Consequently, the deflection shape of the wall will change due to the forming of plastic 

hinge. Fig.9 shows an example of the basic assumption for the failure sequence of a wall 

with constrained supports. During the initial blast load for this case, the maximum moment 

due to the deflection will occur close to the support areas where there will have the 

maximum curvature. When the bending moment at either one of the locations exceeds the 

sectional moment capability, plastic deformation will occur to allow excessive 

deformation without significant increase in the rotational resistance. 

The deflection shape will change from the fixed ends condition to the one with a single 

fixed end and a free rotation end, see the second figure from the left in Fig.9. For this 

deformation shape, the maximum bending moment will occur at the lower end of the 

support.  

When the sectional capability at the lower support is also exceeded, the deflection shape 

will further change to a free support type as shown as the third picture from the left of 

Fig.9. For this simply supported wall, the maximum sectional moment will move to the 

center. When the sectional capability at the center of the wall is also exceeded, the third 

plastic hinge will be formed at the center of the wall. The deflection will then change to a 

free hinged form with only the plastic moment acting at the hinges to resist further 

bending of the wall. 

 

 

Figure 9: Schematic of the failure sequence of an axially loaded wall subjected to a blast 

load. 

 

These failure patterns are related to the performance levels as defined by FEMA [35]. For 

example when one hinge has been formed, the structure will be classed as “Immediate 

Occupancy” (IO) level. When two hinges have been formed it is the “Life Safety” (LS) 

level. When three hinges have been formed, it is called the “Collapse Prevention” (CP) 

level. Other terms are also used to describe the damage extent. When all the plastic hinges 

are formed, it also called the “severe” damage, and when the first hinge is formed as 

shown in Fig.9, the damage may be named “minal”. 
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7 Shear Failure 
So far, the solution is focused on the bending dominant failure. This is also the likely 

failure mode of relatively thin walls. For a blast load with high magnitude and very short 

duration, the acceleration in the middle of the wall may become excessive with resulting 

significant inertia resistance. The failure mode can change from bending dominant to shear 

dominant. 

For a blast load with extreme amplitude, the reaction force at the supports of the wall may 

become high enough to create a local shear stress that exceeds the shear strength of the 

wall.  As given in eq.(34), the reaction force is proportional to the magnitude of the 

pressure. When the shear stress exceeds the shear strength of the concrete, the wall may 

fail in a pure shear failure mode. The condition is determined by considering the average 

sectional shear stress according to: 

 

𝑉(𝑡)

𝑊𝑑
≥ 𝛾𝑓𝑠     (72) 

 

In this equation, 𝑓𝑠  is the shear strength of the concrete and 𝛾 is a dynamic increasing 

factor, usually at a value of about 𝛾 ≈ 1.2 for concrete. For walls, rebars are assumed not 

contributing to the shear strength of the wall. 

A more complicated shear failure mode is the so-called flexural shear failure. This is the 

failure mode between the bending and pure shear failure. This mode occurs when the 

center part of the wall experiences significant acceleration and the inertia force due to such 

an acceleration may overcome the blast pressure and prevent further deflection at the 

center part of the wall. A schematic is shown in Fig.10. The deflection mode is illustrated 

on the right hand side of the figure. As a result, the maximum sectional bending moment 

will move away from the critical location (the center). In this case, the curvature in the 

center section may reduce when shear hinges may be created away from the center. 

 

 

Figure 10:  The schematic for the flexural shear failure mode. 

 

The short moment arm, significant shear force, and axial load may lead to the failure to 

occur in the plane at some angle respective to the axis of the wall. Even though the failure 

mechanism may still be dominated by the bending moment, this failure phenomenon is 

often cited as the shear failure mode. Sometimes, it is cited as the flexural shear failure. 

To study this failure mode, the loading condition on the shear section should be 

considered. The load on the shear section may be assumed according to the schematic as 

shown on the left hand side of Fig.10. In this case, the equilibrium of the moment with 

respect to the inertia force center requires: 
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𝑉(𝑡)𝑎 +𝑀𝐴 −𝑀0 − 𝑝(𝑡)𝑋 (𝑎 −
𝑋

2
) = 0   (73) 

 

In this equation, 𝑀0 is the sectional moment capability at a distance 𝑋 from the support. 

𝑀𝐴 is the sectional moment at the support. Unlike the solution as shown in Fig.2, 𝑋 will be 

the shear arm of the wall between the support and the shear hinge. 

To assume a linear deflection for the shear arm within the distance of 𝑋 (the shear 

distance), 𝑎 is solved according to eq.(33): 

 

𝑎

𝑋
=

∫ 𝑓(𝑥′)𝑥′𝑑𝑥′
1

0

∫ 𝑓(𝑥′)𝑑𝑥′
1

0

=
2

3
    (74) 

 

This gives a solution for the shear arm: 

 

𝑋 = √6(𝑀𝑂 −𝑀𝐴)/𝑝(𝑡)    (75) 

 

This shear distance is different from that when the reaction force is determined according 

to eq.(31). The solution shows that the shear arm 𝑋 will be independent of the length of 

the wall. It will be a function of pressure and the bending moment capability of the wall. 

When the amplitude of the pressure is high, the shear length will reduce and the likelihood 

of shear failure will increase. Eq.(75) shows that the higher the pressure, the shorter the 

shear arm may become. 

For a simply supported wall, 𝑀𝐴 will be zero while it may be assumed that 𝑀𝐴 = −𝑀𝑂 at 

the support when the rotation is constrained. Thus, the constraint of bending rotation at the 

support may increase the shear arm and move the shear failure location away towards the 

center. 

For a flexural shear failure, the reaction force becomes: 

 

𝑉(𝑡) = √
3

2
(𝑀𝑂 −𝑀𝐴)𝑝(𝑡)    (76) 

 

This is a function of both the peak pressure and the moment capability of the wall. 
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8 Validations 
For the validation of SDOF solution for a gravity-loaded wall, two test series have been 

considered. The first test series, Test Series 1, is performed in 2017 [14]. The second 

series, Test Series 2, is performed in 2020 [15]. 

The basic setups are similar for both tests. The schematic of the experiments is shown in 

Fig.11. For these tests, a ½ scaled wall element is used for the test object due to the 

dimensional limitation of the shock wave tube used for the tests. Fig.11 shows the 

dimensions of the test object and the placement of various sensors. 

The axial load is applied on the top of the test objects to simulate the gravity load. Due to 

the facility limitation, hydraulic actuator is used to apply the axial load. When the desired 

load level is achieved, the valve of the hydraulic actuator is closed to prevent movement of 

the actuator during the blast test. This is a less ideal solution to simulate the gravity load 

since the deformation of the test rig is difficult to determine. 

The deflection of the test object is recorded at three locations as shown in Fig.11 with laser 

displacement sensors at D1-D4. The force from the actuator is recorded with a load cell on 

the hydraulic cylinder during the blast test to monitor changes in the axial load. The 

rotation of the test object is constrained at the upper end with slide rollers as shown in 

Fig.11. The rollers prevent the rotation while allowing the axial movement at the top of the 

wall. 

In addition to the blast tests, quasi-static bending tests were also performed to determine 

the bending capability of the wall when subjected to different axial loads. The test setup is 

shown on the right hand side of Fig.11. For the quasi-static bending test, the transverse 

load was applied by a hydraulic actuator on the side of the test objects, see the right hand 

side of Fig.11. Three-point quasi-static bending tests were performed for Test Series 1, and 

four-point bending tests were performed for Test Series 2. 

 

 

 

Figure 11: Schematic of the setups for the validation tests for the blast and quasi-static 

load. 

 

The test objects were manufactured with scaled rebars (6 mm) and aggregate (8 mm). Fig. 

12 shows the sectional dimensions and the reinforcement arrangement. To ensure 

consistency in the material data for the concrete, both cube and cylinder standard concrete 

specimens were made for the concrete mixture used for the test objects. Compression and 
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splitting tests were made with these specimens in coordination with the blast and quasi-

static test scheme to determine the mechanical property of the concrete at the test 

moments. The detailed reports of the tests are provided in [14-15]. 

 

 

Figure 12: The test object dimensions and reinforcement, together with the cube and 

cylinder specimens for the compression and splitting tests of the concrete for the test 

series. 

 

8.1 Quasi-static tests 
The quasi-static tests are used to determine the non-linear stiffness and bending capability 

of the test objects. They are sometimes used to determine the nonlinear resistance of a 

structure against the applied load for SDOF simulations. 

According to eq.(27-28) and eq.(56), the resistance of the wall subjected to a gravity load 

is determined according to: 

 

𝑃(𝑤0) =
1

𝐾𝐿
[𝐾𝐾

𝐸𝐼

𝐿3
−𝑚0𝑔 (

𝐷

𝑑2
+
𝐾𝐴

2𝐿
)]𝑤0 +

2𝐷

𝐾𝐿𝑑
𝑚0𝑔 = 𝑅(𝑤0) + 𝑅0 (77) 

 

In this equation, 𝑅(𝑤0) + 𝑅0 is considered to be the resistance of the wall against the 

bending load. It is sometimes used directly in the SDOF solution to replace the equivalent 

solution. It is sometimes considered to be a better representation of the resistance of a 

specific wall against the transverse load. 

It is shown in eq.(77) that the resistance will be dependent on the patterns of deflection for 

an applied load. For example, the results from a three-point bending load will differ from 

the experimental results from a four-point bending load. The axial gravity load will affect 

the stiffness of the resistance. 

An example of the analytical model is given in Fig.13 for the analytical resistance of a 

beam subjected to a quasi-static transverse load. It is shown that the forming of plastic 

hinges near the support will change the stiffness of the beam from a fixed end condition to 

a free rotationcondition. When a plastic hinge is formed, these hinges will provide nearly 

constant resistance to rotation. The resistance of the beam will be determined by the 
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sectional capability as well as the patterns of deflection due to different boundary 

constraints.  

Two solutions may be assumed, one is based on the constant moment on the hinge. The 

solution is shown in Fig.13 as the gray lines. Another one is based on the accumulation of 

the bending moment as shown in Fig.13 as the blue lines. The accumulation of the bending 

capability will result in higher bending resistance. 

 

 

Figure 13: Example of the analytical solution for the resistance of test objects. 

 

Two different sets of quasi-static tests have been performed in [14] and [15]. The three-

point bending tests are performed in [14] while four-point bending tests are performed in 

[15]. The similar case for both test series is for the axial load of 80 kN. For both test series, 

the reinforcement is according to the same specification, but the measured compression 

strengths of the test objects are different. For Test Series 1, the cube compression strength 

is around 45MPa while for Test Series 2, 20MPa. 

The comparison of the transverse resistance as a function of the deflection at the center of 

the wall is shown in Fig.14. In this figure, the dashed red curve is the results from Test 

Series 1 for three-point bending load and the solid blue curve is from Test Series 2 for 

four-point bending load. The results indicate that four-point bending will give significantly 

higher resistance eventhough the concrete has a lower compression strength. The initial 

stiffness is also higher for four-point bending, compared to that for three-point bending. 
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Figure 14: Comparison of the wall resistance against quasi-static transverse load as a 

function of the deflection between Test Series 1 and Test Series 2 for three-point bending 

as the red curve and four-point bending as the blue curve. 

 

Part of the reason for the difference in the measured resistances is due to the difference in 

the patterns of deflection between the test setups. Different load setups will result in 

different maximum moment in the beam for a given deflection. The resistance to a 

transverse load for the fixed end wall as a function of either the maximum moment or the 

maximum transverse deflection is deterimined by: 

 

𝑃𝑓𝑖𝑥𝑒𝑑−𝑒𝑛𝑑 =

{
 
 

 
 
12𝑀𝑚𝑎𝑥

𝐿
= 384

𝐸𝐼

𝐿3
𝑤0                        uniform pressure

 
8𝑀𝑚𝑎𝑥

𝐿
= 192

𝐸𝐼

𝐿3
𝑤0                 three − point bending

 
18𝑀𝑚𝑎𝑥

𝐿
= 259.2

𝐸𝐼

𝐿3
𝑤0             four − point bending

 (78) 

 

The solution shows that the transverse stiffness of the wall will become larger and the 

bending moment will be lower for four-point bending. When the rotation is allowed at the 

ends, the resistance of the wall is determined by: 

 

𝑃𝑓𝑟𝑒𝑒−𝑒𝑛𝑑 =

{
 
 

 
 
8𝑀𝑚𝑎𝑥

𝐿
= 76.8

𝐸𝐼

𝐿3
𝑤0                   uniform pressure

4𝑀𝑚𝑎𝑥

𝐿
= 48

𝐸𝐼

𝐿3
𝑤0                three − point bending

6𝑀𝑚𝑎𝑥

𝐿
= 56.35

𝐸𝐼

𝐿3
𝑤0            four − point bending

 (79) 

 

For a uniform pressure, the quasi-static resistance has to be scaled so that the stress state at 

the critical locations will become comparable. The experimental result from three-point 

bending tests has to be scaled by a factor of 1.5 for the resistance, and a scale factor of 0.5 

should be applied for the deflection. For the experimental results from four-point bending 

tests, the magnitude of resistance has to be scaled by a factor of 0.67, and the deflection 

has to be scaled with a factor of 0.675. 
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After the plastic hinges are created near the supports, the deflection pattern of the wall will 

change from the fixed end condition to the free end condition and the experimental 

resistance has to be scaled according to eq.(79). 

For the experimental results from three-point bending tests, the magnitude of the 

resistance has to be scaled by a factor of 2, and the resistance from four-point bending 

tests has to be scaled by a factor of 1.33. The experimental deflection has to be scaled by a 

factor of 0.625 for the results from three-point bending tests, and a factor of 0.734 for the 

results from four-point bending tests. 

The comparison of the resulting equivalent resistance for the uniform pressure is shown in 

Fig.15. Compared to the original resistance results as shown in Fig.14, the equivalence 

resistance from Test Series 1 becomes now slightly higher than that from Test Series 2. 

This is a different trend than that shown in Fig.14 where the resistance from Test Series 2 

appeared to be higher than those from Test Series 1. 

There is an excellent agreement in the elastic deformation range for the equivalent 

resistance between Test Series 1 and Test Series 2. The results begin to differ when yield 

occurs. As mentioned previously, the measured strength for the concrete in Test Series 1 is 

higher than that in Test Series 2. The resistance of Test Series 1 should thus be higher than 

that for Test Series 2. This is the trend revealed in the comparison as shown in Fig.15 for 

the equivalent resistance. Test Series 1 indicates higher resistance and a slightly less 

ductility compared to those from Test Series 2 as shown in Fig.15. 

 

 

Figure 15: The equivalent resistance from the quasi-static tests for a uniform transverse 

pressure. 

 

Based on the measured properties of the concrete and rebar, the analytical resistance of the 

test objects is determined. It is shown that the accumulation solution (superposition as 

shown in Fig.13) is a better presentation of the bending resistance of the wall. The 

comparison of the analytical and experimental bending resistance is shown on the left 

hand side of Fig.16. In this figure, the equivalent bending load as a function of the 

maximum deflection of the wall is compared. The comparison shows a reasonable 

agreement between the analytical solution and the experimental results when the wall is 

subjected to the axial load. 

When there is no axial load applied on the test objects, the initial bending stiffness from 

the measurements shows to be significantly weaker than the analytical one, see the 

comparison between the dashed blue lines for the analytical solution and the green curves 

from the experiments. 
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The quasi-static bending tests were performed at the same rig as those for the blast tests 

with the test objects placing at the standing position. There were no pretension to close 

gaps in the contact areas between the test objects and the rig. It was shown that there is a 

significant movement of the hydraulic actuator before full contact were established 

between all the contact areas. These will artificially lead to excess transversal 

displacement (lower stiffeness) in the measurement. 

 

 

Figure 16: Comparison of the analytical resistance with the equivalent resistance from the 

tests for different axial loading condition. 

 

The key element in the SDOF solution is for the approximation of the axial displacement 

when the arching effect is involved. The analytical solution of the axial displacement is 

shown on the right hand side of Fig.16 for the test object. In this figure, the blue curve is 

for the displacement due to bending deflection and the green curve is the deflection due to 

rigid rotation. The bending of the beam will lead to a downward movement of the mass 

and reduce the axial load which is not what is observed in the experiments. 

The rigid rotation will lengthen the wall as shown at the green curve on the right hand side 

of Fig.16. This action will push the actuator to increase the axial load. The maximum 

extension due to the rigid arching effect will occur at the bending deflection of about 80 

mm, near the whole thickness of the test object. 

The experiments showed that the maximum axial load occurred at the deflection distance 

between 10 and 30 mm, see the result shown on the left hand side of Fig.16. The combined 

flexural displacement and the rigid arching according to the solution of eq.(50) is shown 

on the right hand side of Fig.16 as the brown curve. The analytical solution for the axial 

displacement will have the maximum axial extension at a value of around 20 mm. This is a 

confirmation that assumptions made for the solution of the axial displacement are 

reasonable. 

8.2 Dynamic tests 
The blast tests were performed in a shock tube schematically shown in Fig. 17. For the 

blast tests, an explosive charges were suspended at the center of the tube at various 

distance, see the left hand side of Fig.17. Use of the shock tube will create a reasonable 

uniform blast pressure on the test objects. The placement of the test object is shown on the 

right hand side of Fig.17. In this picture, the light-gray part is the test object. A steel frame 

is used around the test object to stiffen the rig. Gaps between various components are 

sealed to prevent the leakage of air to the back side of the test object. Two reusable 

pressure gauges are placed on the steel frame on both side of the test object at the center 

section to record the blast overpressure during the tests. 
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Figure 17: Experimental setup for the blast loading tests in the shock tube for the scaled 

wall elements. 

 

 

Figure 18: The range of blast load for Test Series 1 for a standoff distance of 21 m and 

Test Series 2 for a standoff distance of 5 m. 

 

By changing the charge size and distance from the test object, blast load with various 

characteristics were created. A comparison of the peak pressure as a function of the 

impulse density is shown in Fig.18 for Test Series 1 and 2. It is shown that an increase in 

the charge mass will increase both the peak pressure and impulse density, while change in 

the standoff distance between the charge and the test object will change the slope of the 

peak pressure with respect to the impulse density. Longer standoff distance between the 

test object and the charge will generate stronger impulse at the comparable peak pressure 

level. Shorter standoff distance generates higher pressure for a given impulse density. 
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Figure 19: Example of the measurement of dynamic axial load, on the left hand side, and 

the maximum deflection, on the right hand side. 

 

Examples of the recorded axial load and bending deflection as a function of time are 

shown in Fig.19 for the axial load, on the left hand side, and bending deflection, on the 

right hand side. These measurements are used to validate the SDOF solution. 

 

 

Figure 20: Estimation of the damping coefficient based on the simulations and the 

experimental results. 

 

The first use of the experimental result for SDOF solution is to determine the damping 

coefficient. There is no analytical solution for this coefficient. It is however possible to 

estimate the value according to the experimental results. 

By considering the number of periods of the response that occur when the dynamic 

deflection became fully damped out, the damping coefficient for SDOF can be estimated. 

Fig.20 shows a comparison between the experimental measurement of the deflection and 

the SDOF results. It is shown that a damping coefficient of about 5 percent will result in a 

reasonable agreement with the measurements. In this figure, the left hand side is the 

measurement of the bending deflection shown as the green curve, the bending 

acceleration, shown as the blue curve, and the axial load, shown as the black curve. 

The simulations according to SDOF model is shown on the right hand side of Fig.20. In 

this figure, the black curve is the bending deflection, the red curve is the reaction force on 

the support, and the blue curve is the bending acceleration. 

In addition to the experiments, finite element analysis (FEA) based on [20] is performed 

for several test conditions according to [15]. Three experiments are chosen for the zero, 79 

kN, and 164 kN axial preload. These three cases are chosen since the level of blast load 

leads to the need to include the shear failure mechanism in the SDOF solution. The 
recorded blast profile is shown in Fig.21, which will be used as input for both FEA 



  FOI-R—5202--SE 

40 

 

simulations and SDOF analyses. In all the following analyses, the concrete is assumed to 

be in the quality of C20. 

 

 

 

Figure 21: The recorded blast profile of the test on the left, and the impulse density on the 

right.[15] 

8.2.1 Test B2 

The object B2 is tested for a charge mass of 357 g without the axial preload. The 

comparison of post damage pattern between FEA and the test is shown in Fig.22. Both the 

test and the simulation shows multiple crackings in the center section as well as the near 

support areas. The simulation shows a reasonably good agreement with the test result. 

 

 

Figure 22: Comparison of the cracking patterns between the simulation and the experiment 

for the test object B2 for a charge mass of 357 g placed at a distance of 5 m from the 

surface of the test object. This test is performed without axial preload [15]. 

 

The comparison of the maximum deflection at the center of the specimen is shown in 

Fig.23. In this figure, the green curve is the experimental recording and the red curve is the 

FEA result. The comparison shows that the period of response has a good agreement 

between FEA and experimental results. The simulation gives a lower deflection, compared 

to that from the experiment. The damping of the response from the  simulation is also 

stronger. 
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Figure 23: Comparison of the maximum deflections for Test B2 without axial preload. In 

this figure, the green is from experiments, red from FEA, and blues from SDOF. 

 

The deflection from SDOF simulation is shown in Fig.23 as the blue solid curve. It is 

shown that the SDOF results in a maximum deflection closer to the test result, compared 

to that from FEA. Both the response period and the time to maximum deflection from 

SDOF is much shorter. This may be due to that SDOF solution is based on the elastic 

perfectly-plastic assumption. In the SDOF solution, the material will not have the 

intermediate elastic-plastic deformation regime which may become significant for the 

concrete and rebar. 

SDOF solution is based on the energy balance constraint. The work done by the blast load 

will totally consumed by the plastic deformation which is determined by the maximum 

deflection. The SDOF solution seems to be adequate to capture the maximum deflection. 

In Fig.23, a SDOF result for a simplified triangle pressure profile is also presented as the 

dashed blue curve. It is shown that by idealizing the blast load as a triangle profile with 

corresponding peak pressure and impulse density, the deflection will become slightly 

higher. 

 

Figure 24: Comparison of the reaction force for Test B2 at the top support. The time axis 

is shifted on purpose to improve the visual comparison. 
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The reaction force is a major concern when complex failure is considered. It will affect 

shear failure pattern near the support. It is essential to verify that the solution as given in 

Section 2.3 is reasonable. For this purpose, the reaction force from FEA is compared to 

that from SDOF solution. For Test B2, the comparison is shown in Fig. 24. In this figure, 

the red curve is the FEA result and the blue curves are SDOF results. It is shown that the 

maximum shear forces are in a reasonable agreement between FEA analysis and SDOF 

solution even when the blast is simplied as a simple triangle form (shown in the figure as 

the dashed curve). This gives confidence using the SDOF solution as a shear failure 

criterion. 

8.2.2 Test B4 

An axial preload is applied for Test B4 at 79 kN. The comparison of the post cracking 

pattern between FEA and experiment is shown in Fig.25. It is shown that when a large 

axial preload is applied to the specimen, crack will become more concentrated to the 

critical locations of the center and the supporing areas. There is an observable spall area in 

the compression surface of the specimen, instead of longitudinal cracking as observed for 

the specimen without axial preload, see Fig.22. 

 

 

Figure 25: Comparison of the patterns of cracking between the simulation and experiment 

for Test B4 for a charge mass of 450 g placed at a distance of 5 m from the surface of the 

test object. This test is performed with an axial preload of 79 kN [15]. 

 

The comparison of the maximum deflections for B4 is shown in Fig.26, again with the test 

recording as the green curve, FEA as red, and SDOFs as blue. The test still shows larger 

deflection, compared to that from FEA, indicating the need for improvement in FEA 

simulation. It should be mentioned that the axial load is applied to the specimen in a 

different way for the test and FEA simulations. As mentioned in [20], the axial load is 

applied to the specimen with a hydraulic actuator in the test while in FEA, the gravity load 

is applied instead. There will be difference when the dynamic inertial force of the mass is 

considered. 

The SDOF gives smaller deflection than that of FEA as the blue curves in Fig.25 show. 

This may be due to the difference when the axial load is applied. For FEA and SDOF 

solution, even though the load is applied as an equivalent mass on top of the test object, 

there is a contact solution for FEA simuluation which will not allow tension force between 

the mass and the specimen. For SDOF solution, the mass is permanently connected to the 

specimen. This may reduce the bending deflection in the solution. Again to simplify the 

blast load as a triangle form will slightly increase the maximum deflection as shown in the 

figure as the dashed blue curve. 
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Figure 26: Comparison of the maximum deflections for Test B4 with an axial preload of 

79 kN. In this figure, the green is from experiments, red from FEA, and blues from SDOF. 

 

When the axial load is applied, it is a concern how it may affect the solution for reaction 

forces from SDOF. A comparision is shown in Fig.27 for the reaction force at the top 

support of the specimen. This comparison shows that SDOF solutions till give a 

reasonable top shear force, compared to that from FEA simulation. 

 

 

Figure 27: Comparison of the reaction force for B4 at the top support. The time axis is 

shifted on purpose to improve the visual comparison. 

 

For the SDOF solution, the critical assumption is for the axial movement included in 

Eq.(48-49). The axial movement will determine the dynamic axial force applied on the 

wall due to both the gravity and the inertial force during the blast load. Since the 

magnitude of the axial movement is very small, the displacement measurement during the 

test is not reasonably accurate. To compare to the result from FEA is an option to 

determine whether or not the assumption is reasonable. 
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For Test B4, the comparison between the displacement between FEA and SDOF solution 

as a function of the bending deflection is shown in Fig.28. In this figure, the blue curve is 

the SDOF result, and the red curve is the FEA result. 

The dynamic axial movement from FEA and SDOF is different. The FEA simulation 

shows that the maximum axial movement occur not at the maximum bending deflection 

(the horizontal axis), but during the springback phase of the wall at at value of about three 

fourth of the maximum deflection, see the red curve. 

The solution from SDOF is different. The axial movement is in proportion to the bending 

deflection. This is due to the shape function assumed for SDOF solution. However, since 

the maximum axial load will be related to the maximum axial movement, it is important 

that the maximum value will be in agreement between FEA and SDOF result. The 

comparison in Fig.28 shows that both solutions give comparable maxium axial 

displacement, eventhough the behavior is completely different. Notice that the axial 

displacement is less than 1 mm, for a wall length of 1500 mm. 

 

Figure 28: Comparison of FEA and SDOF result for the axial displacement as a function 

of the bending deflection for B4 test. 

 

The comparison of the axial load is shown in Fig.29 for the result from the test and the 

analyses. In this figure, the test result is shown as the black curve. The result from FEA is 

shown as the red dashed curve, and the result from SDOF is shown as the blue dashed 

curve. 

The axial loads from the test, FEA, and SDOF are not directly comparable due to the 

difference in the ways that the axial load is applied. During the blast event, the dynamic 

characteristics of both the rig and hydraulic system will affect the response of the 

experimental axial load. The FEA uses a mass on top of the specimen with contact 

conditions which will not allow tension between the mass and the specimen. For SDOF 

solution, the mass is rigidly connected to the specimen. 

For Test B4, it is shown that FEA gives the highest axial load while the load estimated 

from SDOF agrees better with the test result. Again due to the elastic perfectly-plastic 

assumption in SDOF solution, the duration of the axial load is much shorter. 
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Figure 29: Comparison of the axial load between the test and analyses. 

8.2.3 Test B7 

Test B7 is performed with a very high axial load, at a level of 164 kN. At this load level, 

the initial axial compression stress is at 8 MPa, nearly half  of the compression strength of 

the concete [15]. The comparison of the post cracking patterns between FEA and the test is 

shown in Fig.30. Again, the cracking pattern follows the trend as shown for Test B4 for 

the localization of the cracking near the critical locations. From both the simulation and 

test, there appears a large spall damage in the center on the blast side. 

 

 

Figure 30: Comparison of the cracking patterns between the simulation and the experiment 

for the test object B7 for a charge mass of 415 g placed at a distance of 5 m from the test 

object. This test is performed with an axial preload of 164 kN [15]. 

 

The comparion of the maximum bending  deflection is shown in Fig.31 with the test result 

as the green curve. The FEA result is shown as the red curve and the SDOF results are 

shown as blue curves. Again, FEA simulation results in a significantly lower deflection. 

The SDOF results are between FEA and test results. The FEA has the lowest residual 

deflection and SDOF has the highest residual deflection. The test result the residual 

deflection is in between. The result from FEA still shows significant damping. This can be 

a focus area in the future effort for FEA simulations. 
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Figure 31: Comparison of the deflections for Test B7 with an axial preload of 164 kN. In 

this figure, the green is for experiments, red for FEA, and blues for SDOF. 

 

The agreement in deflection between FEA and SDOF is reasonable for the maximum 

value, but there will be a large difference in the residual deflection. As mentioned 

previously, SDOF is based on the elastic perfectly-plastic assumption. Ignoring the non-

linear elastic-plastic response in the concrete and rebar will prevent the springback of the 

beam. Simplification of the blast load as a triangle load will, as for B4, result in a larger 

deflection which may give a conservative result. 

The comparison of the reaction forces at the top support is shown in Fig.32 for B7 test. In 

this case, SDOF results in slightly lower values.. 

 

Figure 32: Comparison of the reaction force for B7 at the top support. The time axis is 

shifted on purpose to improve the visual comparison. 

 

The comparison of the axial load between the test and the analyses is shown in Fig.33. In 

this case, SDOF gives higher axial load. The test and FEA have similar top load, but 
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differs greatly in the rebound phase. The simulation seems to have much lower axial load 

after the top value, compared to the test result. 

 

Figure 33: Comparison of the axial load from the test and analyses for B7 test. 

 

8.2.4 Summary 

To determine the performance of SDOF solution, the maximum deflections for the tests 

from [14-15] are compared. The comparison of the maximum displacement as a function 

of the charge size is shown in Fig.34 between the test and SDOF results for various axial 

loading condition. Both the simulation and the experiments show that the axial load will 

have significant effect on the deflection of the test object under the blast loading condition. 

For Test Series 1 [14], the comparison is shown on the left hand side of Fig.34 for the test 

results as symbols and the analytical results as piecewise lines. For this test series, the 

SDOF solution seems to slightly overestimate the deflection for the test objects without 

the axial load. The SDOF deflection for the axially loaded tests shows to be smaller than 

those from the measurements. 

Part of the reason for the underestimation of the bending deflection may be due to the 

difference in the applied axial loads. As mentioned previously, the axial load in the SDOF 

solution is based on the gravity of a mass on the top of the test object while the axial load 

is introduced on the test object with a hydraulic actuator. At the test condition, the axial 

force will be affected by the stiffness of the rig, the hydraulic oil, as well as the mass of 

the components. Compared to a mass with similar initial axial force, the test setup may 

have less inertia force against the axial movement, with resulting lower dynamic force and 

larger bending deflection. A test configuration with a mass on the top of the test object 

may be a better solution. Unfortunately due to the limitation of the test facility, the 

arrangement with a dead weight on top of the test object is not feasible. 
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Figure 34: Comparison of the maximum deflection between the experiments (dot symbols) 

and the simulations (lines). The left hand side is for the tests from [14] and the right hand 

side is for the tests from [15]. 

 

For Test Series 2 [15], the blast load has a relatively higher peak pressure and lower 

impulse density (see the comparison in Fig.18). The comparison of the maximum bending 

deflection as a function of the charge size is shown on the right hand side of Fig.34, again 

with the test results as symbols and the analytical results as the piecewise lines. 

For this test series, the peak pressure is generally higher than that for Test Series 1 as 

shown in the comparison in Fig.18 with the blue symbols. In this case for the test without 

the axial load, the SDOF solution results in a reasonable maximum deflection, compared 

to the experimental results, see Fig.34. The measured strength of the concrete is lower. 

The SDOF solution is shown as the curves in the right hand side of Fig.34. The result 

indicates shear failure for the charge size larger than 375g both at the initial axial load of 

80 kN and 160 kNs. 

According to eq.(75), the shear span reduces in a reverse proportion to the square root of 

the maximum pressure. Increase in pressure will shorten the shear span and increase the 

likelihood for shear failure. In addition, the shear span is also proportional to the square 

root of the sectional moment capability (eq.(75)). For the wall with the concrete of lower 

strength, the shear span will be further reduced. With these factors, the shear failure will 

likely occur for Test Series 2 when the axial load is applied, with the resulting lower 

sectional moment capability (see Fig.8 for the interaction diagram). 
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9 Conclusions 
In this work, a solution for the response of the gravity loaded wall element subjected to a 

blast load is developed. The solution is based on the extension of the conventional single-

degree-of-freedom (SDOF) method for the analyses of dynamic response of the structural 

components with significant dynamic axial load. With this solution, the gravity load is 

applied on the top of a wall with an equivalent mass. Under the dynamic event, the axial 

inertia effect of the mass is accounted for. Both the bending and shear failure behavior are 

included in the solution with the added effect due to the axial load. This solution is 

validated with some FEA simulations and experimental data to explore its potential for the 

general engineering evaluation of the dynamic response of a wall subjected to a blast load. 

It is shown that, as a general fast-runing engineering solution, the solution is relatively 

robust and agrees reasonably well with the limited tests and FEA simulations. 
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