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Summary

During the last decade, there has been an extraordinary development of innovative artifi-
cial neural network models. Most of these models were constructed to handle only one
modality, where a modality can be thought of as a channel for communication or a type
of data, such as text or images. However, in the last few years, machine learning models
based on the novel transformer architecture have been able to produce impressive results
on tasks that require the ability to process two or more modalities jointly. The multimodal
capabilities make these models better suited to handle a variety of problems that arise in
our multimodal world.

The most well-known multimodal models so far are those that combine text and
images, for instance by generating images from text prompts or by answering questions
about images. Similarly, advances are being made for models combining text and video.
Other models combine text and sound, for music generation, or for text-to-speech and
speech-to-text conversion. In addition, there are models that are able to combine more
than two modalities, laying the foundation for new solutions to complicated problems in
fields such as data fusion and robotics. For example, while industrial robots work well in
controlled environments, a multi-purpose robot in an uncontrolled environment needs to
be able to perform agile task and motion planning, based on input from a variety of sensors.
This ability can be seen in early work on multimodal models for robotics.

This report provides an overview of recent developments in the field of multimodal
neural network models. A selection of multimodal models, developed in recent years, is
presented. The focus is on models that process media data, where media data is to be
understood as data primarily intended for human communication, such as text, images,
sound, and video.

Although the multimodal models used today have limitations, their ability for au-
tomatic multimodal reasoning is, in parts, so impressive that we have to ask ourselves in
what ways multimodal machine learning models may come to impact our lives in the years
to come.

Keywords

artificial intelligence, machine learning, deep learning, deep neural networks, multimodal
models, language models
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Sammanfattning

Under det senaste artiondet har det gjorts betydande framsteg inom utvecklingen av maski-
ninldrningsmodeller, baserade pé artificiella neurala nétverk. De flesta av dessa modeller
ar konstruerade for att hantera en enda sa kallad modalitet. En modalitet kan betraktas som
en kommunikationskanal eller datatyp, dér text och bild 4r exempel pé tvé olika modalite-
ter. De senaste aren har emellertid maskininldrningsmodeller, baserade pa den sa kallade
transformer-arkitekturen, uppvisat imponerande resultat pa uppgifter som kréver att tva
eller flera modaliteter behandlas gemensamt. De multimodala egenskaperna gor dessa mo-
deller vél lampade att hantera en méngd olika problem som uppstar i var multimodala vérld.

De multimodala modeller som hittills ront storst uppmérksamhet dr de som kombi-
nerar text och bild for att exempelvis generera bilder baserade pé textbeskrivningar eller
svara pa fragor om bilder. Parallellt utvecklas modeller som kombinerar text och video.
Det finns dven modeller som kombinerar text och ljud for att generera musik, eller for att
konvertera text till tal och tal till text.

Vissa modeller har formaga att kombinera fler &n tvd modaliteter och lagger grun-
den for nya 16sningar pé komplicerade problem inom bland annat datafusion och robotik.
Industriell robotik fungerar vél i kontrollerade miljoer, men mer generell robotik i okon-
trollerade miljoer kraver mojligheten till flexibel uppgifts- och rérelseplanering baserad pa
data fran olika typer av sensorer; ndgot som multimodala modeller redan nu visar lovande
formaga att kunna astadkomma.

Denna rapport ger en dversikt dver den senaste utvecklingen inom forskningsfaltet
Multimodala Neuronndtsmodeller och beskriver ett urval av de modeller som utvecklats de
senaste aren. Rapporten fokuserar pa modeller som behandlar mediedata, det vill siga data
som primért ar avsedd for ménsklig kommunikation. Text, bild, ljud och video &r exempel
pa mediedata.

Aven om dagens multimodala modeller har begriinsningar si ir deras forméga till
automatiskt multimodalt resonerande, atminstone i vissa avseenden, s imponerande att vi
maste stélla oss frdgan: hur kommer multimodala maskininldrningsmodeller att paverka
véra liv under kommande &r?

Nyckelord

artificiell intelligens, maskininlarning, djupinlérning, djupa neuronnét, multimodala mod-
eller, sprakmodeller
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1 Introduction

In the last decade, deep artificial neural networks have had a significant impact on computer
science. The rapid development of neural networks and associated technologies is likely to
continue for many years, and the effects on society are hard to predict. Until recently, most ad-
vancements in deep learning' — including powerful image recognition methods, chess-playing
algorithms with super-human performance, and automatic translation between numerous lan-
guages —had been accomplished by processing only one type of data at a time. In recent years,
however, the deep learning field has seen rapid advancements in multimodal neural network
models, i.e., models that combine information from multiple modalities. In this context, a
modality can be thought of as a channel of communication,? or more broadly as a specific
type of data.

It is interesting to note that humans typically experience and process the world in a
“multimodal manner” through our different senses. One possible requirement for declaring
an automatic system “intelligent” could be that it demonstrates a capacity, similar to that
of a human, to combine information from different modalities to “reason” about the world.
The study of automatic multimodal systems is not new,* but developments in artificial neural
networks provide new possibilities, and impressive results are continuously presented.

This report will provide an introduction to multimodal neural network models. We use
the term model as an abbreviation for neural network model, and occasionally also to denote
a (multimodal) system that consists of two or more neural network models.

1.1 Multimodal Models for Media

This report focuses on multimodal models that are applied to media, by which we mean data
that is used for human communication, i.e., text, sound, image, and video. As media data is
available in large quantities, it is comparatively easy to find suitable training data for these
models. Well-known unimodal models, such as the model backing the first version of Chat-
GPT, as well as recent multimodal models, are trained on media data.

Even when considering only text, sound, image and video as modalities, the number
of possible applications for multimodal models is huge. Examples include the generation
and alteration of media, detection and categorization of various phenomena in media, and
transformations, translations, and comparisons between media types. These applications can
handle pairs of modalities (e.g., an image and a text snippet) or a combination of several
modalities. Considering that human activities are increasingly supported by computers, and
that many human-computer interfaces are based on media data such as text, sound and images,
the potential impact of multimodal models should be apparent.

Textual data has a special significance at the interface between human and machine. Of
all data available on digital format, textual data is likely the modality that contains the most
information about how humans think, feel and, reason about the surrounding world. However,
text is made up by abstract symbols, which up until the development of large language models
(LLMs) were challenging to interpret and process using computers. In recent years we have
seen how language models, which are trained on large amounts of textual data, are able to
learn patterns and structures in the texts which enable them to — to some extent — mimic
human reasoning. This ability is demonstrated in applications like ChatGPT.

One of the most remarkable properties of unimodal deep learning models is that they can
be pre-trained on large amounts of data and then fine-tuned for specific tasks. This means that
the general capabilities of a model can be reused to solve specific tasks. This is true specifi-
cally for language models, which can be pre-trained on vast amounts of text. When language

"Machine learning based on deep artificial neural networks.
2See for instance https://en.wikipedia.org/wiki/Modality (human-computer_interaction) (Visited 2023-10-18).
3See for instance https://en.wikipedia.org/wiki/Multimodal_learning (Visited 2023-10-07).
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models are combined with models for other modalities, new possibilities for “reasoning” over
these modalities emerge. Examples of this can be seen at the end of this chapter (pages 11-12),
where Examples 1 and 2 demonstrate visual question answering using the multimodal (text
and image based) system ChatGPT 4. See also the robot models described in Chapter 6, that
are capable of planning series of actions based on textual commands and visual input.

Table 1: Some of the multimodal models for media described in this report. The models at the
top are primarily used to generate an output from an input, as explained in Section 1.1. The
arrows represent the input and output of the models. The models at the bottom are primarily
used to create representations that connect several modalities listed within curly brackets.

Modalities ‘ Example Model ‘ Section
Text —  Image Stable Diffusion | 3.2
Text < Speech | Whisper 4.1
Text —  Video Make-A-Video 52
[Text, Image(s)] —  Text PaLl 33
[Text, Image(s)] —  Action | RT-2 6.3.4
{Text, Image} CLIP 3.1
{Text, Video} X-CLIP 5.1
{Image, Text, Audio, ...

Depth, Thermal, IMU readings} | ImageBind 6.2

Superficially, neural network models work similarly to other computer programs; they
take an input and produce an output. For instance, the input to a unimodal language model,
such as the first version of ChatGPT, is text, and the output is text. This can be abbreviated
by writing: Text — Text.

Table 1 gives an overview of some of the possible modality combinations, as well as
a subset of the models presented in this report. In the top part of the table, the left column
specifies input and output modality types for the models. The lower part of Table 1 contains
models that take data of several modalities as input (listed within curly brackets) but do not
output data of a specific modality. These models are instead primarily used to create computer
representations of the data in the input modalities. The model CLIP [55], for instance, learns
how to relate texts and images by looking at many images and their corresponding caption.
When the model has been trained, it can generate representations for any image and any text
that can then be compared with one another, opening up many potential use cases, such as
searching for images similar to a text.

This report is more or less restricted to multimodal models for media, but it is likely that
many of the lessons learned from the study of these models could be useful when developing
models that handle other types of data as well, for example different types of sensor data.

1.1.1 Applications and Challenges

Multimodal media models can be used in many application domains to solve various prob-
lems. Consider, for instance, artificial intelligence assistants such as Microsoft’s Copilot*
and Google’s Duet AI°, which can help with information extraction, and with generation and
alteration of media. Advanced Al assistants can even perform creative tasks, such as creating
images and composing music from text instructions, and complex tasks such as multimodal
information assessment. In essence, multimodal systems and applications push the boundary
from what used to be creative work into the realm of dreary production.

“https://blogs.microsoft.com/blog/2023/09/2 1 /announcing-microsoft-copilot-your-everyday-ai-companion/
(Visited 2023-10-14.)
Shttps://workspace.google.com/blog/product-announcements/duet-ai (Visited 2023-10-14.)



Recent multimodal media models are technically very advanced. Still, many technical
challenges remain. Many of them are associated with the models’ neural-network based ar-
chitecture. Since neural network models are trained on datasets, the models will reflect the
shortcomings of the datasets used to train them [74—76]. For instance, training data may not
contain the information needed in a particular application, or training data can contain un-
wanted bias, like prejudices [40, 41, 73]. As a consequence, multimodal media models can
produce both biased and incorrect results due to the quality of training data. Today, big cor-
porations control the largest datasets and computational resources. They also either support
or participate in much of the research within the deep learning field. It is a problematic fact
that many neural network models, including multimodal media models, are directly or indi-
rectly depending on fundamental models which are trained on privately owned data that is not
available for inspection.

Furthermore, neural network models are complex and may not pick up on information
in the training data or the user’s input to the model in the way a human would expect. This can
lead to unexpected and seemingly strange output results, often called hallucinations. As many
users have experienced, it typically takes a substantial amount of trial and error to formulate
a successful text prompt for an application like image generation.

Like most technologies, multimodal media models can be used for both well-intended
and malicious purposes. From a security perspective, it is concerning that multimodal media
models are excellent tools for generating highly realistic faked media content. Such content
can be used in influence operations and for other types of deception, and the high quality
of the generated content makes it more challenging to distinguish between faked and genuine
material. Also, multimodal media models could harness information about individual persons
or critical infrastructure from available information sources, including text, images, sound and
video. Depending on the intent, this type of monitoring could also be problematic.

Over time, we must assume that the quality and accessibility of generative multimodal
media models—regardless of the motive for using them—-will give rise to enormous volumes
of information, including fake and erroneous data. This means that society has to find ways
of safeguarding the trustworthiness of certain types of public information, e.g., government
information, university research, and news forecasts. If not, the loss of trust is likely to have
devastating effects on the society as we know it.

1.1.2 Development and Availability

Most multimodal models consist of two or more unimodal neural network models, one per
modality. Sometimes, the models are trained jointly on all the modalities from the beginning,
but often they are trained separately first. In the latter case, the full multimodal model can
leverage the information learned from the single modalities from one modality to another; a
form of transfer learning

Training a useful unimodal model is both complicated and costly. This is also true for
multimodal models. Novel model architectures have been essential to developing deep neural
networks, as have the increasing amount of training data and computational resources. The
Transformer architecture is fundamental to language models, and increasing the size of the
model and the amount of training data has led to increasingly impressive emergent capabili-
ties. Similar capabilities are already present in multimodal models, at least those consisting
of transformer based language models. Further developments in this direction may happen as
more modalities and data are used.

This report focuses on some models which have been described in research papers.
Some of the models can easily be used through services, others are available in code reposi-
tories, and some are not released by the corporations that developed them. Some services are
subscription-based, and others are free.

FOI-R--5505--SE
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1.2 Scope of Report

This report introduces multimodal neural network models. It focuses on models applied to
media, such as text, sound, images, and videos, although we include some models that in-
corporate other modalities as well. Furthermore, we have chosen not to include multimodal
systems comprising many neural network models.

Even with these restrictions, the landscape of multimodal neural network models is vast.
In each chapter, we have chosen to describe a few models we find interesting and believe to
be important or useful. There are many other models that could have been included, and that
may be equally important and/or useful.

1.3 Content and Reading Instructions

This is a technical report in which we strive to explain the technology in a more approach-
able manner. Multimodal models build on many unimodal models that have been studied
previously. Chapter 2 describes some of the model architectures, techniques, and concepts
referenced in the rest of the report. Thus, it is a suitable read for anyone who wants to learn
about the technology behind multimodal models. It may be hard to understand the more tech-
nical parts of the rest of the report without similar knowledge.

Chapters 3 through 5 describe models that combine text with one other modality, while
Chapter 6 describes models that handle several modalities. Each chapter begins with an intro-
duction. The following sections of the chapters are dedicated to one specific model each, and
start with a general description of what can be achieved with the model, followed by more
technical details.

Finally, Chapter 7 contains a summary of the report and some conclusions.



FOI-R--5505--SE

Example 1: An image and a question is given to ChatGPT 4, which returns a text re-
sponse. The result is almost perfect. Notice the inference in the last sentence.

Question: Image + What does this tell me?

ChatGPT: The image displays a fuel station under the brand “preem”. Here’s a break-
down of what’s visible:

1. Brand Logo: The “preem” logo at the top, depicting what appears to be a green
face.
2. Amenities: Below the logo, there are mentions of what the station offers:

+ café: Indicates there’s a café on the premises.

 nybakat: This is Swedish for “freshly baked”, suggesting they have freshly
baked goods.

» freshfood: They offer fresh food items.

* biltvitt: This is Swedish for “car wash”, indicating car washing services are
available.

3. Fuel Prices: There’s a board displaying prices for different types of fuel:
* D: Priced at 24.96 (likely the currency per liter, though the currency isn’t
specified).
* 95: Priced at 20.39.
* HVO: Priced at 28.29. HVO is a type of renewable diesel.
4. Banner: At the bottom, there’s a banner advertising:

* “viktigt prisvird lunch”: This is Swedish for “important value-for-money
lunch”.
+ “kaffe ingar”: This means “coffee included” in Swedish.

5. General Ambience: The sky is overcast, and the overall setting suggests an urban
environment with multi-storied buildings in the background.

From the information and the use of Swedish, it can be inferred that this is a gas station
in Sweden offering various amenities beyond just fuel.

Image by the authors.
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Example 2: In this experiment, ChatGPT 4 is provided the same question twice, but
associated with two slightly different images. In the first case (left), ChatGPT does not
succeed in identifying the building in the picture. In the second case (right), the image
shows more of the building and ChatGPT succeeds. Images by the authors.

Question: Image + What building is
that?

ChatGPT: Sorry, I cannot help with
that.

A ROTERRT

Question: Image + What building is
that?

ChatGPT: The building in the photo
appears to be Stockholm City Hall
(Stadshuset) located in Stockholm,
Sweden.  It’s an iconic building
known for its tower with a golden
Three Crowns symbol on top and is
the venue for the Nobel Prize banquet
held annually on December 10th.

Images by the authors.



2 Background

In this chapter, we describe the gist of the technological background necessary to grasp the
multimodal (neural network) models presented in this report. For more in-depth descriptions,
there are available resources, e.g., Foster [26]. FOI has also published several reports on
neural network models [31, 32, 35, 59, 61, 69].

Multimodal models build upon and use unimodal neural network models, i.e., models
that process data from one modality, such as language models. Unimodal models have been
studied extensively for around a decade. In the following chapters, we describe some key
concepts relating to this field and specific unimodal models used to construct the multimodal
models discussed.

2.1 Machine Learning in the Age of Deep Neural Networks

Machine learning has been used in many applications for decades. The introduction of deep
learning and deep neural networks radically improved the possibilities. Perhaps the most
crucial difference between “traditional” machine learning and deep learning is how the latter
can leverage unstructured data, ostensibly letting the dataset perform the feature selection.
As such, deep neural networks can be trained from unstructured, unlabeled data. This can be
desirable as manual data labeling can be a costly process.

A trained network can be further trained on a specific and labeled task and then benefit
from its previous training on unstructured data. This reuse of learned information by first
training for general capability and then fine-tuning for a specific capability is called transfer
learning. For example, a language model can be pre-trained on unlabeled text to predict the
next word by showing many examples of word sequences with the next word in the sequence
removed. This requires no manual labeling. The pre-trained model can then be fine-tuned
(further trained) by showing examples of a specific task, e.g., estimating the sentiment of a
text. In the fine-tuning phase, fewer examples are needed than if a machine learning model
was to be trained from the beginning for a specific task, such as sentiment classification.
This is because the language model starts learning the new task from a position of already
“knowing” a lot about texts from having been trained extensively on generating the next word.
Transfer learning has been used successfully for many types of data. In many cases, a pre-
trained model can be fine-tuned for several different tasks.

Another property of large language models® arising from training to predict the next
word is the possibility for users to prompt the model. A prompt is the user text input to a
language model. When interacting with ChatGPT and similar systems, the prompt can be a
question or a request. By providing more information within the prompt, the user can often
acquire more appropriate answers from the model. This steers the model towards utilizing
contextual information related to the prompt. The skill of writing prompts to obtain relevant
answers is often called prompt engineering. This ability to utilize prompts to provide online
training examples is often called in-context learning.

In essence, in-context learning steers the model towards associations that are helpful to
give a correct or satisfying answer to the question being posed, thus yielding better results than
when given no examples [23]. However, in-context learning is not a learning strategy, as the
model being used for question-answering does not update its weights. Due to this, the model
does not retain any new information from the input-output association. When performing
in-context learning on larger models, the emergent capabilities can convince the user that
the model contains “knowledge” or can perform “reasoning”, but there is currently sparse
evidence for such conclusions[43].

%A common term is large language models, but what is large today will likely not be that in a few years.

FOI-R--5505--SE

13 (52)



FOI-R--5505--SE

14 (52)

As models have increased in size, such as the Generative pre-trained transformers (GPT)
models [10, 46, 53, 54], new capabilities, often referred to as emergent capabilities have been
observed. Here emergent refers to capabilities that a model was not expected to exhibit, based
on its implementation. Rather, these capabilities were uncovered with the increased amount
of training data and model size [72].

Transfer learning and emergent capabilities can be observed in multimodal models. For
instance, what is learned by a language model can be leveraged when combined with an image
model. Transfer learning and emergent capabilities make it difficult to predict the capability
horizon for deep neural networks.

2.2 Representations and Embeddings

In computer science, mathematics is used to represent objects. For instance, letters can be rep-
resented as natural numbers, and matrices of real numbers can be used to represent images.
Therefore, a matrix of real numbers can be used as an image’s representation. Embeddings
can be considered representations with additional properties. In machine learning for text,
word embeddings (usually realized as real numbers vectors) represent words. If learned suc-
cessfully, the embedding vectors reflect similarities between words so that embeddings of
similar words appear close to each other in a vector space. Embeddings are often vectors of
real numbers but can also be arrays or matrices of any dimension.

The objective for some neural network models is to produce embeddings for the objects
of interest, e.g., words or tokens, parts of an image, a part of a sound wave, or an image
frame in a video. These embeddings can be used in other models, often for several purposes.
Other models produce embeddings as a consequence of achieving something else primarily.
However, such embeddings can also frequently be used elsewhere.

In many multimodal models, embeddings of several different modalities are used. In
some of the models, the training of the embeddings is done in a fashion that connects them
over modalities. Such embeddings allow for comparisons between modalities and can be said
to occupy a joint embedding space. A joint embedding space combines the textual and vi-
sual embeddings into a higher dimensional space. If we allow textual embedding vectors of
dimensionality m and visual embedding vectors of dimensionality n, the resulting joint em-
bedding space will have a dimensionality of either mn or m+n depending on the joint strategy.
The joint embedding space is also often referred to as a joint or latent representation space.
Two examples of models that produce joint embedding spaces are CLIP [55] (Section 3.1)
and ImageBind [28] (Section 6.2).

2.3 Encoders and Decoders

The encoder-decoder architecture has many uses, and it can be implemented in different ways
depending on the application. The encoder and the decoder are usually implemented as sep-
arate networks in neural network models. See Figure 1 for an overview. The encoder takes
a representation (R) as input and produces an encoding (E, an embedding), which is usually
smaller, i.e., has a lower dimensionality. The decoder decodes the encoding, creating a new
representation (R’). A typical use case is translation from a source language to a target lan-
guage, where the representation of the source language text is converted to a representation
of the target language text. The encoder and decoder are trained in tandem.

In an autoencoder the goal is for the new representation (R’) to be as similar to the
original representation (R) as possible while requiring the embedding (E) to have fewer di-
mensions than the representation (R), and thereby requiring less memory. The embedding
preserves much of the information from the original representation while occupying a smaller
space, often called a latent space, which allows for faster computations.



Encoder — E — Decoder

Figure 1: Encoder-decoder. A representation R is encoded into a lower-dimensional embed-
ding E. Starting from the embedding, the decoder can create a new representation R’. In the
case of an autoencoder, the goal is for R’ to be as similar to R as possible.

2.4 Convolutional Neural Networks

Convolutional Neural Networks (CNN) were developed for the processing of images. They
are based on the mathematical operation convolution. Images are usually represented as ma-
trices of real numbers upon which linear algebra operations are performed. CNNs reduce the
complexity and size of an image by calculating a weighted average of a small “window” of
the image, i.e., an image patch. The window is slid over the image in overlapping steps, and
a new weighted average is calculated for each step. When the window has moved over the
entire image, the collected averages comprise a smaller image that summarizes the original
image. This process is repeated several times on smaller and smaller images until an image
of a specific size is reached. That image is used as a representation. Multiple tasks can be
achieved by using such representations, such as the categorization of the content of the image.
CNNss can be applied to any data that can be visualized as an image.

CNNs have been developed in many directions and have been used for, among other
things, image recognition and classification, denoising of images, and image segmentation.
They have also been used as parts of more complicated architectures. CNNs can be used as
both the encoder and the decoder. One of the most well-known networks of this kind is the
U-Net [58], which has been used for, among other things, image segmentation, which is the
task of detecting which parts of an image constitute separate objects.

CNNs are also often used in the implementation of both of the two parts of a Generative
Adversarial Neural network — GAN [29]: the generator and the discriminator. GANs are most
well-known for being used to generate realistic images of people that do not exist,” but they
can be used to generate other types of images as well. The two parts of the GAN learn by
“competing” with each other. The generator tries to generate images that look as realistic as
possible, while the discriminator tries to decide whether the generated images are authentic
or not. Some multimodal models build upon GANs, but we do not discuss these further in
this report.

CNNs are used in many multimodal models as they are one of the architectures suit-
able for image processing. Diffusion Models, discussed in the next section (2.5), are usually
implemented using CNNs and are also used in multimodal models.

2.5 Diffusion Models

Diffusion models [66] are based on the physics phenomenon diffusion. An example of this is
how water-soluble red paint diffuses in a glass of water — it is slowly mixed with the water,
resulting in a glass of water with a faint red tinge. The process can be described mathemati-
cally as a series of applications of a probability distribution to the water particles, for instance,
a Gaussian distribution. Each application of the probability distribution corresponds to small
random movements of the particles in the water.

Diffusion models learn to reverse a diffusion process [66]. Figure 2 gives an overview
of how the model is trained and used. A set of images are diffused one by one by iteratively

https:/thispersondoesnotexist.com/ (Visited 2023-12-06)
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applying noise according to a probability function ¢ until each image is reduced to noise.®

A deep neural network learns a generation function p from the reversal of each step of the
diffusion of each image.’ Each application of ¢ gives a training example for the network p,
which learns how to estimate and remove the noise applied by ¢g. For instance, the deep neural
network p can be a U-Net (Section 2.4).

After training, the generation function can be applied to noise of the same type as the
diffusion result and generates an image after iterative applications. The generated image be-
longs to the same distribution of images as the original training images. Indeed, if we give
the exact noise after diffusion for one of the original images, the generation process returns
an image very close to the original image.

Albeit slow, diffusion models can be used for tasks such as generating or denoising im-
ages. In Section 3.2, we describe the multimodal model Stable Diffusion [57], which is more
efficient than the diffusion model of [66]. Stable Diffusion achieves this by using an encoder
to create embeddings of lower dimensionality that are diffused using less computational re-
sources. The result of the generation function is an embedding passed through a decoder to
generate the final image.

Forward: diffusion

________________________________________________ >
q q q q
Image Image —— = — 4 Noise
p p p p
Image Image Noise

Backward: generation

Figure 2: Diffusion Model [66]. During the application of diffusion (¢) to a set of images, the
generation function (p) is learned. Given the noise of the proper distribution as input, p can be
used to estimate an image in a distribution containing the original set of images.

2.6 The Transformer

The transformer network architecture [71], often just referred to as “transformer”, was de-
veloped initially for translation between natural languages. Transformers have since been
used for a wide range of language technology tasks [21], and generative text models such as
ChatGPT'? and Gemini!!. Transformers for text processing have previously been described
in [35]. The transformer network can be used for any data represented as a sequence of tokens
if meaningful embeddings can be created for them. An example is the vision transformer for
images that is described in Section 2.7. Transformers are used in many multimodal models.
Figure 3 shows an overview of translation between natural languages using the trans-
former, as described by Vaswani et al. [71]. All tokens are represented by embedding vec-
tors.!> The embeddings of the words in the source language are input into an encoder that

8The noise applied is Gaussian noise, and the final noisy image also follows this distribution.
°If the diffusion step is small enough (adding a tiny amount of noise in each step), the generation function p has
the same probability distribution (Gaussian distribution) as the diffusion function.
10https://chat.openai.com/ (Visited 2024-02-09)
https:/gemini.google.com/ (Visited 2024-02-09)
12Here, a token can be a part of a word, but it is easier to think of them as words while trying to understand the
mechanisms of the transformer.
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Predicted next word: grapefruit

Encoder Decoder
Transformer Block I Transformer Block
Several blocks Several blocks
| Transformer Block | { Transformer Block |
11 I [ 1T1
| Transformer Block | { Transformer Block |

y
| Je suis un pamplemousse | | I am a| grapefruit |

Source language text Target language text

Figure 3: An overview of translation using two transformer networks: an encoder and a de-
coder.

recalculates them through several blocks. The encoder outputs new embeddings, one for
each word. There is no reduction in the number of embeddings or sizes, as with the encoders
in Section 2.3.

The translation is achieved by producing one token in the target language at a time. If
tokens in the translation have already been produced, these embeddings are inputted into the
decoder. Each decoder block recalculates the embeddings for the target language tokens based
on the tokens on the previous transformer block and the encoder’s final token embeddings of
the source language. The final target language embeddings are used to predict the next token
in the translation.

An attention mechanism is used to recalculate the embeddings in each transformer
block. The attention mechanism is not described in detail in this report. However, in essence,
the attention mechanism is based on the idea that to calculate an embedding for a token, the
embeddings of the tokens around it must be considered, or paid attention to. During training,
the attention mechanism learns how much weight to give to each of the tokens from the previ-
ous transformer block while considering which those tokens are. Figure 4 shows the encoder
and decoder as separate networks. In the encoder, attention is paid to tokens before and after
the current token, while in the decoder, attention is only paid to the tokens before.

The encoder and decoder networks can be used jointly as in language translation or
can be used separately for a range of various tasks. Different variations are used in differ-
ent multimodal models presented in the following chapters. The encoder can be trained to
create embeddings of high quality for each token and can, in turn, be used for many applica-
tions. The most well-known encoder network is Bidirectional Encoder Representations from
Transformers (BERT) [22], which adds an extra token embedding specifically intended for
classification (called CLS).

The decoder helps predict the next token in a sequence. The most well-known decoder
networks are the GPT models [10, 46, 53, 54], which form the basis for ChatGPT, and Path-
ways Language Model 2 (PaLM 2) [16].

In an encoder-decoder network for each transformer block, the decoder pays attention
to the token embeddings from the encoder (Figure 3). This is called cross-attention. Cross-
attention is used in some multimodal models to combine two different modalities by informing
the recalculation of the embeddings for one modality by the embeddings of another.
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Figure 4: Left: the transformer encoder. Through several layers of blocks (bottom to top),
embeddings for each word are calculated by taking the embeddings from the previous block
into account through the attention mechanism. The top embeddings can be used for many
applications. Right: the transformer decoder. Similarly to the encoder, new embeddings for
each block are calculated using the attention mechanism based on the previous block. Here,
however, for each word, attention is only paid to the words preceding that word. The top right
embedding can be used to predict the next word.

2.7 Vision Transformer

The Vision Transformer (ViT) [24] resembles a transformer [71] used in the text domain but
takes image tokens as input. Image tokens are created by dividing an image into fixed-size
patches that do not overlap.!?

These patches are projected onto one-dimensional vector embeddings by a neural net-
work that learns a linear projection during the training of the full ViT. Learnable position
embeddings are then added to the patch embeddings, and the resulting series of vectors are
given as input to the ViT encoder. The transformer architecture provides good scalability and
allows training high-performing ViT models on large datasets containing hundreds of millions
of images [24].

Originally, ViT was used for image classification by means of a classification token, like
in BERT [21]. The transformer architecture provides good scalability and makes it possible
to train high-performing ViT models on large datasets containing hundreds of millions of
images [24]. ViT has also been extended to videos [3]. Many multimodal models use a ViT
or related networks as an essential component.

Comparison to Convolutional Models

The ViT encoder is a standard Transformer encoder that does not rely on the type of convolu-
tions known from traditional CNN architectures, which are commonly used when analyzing
images. CNNs’ convolution model captures “local” relationships between pixels since they
rely on kernel filters. ViT is based on the attention mechanism, which models relationships
between embeddings representing different image patches, which can be far from each other.
This can be said to model “global” relationships between the patches.

Both perspectives are useful: images have both local properties, such as how the color of
pixels close to each other affects one another, and global properties that can only be modeled
by taking larger portions of an image into account, such as how a person’s head and leg may
both be part of a person’s body.

13 A learnable classification token (CLS) that represents the entire image is also added to the end of the sequence
of patch embeddings.



A repeated application of convolution can make a CNN able to model global properties,
but there is no guarantee that all such properties can be modeled. A ViT with small enough
image patches can model local properties, but the computational cost easily becomes high.
A compromise can be to create embeddings of image patches for a transformer-based model
using a CNN that takes the local properties into account.
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3 Image — Text

This chapter intends to inspect and elaborate on different text and image multimodal models
since the success and broad impact of multimodal models in recent years have primarily been
driven, at least initially, by the development of models that can handle both images and texts.
Much effort is being put into this rapidly moving field of research, and new image-text models
with impressive capabilities are constantly being released. Many of the models that combine
image and text utilize transformer-based architectures. Transformers were previously mainly
associated with language modeling in the text domain alone but can, in fact, be applied to im-
ages as well (Section 2.7), which makes it possible to build models that, for instance, generate
text based on a combination of image and text input.

The Contrastive Language-Image Pre-training (CLIP) model (Section 3.1) attracted
much attention in 2021 due to its ability to learn meaningful representations (also referred to
as embeddings) of images and texts. Since CLIP can produce vector representations for any
image and text in a joint embedding space, it is possible to decide how well an arbitrary image
matches an arbitrary text by comparing their representations. CLIP embeddings enable many
downstream (unseen) tasks, such as searching through large image databases to find images
that match a text description or detecting specific objects in images based on a text prompt.
The open-vocabulary object detector Detic (Section 3.4) utilizes CLIP embeddings and can
be used to detect objects given a text prompt.

The image-text models that have probably had the greatest impact among the general
public so far are those that are able to generate images based on text descriptions. Text-
to-image functionality is easily accessible through popular services such as Midjourney,'*
Microsoft Bing,'> and ChatGPT.'® Most of these services are built using methods similar
to and/or inspired by diffusion models (Section 2.5) and the freely available model Stable
Diffusion (Section 3.2) that can be used to generate and modify images in different ways
based on text input (and sometimes also image input).

As mentioned, some models can be used to process images and texts in order to generate
new text. PaLl (Section 3.3) is one example of such a model. The model can perform image
captioning, image classification, and visual question answering (VQA), amongst other things.

Further we present two multimodal segmentation models, i.e., models that “highlight”
objects and other interesting image regions with masks. The “Segment Anything Model”
(SAM) described in Section 3.5 is able to produce masks based on visual prompts, i.e., start-
ing points or bounding box coordinates, but also simple text prompts. “Segment Everything
Everywhere with Multi-modal prompts all at once” (SEEM) that is described in Section 3.6
encodes all input prompts into a joint representation space. SEEM can segment images based
on visual prompts, but also on text and audio prompts.

3.1 CLIP

The CLIP (Contrastive Language-Image Pre-training) model was released at the beginning of
2021 and constitutes a breakthrough in multimodal machine learning [55]. CLIP is capable of
associating images and their corresponding textual descriptions. Hence, in its basic form, the
model can be applied to a wide range of visual classification tasks since it is able to determine
how well an arbitrary image matches a text prompt describing a specific visual concept. The
fact that CLIP is trained to handle arbitrary text descriptions makes it possible to introduce
new visual concepts at a later stage and generalize to unseen data. There are no clear rules
regarding how a text prompt should be formulated, although prompts that help specify that

https://www.midjourney.com/ (Visited 2023-11-03)
I3https://www.bing.com/create (Visited 2023-11-03)
16https://chat.openai.com/ (Visited 2023-11-03)
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the text is about the content of the image (e.g., “a photo of a military tank™) tend to work
well [55].

In practice, CLIP utilizes an image encoder and a text encoder to extract feature rep-
resentations of each modality (i.e., features for each input image and features for each text
prompt) [55]. The text encoder is a slightly modified version of the well-known transformer-
based language model GPT-2 [54], while the image encoder is based on the Vision Trans-
former (ViT) [24] (Section 2.7).

The image and text features obtained from the CLIP encoders are projected into a joint
multimodal embedding space [55]. This operation produces embedding vectors of fixed size,
which makes it possible to utilize the cosine similarity metric to measure the distance (i.c.,
the similarity) between each image vector and text vector. The metric ranges from 0 to 1
(inclusive), where a larger value indicates a smaller distance and , therefore, a better matching
image-text pair. A perfect image-text score of 1 is nearly impossible to get. Figure 5 shows
an example where CLIP is used to classify images of tanks and fighter jets.

Embeddings
— =
Scores Probabilities
tank tank
. 29 95%
Cosine
Similarit Softmax
Y fighter jet P
a photo of a g o 2 o
tank *: Text :_

a photo of a 1 Encoder 1
1
fighter jet R

Figure 5: Classification of tanks and fighter jets using CLIP embeddings. In this binary classi-
fication example, the distance (cosine similarity) is measured between the tank image (white
vector) and text prompt “a photo of a tank” (blue vector), and between the tank image (white
vector) and text prompt “a photo of a fighter jet” (yellow vector). The resulting cosine similarity
values are multiplied by a factor 100 to obtain scores that are fed to a Softmax function com-
puting probabilities.

For CLIP to successfully embed matching image-text pairs close to each other, the
model has been trained using a symmetric cross-entropy loss function that encourages the
model to maximize the cosine similarity of matching image-text pairs and minimize the co-
sine similarity of non-matching image-text pairs [55]. Hence, by contrasting positive (match-
ing) and negative (non-matching) pairs, CLIP has learned meaningful representations (em-
beddings) such that matching pairs will be close to each other in the representation space,
while non-matching pairs will be far apart. This type of representation learning is known as
contrastive learning.

The official CLIP model has been trained on 400 million image-text pairs collected
directly from the internet, thus eliminating the need to label training data manually. For com-
parison, the manually labeled computer visions dataset ImageNet only contains approximately
14 million images [19]. The large amount of training data is one of the reasons why CLIP
generalizes well to unseen test data. In numerous benchmarks, CLIP achieves similar perfor-
mance as state-of-the-art models trained in a supervised manner for the specific task being
evaluated, unlike CLIP, which is evaluated in a zero-shot setting [55]. In addition to im-
age classification, CLIP embeddings can be used in many other applications such as human
identity verification [70], action recognition [55], and object detection [77].



3.2 Stable Diffusion

Stable Diffusion [57] is a flexible model that is best known for its capability for quality image
generation from text. It is based on diffusion models (Section 2.5). Aside from text, its image
generation can be conditioned on different types of data. This makes it possible to generate
images from any combination of text, images, and parts of images. The latter allows the
method to fill in parts of an image that have been removed, so-called inpainting, and extend
an image beyond its original size. In both cases, what should be added can be described in
text. Further, Stable Diffusion can be used to increase the resolution of an image.

Stable Diffusion is more efficient than the diffusion model because it does the calcu-
lations in a latent space of fewer dimensions than the original image space [66]. This is
achieved by separately training an encoder-decoder pair used before and after the diffusion
and generation (Figure 6). The encoder reduces the size of the original image x to a smaller
representation, z, that retains enough information about the image.

The forward diffusion and backward generation are done incrementally as in the orig-
inal diffusion model, but in Figure 6, the U-Net responsible for the backward steps is only
depicted once. The generation is conditioned on added data, such as text and images, encoded
using encoders specific to each data type. To achieve the flexible conditioning of Stable Dif-
fusion, cross-attention (Section 2.6) is used in the layers of the U-Net. For some tasks, such
as increasing the resolution of an image, the encoded data can be concatenated to the image’s
latent space representation z.

Stable Diffusion partially owes its success to LAION-5B [63], which is a dataset con-
taining approximately 5.85 billion CLIP 3.1 filtered image-text pairs, which Stable Diffusion
has been trained on. The main contributions of Stable Diffusion [57] (latent diffusion and
conditioning) form the foundation of most successful image-to-text systems available today.
One example is Stable Diffusion XL [51], which increases the model size by leveraging a
larger cross-attention context and a secondary text decoder. It exploits a post-process sam-
pling image-to-image refinement technique, increasing the model’s quality and performance.
They are also used in several models for video generation from text (Chapter 5).

Pixel/image space Latent space Conditioning
Forward: diffusion
X Encoder
z Zr Text, images, etc.

Backward: generation

X <—— Decoder

Concatenation

z ICross attention Zr

Figure 6: Stable Diffusion. Image after [57] (simplified).

3.3 PaLl and PaLlI-X

The input to the Pathways Language and Image model (PaLI) [14] is an image and a text.
In response, it generates a text. This makes it suitable for performing many image-language
tasks, such as image captioning, visual question answering, i.c., answering questions about
an image, and zero-shot image classification.!” PaLl achieves state-of-the-art performance
on these tasks and can perform them in many languages as the model is pre-trained in over
100 languages.

17The transformer decoder is used to score texts describing the classes of interest.
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PaLl

Text
Text

Image

Figure 7: PaLl. Images are encoded into embeddings by a ViT model and input into the trans-
former beside the text tokens. Image after [14].

The PaLl architecture consists of a visual and a language component (Figure 7). The
language component is a Transformer model with both an encoder and a decoder, like in [71].
A vision transformer, ViT (Section 2.7), is used as the visual component. Its output of image
token embeddings is added to the text tokens and used as input to the transformer encoder.

The language and vision components are pre-trained separately and can thus be scaled
independently. The combined model is then pre-trained on a large multilingual image-language
dataset constructed by the authors, using several different pre-training tasks with the goal of
capturing many capabilities. During pre-training, only the language component is updated.
The model is fine-tuned on specific data for the different tasks (zero shot tasks obviously
omitted).

PaLI-X [13] has a similar architecture as PaLl. The ViT component is scaled up to 22B
parameters and handles video by individually processing a series of frames. The encoder-
decoder part is scaled up to 32B parameters. This larger model outperforms PaLl and other
models on a wide range of tasks.

3.4 Detic

Detic (Detector with Image Classes) [77] is a model that can be used to detect objects in
images. Object detection involves two problems: localization and classification. Localization
aims to predict bounding boxes that indicate where objects appear in an image (i.e., finding
objects), while classification seeks to determine the object types (i.e., naming the objects).
This is exemplified in Figure 8.

Object detectors are typically trained on images paired with ground truth bounding box
labels and class labels and, therefore, cannot detect objects belonging to novel classes not
present in the training dataset. For instance, a detector trained to detect cars and persons
cannot be used to detect assault rifles, at least not without being fine-tuned on data repre-
senting the class. Although it is possible to fine-tune detectors to handle new classes, it can
only sometimes be done correctly since the amount of object detection training data is often
limited. Detic, however, can detect many objects belonging to novel classes without being
fine-tuned. This has been achieved by relying on embeddings from the multimodal CLIP
model (Section 3.1) and incorporating additional data from an image classification dataset
during training [77].

Specifically, the name of an arbitrary class (e.g., “assault rifle”) can be encoded using
CLIP to obtain an embedding. Detic uses CLIP embeddings of class names as classifica-
tion weights, making it possible to detect novel objects outside the training vocabulary [77].
However, CLIP embeddings alone are not sufficient to achieve satisfying performance. The
authors behind Detic realized that the localization and classification problems can be decou-
pled. Many object detectors are able to localize objects belonging to novel classes. The
authors, therefore, focused on improving classification performance, and thereby detection



BN

Figure 8: Object detection using a model trained to detect cars and persons. Each detected
object has been marked with a rectangular bounding box and assigned a class label (class
name) and a confidence score. The original image comes from the HERIDAL dataset [7].

performance, by expanding the training dataset with images from the ImageNet [19] classifi-
cation dataset that only provides a single class label per image and no bounding box labels.

The benefit of using classification datasets, such as ImageNet, is that they are easier to
label and, therefore, significantly larger than object detection datasets that often require mul-
tiple bounding box labels and corresponding class labels for each image. ImageNet contains
14 million images and provides labels for 21 thousand different classes. During the train-
ing of Detic, the class label of each ImageNet image was assigned to the largest-sized object
proposal (i.e., the proposal with the largest “bounding box”) obtained when feeding Detic
with the image [77]. A traditional object detection dataset was used to train Detic’s localiza-
tion and classification abilities. In contrast, the ImageNet classification dataset improved the
classification ability by training the object proposal region features to better match the CLIP
embeddings [77].

3.5 SAM

Segment Anything Model (SAM) [36] aims to be a foundational model that does not require
fine-tuning for image segmentation using masks. Masks are the segments of an image corre-
sponding to a specific and separate object of interest.

SAM solves the generalized segmentation problem, which means it can take a down-
stream task image mask, such as a mask of a cat, and then be able to segment cats in all future
images. Masks can be indicated in images manually by clicks or as drawn shapes together
with textual information relating to the object. SAM can output multiple plausible masks for
the desired visual and textual prompts.

The model architecture is presented in Figure 9. The image encoder is based on a
Masked AutoEncoder (MAE), which, like in CLIP (Section 3.1), is a Vision Transformer
(ViT) (Section 2.7). Input, or dense masks, are calculated using a standard convolutional
internal channel (the rhombi in Figure 9) and layer mapping (the circle-cross in the same fig-
ure). This matches the image embedding (Section 2.2), which means that the mask summed
element-wise with the image embedding. As such, masks are not “prompts” but are fed back
into the model through this mapping. The mask decoder is a transformer decoder that predicts
the final mask and its inputs are the various sparse mask indicators, such as text input prompts
and point cloud prompts, but also the dense prompts: mask convolutions, points, lines, and
boxes.
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Figure 9: The image encoder produces embeddings which can be efficiently queried using
input prompts, downstream tasks are specialized via convoluted masks.

The authors of [36] also present a dataset (SA-1B) of 1 billion masks together with 1
million corresponding images, making it two magnitude orders larger than Google Openlm-
ages v5 and four magnitude orders larger than COCO with regard to labeled data. SA-1B is
analyzed from a diversification and fairness perspective and determined to be diverse.

3.6 SEEM

Segment Everything Everywhere with Multi-modal prompts all at once (SEEM) [78] is a seg-
mentation model that predates but is similar to ImageBind (Section 6.2) since it relies on a
joint embedding space (Section 2.2) for images and texts to support semantic segmentation,
i.e., regular segmentation coupled with classification. Since SEEM utilizes a joint embedding
space, the prompt encoder architecture can be easily extended to custom modalities. In con-
trast to SAM (Section 3.5), SEEM can operate on not only simple text prompts or point clouds
but also video and audio'® prompts and reference point clouds. The efficacy of SEEM is
demonstrated in [39] through a comprehensive segmentation study over different modalities,
number of passes, and detected masked classes. It should be noted that masks are ostensibly
point clouds when input iteratively since these gets encoded to a visual prompt.

SEEM can also process multiple rounds of interactions using its prompt decoder since
it encodes so-called memory prompts, which can be seen in Figure 10. Since reference point
clouds are parts of one image where the sought mask captures a class, which should also be

18SEEM utilizes Whisper (Section 4.1) to convert audio into text prompts.
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Figure 10: SEEM model where the machine loop “remembers” previous masks and the user
loop “refines” upon kept information through memory prompts.



masked in other images, this can be used for downstream task specialization. An example
would be the cat segmenter from Section 3.5 where the mask is refined iteratively to be spe-
cialized on a specific type of cat, or perhaps just some part of the cat, to produce the final
semantic segmenter. SEEM is also “semantically aware”, meaning that it produces labels to
predicted masks. The Semantic-SAM model [39], essentially SEEM trained on the SA-1B
images with masks from SAM [36], can perform segmentation at an even finer granularity
but requires more inference time and powerful hardware.
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4 Sound - Text

Sound as a modality is comparable to images, since we can convert audio to an image by
looking at its spectrogram (Section 4.1). However, sound has a temporal dimension, and
this complicates audio processing. This complexity is partly because converting sound to
a spectrogram is an imprecise procedure, but also due to the intimate connection between
how humans perceive sound and how they perceive time. To achieve “harmony” in music
one needs to consider the fact that specific mathematical ratios sound pleasant to the human
brain while others sound unpleasant, a phenomenon also closely tied to sound propagation
in time. This phenomenon has historically been difficult for machines to grasp, so music
generation has mostly been a human endeavor. However, with the latest wave of machine
learning models, some interesting examples of music-generating machine models, such as
MusicLM [1] and Stable Audio'®, have emerged.

Although advancements have been made in many sound-related areas, this chapter is
limited to models that work with speech and text data. Speech, in particular, is a very intricate
thing to model. Compared to text, speech as a modality is less effective regarding record
keeping and data storage. As such, the amount of available speech data is smaller than that of
text. This has also led to speech being the least researched of the two. But comparing text and
speech in this way is somewhat unfair since speech is more than spoken text. Humans can
recognize complex meanings in utterances, such as sarcasm or emotion, that the corresponding
text would not convey. Speech can further be used to signal social context, such as formality,
in a way that is significantly more difficult to achieve in written text. Even grammar and
morphology can differ between the modalities [50]. These differences tell us that there is a
lot to gain from building systems that can handle both modalities jointly, especially when it
comes to understanding language and how humans communicate. These differences also tell
us that building such a system will be expensive.

A model capable of automatic speech recognition (ASR) is a model that can automat-
ically transcribe speech into its corresponding text. One noteworthy ASR model is Whisper
(Section 4.1). Whisper explicitly tackles the problem with little available speech data paired
with transcripts, resulting in state-of-the-art performance in robust speech processing.

The amount of high-quality speech data becomes even smaller when considering lan-
guages other than English. Many speech models thus focus predominantly on English speech.
The translation model SeamlessM4T (Section 4.2) departs from this trend, with its capability
to translate between multiple modalities in up to 100 different languages.

4.1 Whisper

Whisper [52] is an automatic speech recognition (ASR) system developed by OpenAl. The
model is trained on 680k hours of multilingual data collected from the web and tested in
various experiments. In most cases, Whisper exceeded or matched the performance of state-
of-the-art models in experiments such as, e.g., zero-shot robustness over a wide set of speech
processing datasets, zero-shot X — English translation means translation from an unspecified
language into English.?’ and robustness to additive noise. Experiments also showed that
Whisper’s performance was close to that of professional human transcribers.

The data used to train Whisper was not perfect, i.e., some of the audio, e.g., contained
noise and some of the transcriptions were misaligned.”?! However, the amount of data avail-
able for training was greatly increased by relaxing the requirement of a high-quality dataset.
This trade-off, which is understudied in speech recognition, significantly improves the robust-

19https://www.stableaudio.com/ (Visited 2023-12-15)

20X — English translation Similarly, English — X translation indicates translation from English into an unspec-
ified language.

21The audio data and transcription is misaligned when a part of the audio is matched to the wrong part of the text.
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ness and generalization of models in other domains [37, 45]. The dataset used by Whisper
consisted of 680k hours of audio and their corresponding transcriptions. It is a multilingual
dataset, and the distribution of the dataset is shown in Table 2. The non-English data enables
Whisper to transcribe speech in a non-English language and translate speech from another
language to English. Whisper, thereby, is both a multimodal and a multitasking model while
also being multilingual.

Table 2: Multilingual dataset distribution. 438k hours of English speech with English transcrip-
tions, 125k hours of non-English speech but with English transcriptions, 117k hours of data in
98 languages other than English (99 total).

Distribution Size (hours)
English Speech & Transcription 438 000
Non-Eng. Speech, Eng. Transcription | 125 000
Non-Eng. Speech & Transcription 117 000

Whisper, an encoder-decoder Transformer (Section 2.6), feeds audio to the encoder
while the decoder outputs text. An illustration of the model architecture is shown in Fig-
ure 11. Audio data in Whisper is represented using log Mel-spectrograms. To get the log
Mel-spectrogram of sound, one starts with standard raw audio, which is amplitude plotted
against time, and then one takes the Fourier transform of a small-time window. This yields
frequency plotted against amplitude. Combining multiple such frequency plots, one gets a
spectrogram, a picture where the pixels represent the audio data. The x-position of the spec-
trogram gives you the time, the y-position gives you the frequency, and the color intensity
of the pixel gives you the amplitude. By rescaling the frequencies to the mel scale,”? and
the amplitude to a logarithmic scale (also known as the decibel scale), you get a log Mel-
spectrograms (Figure 11). Since the resulting log Mel-spectrogram is an image, employing
CNNs comes naturally.

The goal for developing Whisper was to create a robust speech recognition system that
performs well in zero-shot scenarios, reducing the need for dataset-specific fine-tuning. This
implies that there can be no overlap between the dataset Whisper is trained on and the datasets
it is tested on.

A standard metric used to measure ASR performance is the word error rate (WER). It
measures the distance between two text-strings. An issue with WER is that transcriptions that
could be considered correct by humans can still have a large WER due to minor formatting
differences. All text-strings are normalized before WER calculations to mitigate this issue and
minimize the penalization of non-semantic differences WER calculations (Table 3). To mea-
sure translation quality, the widespread performance metric bilingual evaluation understudy
(BLEU) is used, which has been claimed to have high correlation with human analysis [18,
4717,

Table 3: Examples of text normalization.

Original text Normalized
THIS 11IS A NORMALIZATION EXAMPLE | this is a normalization example
How’s the terrain looking today? how is the terrain looking today

22The Mel scale is adapted to represent better how humans perceive sound frequencies.
23 There are many problems with BLEU, see for instance [11], but for large-scale automatic evaluations it is
convenient.
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Figure 11: lllustration of Whisper model architecture. The encoder encodes the log Mel-
spectrograms by a transformer network. The encoded Mel-spectrogram is decoded to tokens
via the decoder transformer network. Figure inspired by Radford et al. [52].

4.1.1 Distill-Whisper

Distill-Whisper [27], uses the information distillation technique,?* first described by Hin-
ton [30], to halve the Whisper model parameter size, yet still performs within 1% of Whisper’s
word-error-rate (WER), while being 5.8 times faster and robust towards noisy environment.
The Distill-Whisper architecture is essentially the same as Whisper; the encoder is copied
directly from Whisper’s and frozen during training. It is only in the decoder that of the “stu-
dent model” (a name for the model that is under the influence of the distillation technique) we
see a difference in terms of a Kullback-Liebler (KL), in essence, measuring the loss between
“student” and “teacher” (regular Whisper) and a Pseudo Labelling (PL) loss, measuring the
against the sound-text ground-truth loss. The final loss is calculated the sum of KL and PL
given some hyperparameters.

4.2 SeamlessM4T

SeamlessM4T [64] — massively multilingual & multimodal machine translation — is a machine
translation system from Meta Al that supports speech-to-speech translation (S2ST), speech-
to-text translation (S2TT), text-to-speech translation (T2ST), text-to-text translation (T2TT)
and automatic speech recognition (ASR) for up to 100 languages. To achieve this, Seam-
lessM4T is trained on 1 million hours of open speech audio data and creates a dataset, called
SeamlessAlign, with automatically aligned speech translations of more than 470 000 hours.

24 Although incorrectly named knowledge distillation.

FOI-R--5505--SE

31(52)



FOI-R--5505--SE

Before SeamlessM4T, most of the state-of-the-art models that handled speech transla-
tion tasks were cascaded systems, meaning systems composed of multiple subsystems pro-
gressively. A cascaded S2ST system would, for example, consist of an ASR subsystem, such
as Whisper (Section 4.1), followed by a T2TT subsystem, and lastly, finalized by a text-to-
speech synthesizer. The cascaded approach comes with challenges since errors from different
subsystems propagate and accumulate in the final translation. Moreover, problems may arise
from domain mismatches between systems,?® which would negatively impact the final result.
With SeamlessM4T the team at Meta Al wanted to avoid these problems by building a unified
model instead while having a large language coverage.

To describe the architecture of SeamlessM4T, it is helpful to talk about different sub-
systems. However, as opposed to a cascaded system, these subsystems are all trained simul-
taneously in a unified manner. Hence, we still view them combined as a unified model. There
are four different subsystems present in SeamlessM4T: w2v-BERT 2.0 [17], SeamlessM4T-
NLLB, a text-to-unit (T2U) subsystem, and HiFi-GAN [38]. w2v-BERT 2.0 [17] is a conformer-
based ASR-system inspired by BERT [22], SeamlessM4T-NLLB is a transformer-based T2TT
system based on NLLB [68], the T2U subsystem is based on XLS-R [4]; and HiFi-GAN [38]
is a unit-to-speech synthesizer (i.e., a vocoder). Each subsystem is first pre-trained individu-
ally, then are fine-tuned jointly (Figure 12).2

Pre-trained Models

SeamlessMAT-NLLB w2v-BERT 2.0 e HiFi-GAN
T2TT encoder-decoder ASR encoder Speech synthesizer
decoder
SeamlessMA4T architecture S2TT
Conformer Speech ASR, T2TT, 32TT, Unit Vocoder
Encoder T
Transformer Text o| Transformer Text 5 Transformer Texi-to- 5 Transformer Unit
Encoder v Decoder Unit Encoder Decoder

Figure 12: lllustration of the SeamlessM4T model architecture. The different parts are colored
based on what pre-trained subsystem they belong to. Figure inspired by Seamless: Multilin-
gual Expressive and Streaming Speech Translation | Research - Al at Meta [64].

SeamlessM4T outperforms many of the previous state-of-the-art models in S2TT and
S2ST tasks. It does so while also being the first system that performs S2ST from 100 lan-
guages to English (100-eng) and from English to 35 languages (eng-35), along with high lan-
guage coverage on the other modalities (ASR, S2TT, T2ST, T2TT). Combining high-quality
translations and diverse language coverage makes it an interesting model.

25 An example of a domain mismatch would be if a subsystem trained on research articles is combined with a
subsystem trained on chat logs.

26The fine-tuning is done in three stages: first, the model is trained on supervised English ASR and into-English
S2TT; then the model is trained on supervised non-English ASR and from-English S2TT; lastly the parameters cor-
responding to into-text tasks (ASR, T2TT, S2TT) are frozen, and the model is trained on supervised S2ST data.
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5 Video — Text

Similar to how sentences consist of sequences of words, a video consists of a series of frames
where each frame effectively is an image. One challenge in text-image modeling is inferring
actions (series of events) from static images. Unlike individual images, video has a temporal
dimension, enabling actions to be observed. Analogously to sound, this introduces challenges
due to increased dimensionality and long-term dependencies across video frames. A model
must correctly predict image pixels as a step in text-image processing. In text-video model-
ing, however, pixel changes in the temporal dimension also need to be predicted. Text-video
modeling is a research area currently undergoing remarkable advancements, primarily lever-
aging breakthroughs in Al systems for text-image modeling. For instance, the model Stable
Diffusion, previously covered in Section 3.2, has recently given rise to a video-based model
called Stable Video.?’

Although we might typically expect video to be accompanied by sound, this chapter
is restricted to text-video models for silent videos. X-CLIP (Section 5.1) is a framework for
video-text retrieval, similar to CLIP (Section 3.1). Make-A-Video (Section 5.2) is an example
of a video generation model and is in part based on diffusion models (Section 2.5). Sora
(Section 5.3) is the most recent of the models reviewed in this chapter, and is distinguished
by its capacity to generate comparatively long (up to one minute) video sequences.

5.1 X-CLIP

X-CLIP [44] is a multimodal information retrieval architecture. Similar to other multimodal
endeavors, overall challenges in video-text retrieval lie in comparing data from different
modalities and identifying similarities and dissimilarities between them. As in the case of
multimodal image-text processing discussed in Chapter 3, recent video-text tasks efforts have
explored contrastive learning methods. These attempts have primarily focused on comparing
coarse similarities between complete videos and complete sentences or fine-grained similari-
ties between separate video frames and individual words. Unlike previous video-text models,
X-CLIP enables similarity comparisons between complete sentences and individual video
frames, complete videos and separate word tokens, and video-sentence and frame-word com-
parisons (Figure 13).

Ma et al. [44] observe that these solutions often lack abilities to distinguish between
relevant and irrelevant video-text similarities for a given retrieval query. The work of [44]
aims to improve retrieval by excluding task-irrelevant information originating from any of
the two modalities. To this end, [44] presents X-CLIP, a multi-grained contrastive framework
for semantic video-text alignment learning, where similarity comparisons are made between
video and text at different levels of granularity. As the name suggests, X-CLIP is an extension
of the CLIP model (Section 3.1) and encodes word sequences and video frame sequences as
CLIP word embeddings and temporally encoded ViT video frame (i.e., image) embeddings,
respectively. Significant experimental improvements on video-to-text and text-to-video re-
trieval tasks are reported for several video-caption datasets, compared to state-of-the-art mod-
els [44].

X-CLIP has capacities for multiple contrastive video-text similarity comparisons of
varying granularity, and is further capable of aggregating similarities across these granular
levels. In the aggregation part, an attention scheme (Section 2.6) yields instance-level sim-
ilarity scores for video-word similarity vectors, sentence-frame similarity vectors, and for
fine-grained frame-word matrices. An ultimate instance-level video-text similarity score is
obtained by averaging over the different calculated similarities. The score thereby holds in-
formation about multi-grained video-text relationships, as well as about the relevance of those

2Thttps://stability.ai/stable-video (Visited 2023-12-04)
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Figure 13: X-CLIP with the cross-granular similarity comparisons, varying from fine-grained to
coarse-grained.

relationships relative to a retrieval query. Informally, in the X-CLIP framework, coarse fea-
tures function as a relevancy filtering mechanism on fine-grained features, a strategy which
apparently improves both retrieval accuracy and efficiency.

5.2 Make-A-Video

Make-A-Video [65], introduced by Meta Al in a 2022 publication, is a text-to-video diffusion
based model architecture. The model is capable of generating short, high frame rate videos
based on text prompts by learning semantic similarities between text and images, and learning
motion patterns from viewing unlabeled video. In addition to video generation based solely on
text prompts, the model also has capabilities for generating video based on static images, and
for altering existing videos. Singer et al. [65] report substantial experimental improvements
on benchmark datasets, compared to prior state-of-the-art methods.

The Make-A-Video model architecture is partitioned into a sequence of separate com-
ponents. Prior to training of the generative model, a text-image decoder takes text-image
pairs, infers intermediate CLIP image embeddings, and returns high resolution images. The
model is then trained on these images, followed by modifications to the convolutional and at-
tention layers of the model to handle extended spatiotemporal information (Figure 14). These
modifications enable the model to learn image-to-image motion patterns, thereby improving
frame sequence prediction. The spatiotemporal network layers are then fine-tuned on video
data in an unsupervised manner to make use of video content during training without a need
for labelled text-video data. Finally, a separate network for video frame-interpolation is added
to increase video frame-rate, resulting in smooth video with high spatiotemporal resolution.

Despite a lack of capability for modelling actions and events that can only be inferred
from text-video mappings, Make-A-Video’s ability to learn from existing video data without
requiring large datasets of video-text pairs is also a strength. The video content generated by
Make-A-Video is short, and exhibits blurry entities and video anomalies such as depictions
of legs moving in ways that actual legs do not. Still, selected model outputs are convincing
and span multiple domains, from realism to fantasy. Prompting the system to generate a
video of a “teddy bear painting a portrait”,?® apparently yields a short video sequence which
unmistakably displays what was textually requested.

28Quote and example from: Make-A-Video. https://makeavideo.studio/ (Visited 2023-11-21).
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Figure 14: A high-level representation of the Make-A-Video model architecture, from text input
to video output.

5.3 Sora

In February 2024, OpenAl released Sora, a generative text-to-video state-of-the-art multi-
modal and multi-model system that can depict and animate video of up to one minute in
length based on complex, detailed written instructions. Sora builds on recent breakthroughs
in text-to-image generation and presented a leap in the state-of-the-art for text-to-video gen-
eration. Similarly to Make-A-Video, Sora is capable of generating video from text, as well
as from static images, and can be used for editing existing video?®. In addition to the possi-
bility of generating relatively long video sequences, Sora can sample and generate videos of
different resolutions, unlike previous text-to-video models where the resolution is fixed.

Sora is a diffusion-transformer model [48]. As such, the model iteratively learns to pre-
dict high-resolution images (i.e., video frames) from observing noisy images. In a technical
report by OpenAlI?’, the architecture of Sora is outlined. The report states that enriched GPT
user prompts guide video generation and that Sora is trained on video-caption pairs, where
captions are conditioned by a separately trained video caption model [5]. Raw video input is
first compressed onto a latent representation space, which is used during training and gener-
ation. The compressed video is then decomposed into image patches, analogous to breaking
text into separate token elements. Sequences of image patches with added noise function as
visual representations of space-time data for the model. This patching approach allows for
training on visual data of varying image resolutions, temporal interval lengths, and aspect
ratios. Finally, a decoder maps the generated latent representation onto a higher dimensional
pixel space.

OpenAl attributes the relatively high quality of select demonstration videos partly to
the scaling properties of the underlying diffusion transformer [48]. Despite the progress, as
for Make-A-Video, Sora shows some areas of improvement; much like many deep model
systems, it hallucinates concerning (i) physical realism, i.e., misinterpreting cause and effect,
and (ii) spatiotemporal misplacements or object insertions. This can be inferred by ocular
inspection from OpenAl’s demonstration video landing page. Examples include paper planes
merging unnaturally as they swarm above some trees, a forklift curiously sliding across beams
on the ground, or people clapping their hands in seemingly strained ways®?. Further review
and speculative analysis has been performed by Liu et al. [42].

https://openai.com/research/video- generation-models-as-world-simulators (visited 2024-03-05)
3Ohttps://openai.com/sora (visited 2024-03-05)
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6 Many Modalities

Models that handle many modalities are more complex than the models of the previous chap-
ters but open up for more interesting holistic applications and other possibilities. A few re-
cently presented models are described in the following subsections. The first two are multi-
purpose models that can be used for several tasks, spanning different sets of modalities. The
model Gato trains one transformer model to handle inputs from many modalities, while the
model ImageBind builds a joint embedding space similar to CLIP (Section 3.1), but handles
many modalities.

Among the applications in which a joint embedding space could be helpful is the dif-
ficult task of data fusion. In data fusion, data of several modalities are combined to reduce
uncertainty in data, resolve conflicts between sources, and correlate additional types of in-
formation. Models specifically developed for data fusion are not included in this report, but
there is promising research being done, for instance [15] that creates embeddings using older
methods, and [20] that uses transformers to fuse data of different modalities. Additional ex-
ploration of this field will be left for the future if and when the area has developed further.

The last section in this chapter describes a few robotics models. In contrast to more
specific robotics, i.e., robotics for industrial production, general robotics is a genuinely multi-
modal problem. To navigate complex environments, a robot must be equipped with multiple
sensors that provide many types of data and process this data collectively to decide which
actions to take (a form of data fusion).

6.1 Gato

Gato is a general-purpose model that can perform a variety of tasks such as captioning images,
engaging in chat conversations, playing board games, stacking blocks with a robot arm, and
navigating in simulated 3D environments (i.e., actions can be taken in the physical world) [56].
Gato, a single transformer model, handles data from any task and modality provided that the
data is serialized into a sequence of tokens [56]. This makes it possible to train or fine-tune
Gato on a large amount of varied data to build a general-purpose model. The trained model can
be prompted to perform different tasks, i.e., a demonstrating example is tokenized to form an
initial input sequence that makes Gato output task-specific step-by-step actions, where each
output action is influenced by the prior suggested output actions (so-called autoregressive
planning) [56].

Gato is inspired by large language models, but tokenization and sequencing are done
differently depending on the input modality. For instance, input images are split into non-
overlapping fixed-size patch tokens as in ViT (Section 2.7), while continuous values repre-
senting senses or forces in the physical world are flattened into sequences of floating point
values that are encoded, discretized and shifted [56]. The final model input is obtained by ap-
plying an embedding function to each token (different embedding operations are performed
depending on the modality) [56]. Gato then uses a decoder-only transformer to output a dis-
tribution over the next token to be predicted (the output is predicted autoregressively). The
model can predict text tokens, discrete and continuous values, and actions, but not image to-
kens [56]. This means, for instance, that Gato can be used to caption images but not generate
images based on text descriptions. A sketch of Gato is shown in Figure 15.

6.2 ImageBind

Some models can be trained to represent the semantic content of data across multiple modal-
ities in a joint embedding space (Section 2.2). An example is the CLIP model (Section 3.1),
which learns a mutual representation for texts and images. The trained CLIP model can then
compare a text with an image by measuring how close (i.e., similar) their representations
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Figure 15: Here, Gato processes input data of two modalities (text and image) to answer ques-
tions. In each instance, the input is first serialized into a sequence of tokens (the orange bars
represent text tokens, while the blue bars representimage tokens). The tokens are fed to Gato,
which autoregressively predicts the subsequent tokens (i.e., the output). The task of answer-
ing questions about an image can be performed by other models such as PaLl (Section 3.3).
However, Gato can handle additional modalities if the input data is serialized into a sequence
of tokens [56]. The airplane image originates from the ImageNet [19] dataset.

are in the joint embedding space. ImageBind [28] is an approach to extend this concept to
cover six different modalities (images, text, audio, depth, thermal, and inertial measurement
unit (IMU) readings) at once. Acquiring paired data of all possible combinations of these
modalities would pose a significant challenge. A key feature of ImageBind is its use of the
image modality as a collective reference point, reducing the data requirement to the natu-
rally occurring pairing of each modality to images (or videos). Figure 16 illustrates which
modality combinations the model is trained on explicitly and which are learned implicitly.

Depth

Text === mle = = = =3 = === Thermal

1 1 \ T

------------- IMU

Figure 16: ImageBind is trained on six modalities: images/video, text, audio, depth, thermal,
and inertial measurement unit (IMU) readings. The modality combinations are learned either
explicitly or implicitly. Solid lines indicate that a pair of modalities occurs in the training data.
Dashed lines indicate that the model learns a modality combination implicitly by using the
image modality as a reference.



This results in a model capable of tasks such as cross-modal retrieval, detection of audio
sources in images, and image generation given audio input. The model matches or outper-
forms specialist-supervised models on several benchmark tasks despite not seeing all pairs of
modalities during training.

ImageBind creates embeddings using one dedicated transformer encoder for each modal-
ity in the training data. Embeddings for all modalities are projected to the same size using an
additional small neural network, to allow for comparisons between them all. The encoders
and embeddings are optimized through a symmetric contrastive loss function. The image
and text encoders are initialized from pre-trained CLIP encoders, and their weights are kept
frozen while the encoders for the other modalities are updated. The training is done without
a specific downstream task, resulting in general-purpose embeddings. In theory, this makes
it possible to retrieve data of any modality by posing a question in text or even a question in
the form of any of the other modalities.

6.3 Robotics at Google

Robotics is a broad field faced with many challenges and problems. Steering a robot is indeed
a multimodal problem — a robot control system usually needs to take many kinds of sensory
data into consideration to steer the robot effectively. Robot control can be structured hier-
archically into control levels, using several policies, which can be thought of as strategies
for achieving goals. Low-level policies can control the basic movements of a robot, while
higher-level policies can handle more complex tasks and break them down into actions or
even singular movements. Higher-level control is typically more challenging, although even
lower levels of control can also present difficulties. While industry robots in controlled envi-
ronments have been essential to many types of production for a long time, deploying effective
robotics in uncontrolled environments is well beyond current capabilities, unlike humans, who
easily navigate, traverse, and interact with and within such environments. Examples include
walking around a supermarket shopping for groceries or moving through crowds and secu-
rity in an airport. Deep learning opens up new possibilities in robot control as in many other
fields, and multimodal models, especially, may contribute to several solutions as robotics is
inherently multimodal.

Since the introduction of deep learning in robotics, the field has seen extensive work.
In particular, recent years have witnessed a growing number of publications on multimodal
models, e.g., Gato (Section 6.1). Here, we describe a few recent papers from Google, but
the reader is cautioned that many other organizations are also working on these problems.
Moreover, the selection of papers covered in this report excludes several Google publications.
The papers are quite complex as the subject and the experiments are complex and challenging
to describe in text. It is also rather difficult to assess these methods’ effectiveness without
looking at video examples of robot actions executing various tasks, such as moving things in a
kitchen environment. Further, it is also challenging to grasp how far these robotic systems are
from actual real-life use outside the laboratories. There is no doubt, however, that impressive
advancements are being made.

One of the biggest challenges in robotics based on machine learning is how difficult and
costly it is to gather large amounts of data for many different tasks. The papers described here
show that it is possible to improve robotics learning by leveraging the large amounts of data
ingested by language- and vision-language models. For instance, these large “base models”
facilitate transfer learning; the models can learn from one set of robotics data describing one
task and become more successful at other tasks [6].

The following subsections each describe one model/paper. They all build upon each
other to some extent, and reading in the corresponding order is recommended. Several inter-
esting themes that are revisited in the selected papers, such as grounding and how to achieve
long-horizon planning, i.e., high-level control involving creating a plan to reach a goal. Here,
grounding refers to connecting a language- or vision-language model to the “reality” of a
robot to control it. An interesting observation is that the two most recent papers use sim-
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pler but larger models trained on more data to achieve better results. This is a theme in deep
neural network research; a comparably simple network architecture often outperforms other
solutions when trained on more data.

This set of papers uses a robot from Everyday Robots,*! a Google subsidiary that re-
cently has merged into Google. The robot is by no means as impressive as for instance robots
from Boston Dynamics32-33 but is instead meant to be a helper to humans in many environ-
ments. In these papers, the focus is kitchen environments. The robot has a base that can
travel by wheels, a central stalk with a camera attached at the top that can swivel and turn up
and down, and an arm with a gripper with many degrees of freedom. In the experiments in
the following papers, using large neural network models, the robots are not fast. The control
frequency of the fully integrated system in Section 6.3.4, where the robot is controlled by a
model (RT-2) in a local cloud, is 1-3 Hz. Although they may seem slow now, this will be
fine with time, improvements in computing power, and research into the efficiency of neural
networks.

6.3.1 SayCan

SayCan [2] is a method for grounding a language model in the actions available to the robot.
Put differently, it is a human language interface to a robot. SayCan is constructed to do plan-
ning, so when it receives a request, such as “Get me a soda can”, it repeatedly breaks it down
into instructions by considering which of its set of possible actions is most likely to lead to
achieving the request. A sketch of the system can be seen in Figure 17.

Prompt SayCan
Prompt examples
+ Value
Function
How would 1 1
you putan [ combinedscore | ncton |
apple Highest score Find an apple _
?
on the table? Next highest score Find a coke
+
I'would: 1. ... Next lowest score Go to the table
Lowest score Go to the counter
Image
of current
New end of prompt: |1 would: 1. Find an apple, 2. ... |~— Execute action +—————— situation

Figure 17: SayCan. A value function gives a score by estimating the success of each action a
robot can do. Given the prompt, the language model scores the same robot actions. The robot
executes the action with the highest combined score. If it succeeds, the action is added at the
end of the prompt to the language model. The process is repeated until the model produces a
termination token, which the language model produces.

The robot that SayCan instructs has been trained to perform actions. During this train-
ing, it has also learned a value function that estimates how likely it is that a particular action
will be successful given the current situation. The situation is represented by the sensory data
available to the robot, such as images from its camera. Each action also has an associated
short text description, e.g., “find an apple,” “find a soda can,” and “pick up the soda can.”

31https://everydayrobots.com/ (Visited 2023-09-13)
32https://bostondynamics.com/ (Visited 2023-09-13)
33Notably these robots do not use machine learning for their control systems.



The language model (PaLM [16]) is given a prompt, starting with examples of how
a higher-level task should be broken down into suitable actions, followed by a question de-
scribing the current task. For each action available to the robot, the probability of its success
is estimated by the value function. As each action can also be considered a text string, its
likelihood can be estimated by the main language model (PaLM [16]) given the prompt. The
action with the highest combined probability (value function probability and language model
probability) is chosen as the next step. For the “Get me a soda can” request, it could be the
action to “find a soda can”. When and if the robot has implemented this action, i.e., found
the can, the action text is added at the end of the prompt, and the process is repeated until the
language model produces a termination token. The termination token (“done.”) is included
in the examples at the beginning of the prompt.

In this work, a mobile manipulator from Everyday Robots was used, ** and the evalu-
ation was made over “101 instructions from 7 instruction families”. The method made suc-
cessful plans in 81% of test cases (84% in the training environment) and executed correctly
in 60% (74%).

6.3.2 RT-1

Robotics Transformer 1 (RT-1) [8] is trained on datasets of demonstrations of performed ac-
tions, the largest consisting of 130 000 episodes over 700 actions, and collected from 13 Ev-
eryday Robots over 17 months. It is constructed to receive text instructions and images rep-
resenting the recent history as input and output of a robot action (Figure 18). The actions are
encoded as a sequence of tokens representing seven arm movement dimensions (X, y, z, roll,
pitch, yaw, opening of the gripper), three base movement dimensions (X, y, yaw), and a mode
dimension signifying whether to control the arm, control the base, or terminating the action.

RT-1

Text instructions

Images TokenLearner .—— Action

Figure 18: Robotics Transformer 1 (RT-1) [8] takes text instructions and a sequence of images
representing history as input and output actions. The instructions are encoded using the Uni-
versal Sentence Encoder [12] and influence the EfficientNet-B3 [67] via FiLM [49] layers while
it processes the image, resulting in tokens combining the text instructions and the image his-
tory. The combined tokens are passed through a TokenLearner [60] that adaptively learns how
to reduce the set of tokens during training. These tokens are passed through a Transformer
decoder to produce robot actions. Image after [8].

RT-1 is an imitation learner, meaning it learns by observing actions in the dataset. How-
ever, in several evaluations, of which we describe a few here, it exhibits both transfer learning
capabilities and some generalization, which is likely due to the influence of the text instruc-
tions via the FiLM layers [49] (Figure 18). In the first evaluation, the model gets a success
rate of 97% on tasks withheld from the primary dataset, performing significantly better than
previous comparable models, such as Gato [56]. On a set of tasks it has not been exposed to
before, the success rate is 76%. To test its robustness, distracting objects are introduced into
the scene, and the background of the environment is changed in several ways. The perfor-
mance drops to 83% with distracting objects and 59% with altered backgrounds.

34https://everydayrobots.com/ (Visited 23-11-15)
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In the second evaluation, the model is retrained with two additional robot datasets, one
at a time. In both cases, the performance of the original data is not impacted much, but the
model improves on the actions in the new datasets:

+ Simulated data with previously unseen objects improves performance on these objects
in real-world evaluation.

+ Data from a different robot arm3* doing “bin-picking” [34] improves performance on
this task over training only on the original data.

In the third evaluation, RT-1 in combination with SayCan (Section 6.3.1) is evaluated on
so-called long horizon tasks, tasks with up to 50 steps (average 9.6 steps). SayCan iteratively
breaks down a long horizon instruction into actions that RT-1 performs. A value function for
RT-1 used in the SayCan method is implemented using MT-OPT [33].3¢ The planning success
rate on a test set in a similar kitchen as used for training is 87%, and the execution success
rate is 67%. Evaluated in a kitchen different to the training kitchen, with drawers never seen
before, the planning and execution success rate is still the same.

6.3.3 PaLM-E

PaLM-E [25] is based on the language model PalLM [16] and can be used for a wide range
of tasks, including high-level robot control, language-only tasks, tasks on images and text
such as image captioning, visual question answering of many varieties. The E in PaLM-E
stands for embodied, which can be thought of as the language model in contact with real-
world sensory data. It takes combinations of text, images, and other sensory data for input
and generates text. The generated text is interpreted differently depending on the task. It can
be an ordinary text, such as an answer to a question, or a text that should be interpreted as a
set of instructions that a robot could carry out. Although the model has all these capacities, it
has primarily been developed to do the latter. In the authors’ of [25] words; “...we investigate
a generalist, multi-embodiment model, across multiple modalities.” the implied goal is that
PaLLM-E should be able to learn to control multiple different robots using inputs from several
distinct modalities.

In Figure 19, the input is an image of the current state of some colored blocks on a
table and a question on how to manipulate the blocks. The image is encoded into a number
of embeddings in the same space as the language tokens using the ViT model (Section 2.7).
The “mod Encoder” (Figure 19) symbolizes that data of other modalities also can be encoded
and added to the “multimodal sentence”. The output is a text describing the manipulations the
model suggests, which is then used to control the robot arm. When used to control a specific
robot, PALM-E is integrated into a control loop with lower-level policies for the robot. During
training, it adapts to the lower-level policies and the multimodal data it receives. PaLM-E is
grounded through this control loop and not via a value function as in SayCan (Section 6.3.1).

PaLLM-E is trained and tested on a mixture of visual-language tasks and robotics tasks,
where the latter constitutes less than 10% of the data. Two sets of experiments are conducted
on this data. In the first set of experiments, a few ways to encode inputs, most importantly
images, are evaluated. The ViT model (Section 2.7) uses the same static grid over every
image. Although a static grid has proven effective in many circumstances, the authors of
PaLM-E argue that combining with language models that operate on symbols representing
objects is not ideal. It is also not ideal for “embodied reasoning,” which considers interactions
with physical objects. The object scene representation transformer (OSRT) [62] decomposes
scenes into objects in an unsupervised fashion and improves results when used in PaLM-E
compared to ViT.

The second set of experiments investigates several things using one specific architec-
ture, including a fixed way of encoding inputs, namely pre-trained ViT and PaLM models.

35Kuka LBR iiwa, https://www.kuka.com/en-de/products/robot-systems/industrial-robots/Ibr-iiwa (Visited 2023-
08-24).
36 This is not explained further in the paper, and we leave it here.



Given <mod> .. <img> Q: How to grasp blue block? A:

Ll

First, grasp yellow block and

Figure 19: PaLM-E. The retrained PaLM receives embeddings of text and other modalities as
input and output text. Images are encoded to embeddings using a visual transformer (ViT),
and other modalities are treated similarly with other encoders. In this example, the model
receives an image (<img>) depicting blocks of different colors placed on a table, potential data
of other modalities (<mod>), and a textual question (Q) on how to manipulate the blocks. The
model generates a text that answers (A) the question, i.e., describes how to grasp the blue
block. PaLM-E adapts this output text to suit the lower level control policies of the particular
robot and instruct the robot to manipulate the blocks. Example and image (with some minor
changes) after [25].

Control

Transfer learning is demonstrated; results on a few robotics tasks are improved when the
model is trained on all of them, compared to being trained on each one separately. Long hori-
zon planning similar to what is investigated in SayCan is evaluated qualitatively and found to
be successful even under adversarial disturbances.

Catastrophic forgetting is always a risk when training with more and new data’’. Two
methods for preventing this have been tested. First, the language model is frozen, and only
the encoders are trained. This works to some extent but leads to some problems in robotics
tasks. Using larger models can prevent catastrophic forgetting. The largest version, called
PaLLM-E-562B,38 is shown to retain its general language capabilities and shows state-of-the-
art performance in visual question answering although it is also trained on robotics tasks.

6.3.4 RT-2

The RT-2 (Robotics Transformer 2) [9] serves the same function as RT-1. It also has the same
structure, but the three internal models of RT-1 are replaced with one vision language model,
either PaALM-E or PaLI-X as shown in Figure 20. The largest versions used are a PaLLI-X model
of 55B parameters and a PaLM-E model of 12B, which can be compared to the full PaLM-
E model of 562B parameters. The reason for using these smaller models is to make them
practically usable. RT-2 is run in a cloud, with which the robot continuously communicates,
and results in the entire system’s roundtrip control frequency being only 1-3Hz.

The vision language model (VLM), i.e., PaALM-E or PaLlI-X, is retrained to a vision
language action model (VLA) by fine-tuning on both robot action data and text-image web
data. This leads to better generalization than fine-tuning on just robot action data. RT-2 uses
the same tokenization of actions as RT-1, and when RT-2 is used for robot control, the sampling
of the next token is restricted to valid action tokens.

RT-2 is evaluated in several ways, and we describe a few of them here. RT-1 and RT-2
perform on par for tasks in the training data. RT-2 outperforms RT-1 and other previous models
on objects, not in the training data. It is also much more robust to background changes. RT-
2 even achieves a success rate of almost 50% in environments it has not been trained on.

3TForgetting what was previously learned when trained further on more data.
38PaLM-E-562B has 562 billion parameters, divided between 540B in the PALM model and a ViT of 22B.
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RT-2

Text instructions

A

Images Action tokens

Figure 20: Robotics Transformer 2 (RT-2) [9] is, in essence, a PaLM-E or a PaLI-X model
retrained to (also) handle robotics tasks. The input and output are the same as in RT-1 (Sec-
tion 6.3.2).

The PaLM-E version of RT-2 performs better than the PaLI-X version on the more difficult
generalization tasks while underperforming on easier tasks.

The vision-language capabilities in the vision-language models (PaLM-E and PaLl-
X) result in emergent capabilities in RT-2 that were not present in the robot training data.
This is tested on a separate list of instructions that is divided into three categories: symbol
understanding (e.g., “push coke can on top of heart”), reasoning (e.g., “move the apple to
cup with same color”), and human recognition (e.g., “move the coke can to the person with
glasses”). On these instructions, RT-2 outperforms previous models significantly.

Due to its vision language model, RT-2 can also use the actions available in the robot
training data in new ways. However, it does not learn new actions. The paper suggests that
future work could investigate the possibility of learning from human videos.



7 Conclusions

Multimodal neural network models are currently attracting a lot of interest in the data science
community. New or updated models are continuously released and gain considerable attention
in both scientific forums and regular media.

In this report, we first provide an overview of some core technologies behind the current
developments of multimodal models, after which we describe and discuss a set of models.
The selected models process combinations of different modalities, focusing on text, sound,
image, and video. As the models described are trained on data primarily intended for human
communication or entertainment, we refer to them as multimodal media models.

Multimodal models in general have many potential applications. Their capability to
connect and process data from several modalities enables them to solve complex tasks that
were previously not possible to automate. Examples of applications in which multimodal
models have already proved to be highly useful are artificial intelligence-based office assis-
tants and home robotics. In addition, the model architecture — where all input regardless of
modality is mapped to a common numerical embedding space — alleviates some of the need for
so-called model grounding. Grounding in this context can be briefly explained as the process
of “calibrating” the model against the real world which it represents.

Unfortunately, multimodal models, like much other technology, can both be used for
malicious purposes and cause unintentional harm if used carelessly. For instance, multimodal
media models can easily generate fake but highly realistic-looking media content, which can
be used to affect the public opinion. Given the accessibility of the technology, we have to
anticipate a dramatic and problematic increase in false or altered media content of all kinds
in the coming years.

Like all neural network-based models, multimodal media models come with some tech-
nical challenges. For example, they reflect biases present in the data they are trained on, and
their transparency and explainability are generally poor.

To conclude, much suggests that multimodal models have the potential to profoundly
affect our society. For this reason, it is important that authorities and actors in the security
and defense domain understand the technology so that they are able to identify possible im-
plications — both good and bad — of the technology on their respective organizations, and
adapt accordingly. On a national level it may even be necessary to discuss the potential need
for control and regulation of the use and accessibility of future developments of multimodal
technology.
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