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Summary 

Target classification of imagery from Unmanned Aerial Vehicles (UAVs) is 

increasingly important for military reconnaissance and surveillance. A promising 

technique to improve target classification of UAV imagery is Deep Neural Networks 

(DNNs). However, DNNs may consist of a very large number of parameters, which 

makes it difficult for operators to understand what image features DNNs use for target 

classification. This lack of transparency is a challenge for military applications of 

DNNs for target classification since operators are ultimately responsible for all 

decisions due to the high risks of weapon engagements. Operators therefore also need 

explanations of DNN classifications to assess their reliability. 

This report describes an experiment where participants performed a target 

classification task of military vehicles in low-altitude UAV imagery. The objective of 

the experiment was to evaluate whether support of DNN classifications and support of 

saliency map explanations of DNN classifications, which highlight the most important 

features for DNN classifications, improve accuracy in target classifications. Saliency 

map explanations were generated with the Randomized Input Sampling for 

Explanation (RISE) method. Participants performed the target classification task in 

three different conditions: without support of DNN classifications, with support of 

DNN classifications, and with support of RISE saliency map explanations of the DNN 

classifications.  

The results show that, contrary to expectations, participants’ accuracy in target 

classification decreases with support of DNN classifications and it decreases even 

further with support of RISE saliency map explanations. Participants’ lower accuracy 

in target classification with support of DNN classifications and RISE saliency map 

explanations is likely due to a combination of two reasons: reliance on automated 

decision aids and difficulty in assessing DNN reliability. The results show that 

participants under-rely on DNN classifications when they are correct and over-rely on 

DNN classifications when they are incorrect. 

The conclusion of the experiment is that it is not trivial to present DNN classifications 

and explanations of DNN classifications that actually support operators’ target 

classification. Additional experiments are required of how to present information from 

DNN classifications and whether other promising XAI-approaches improve operators’ 

target classification. 

Keywords: artificial intelligence, deep learning, deep neural networks, XAI, saliency 

map explanations, RISE, target classification, unmanned aerial vehicles 
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Sammanfattning 

Måligenkänning av bilder från obemannade flygfarkoster (eng. Unmanned Aerial 

Vehicle, UAV) blir allt viktigare för militär spaning och underrättelseinhämtning. En 

lovande teknik för att förbättra måligenkänning av UAV-bilder är djupa neuronnät. 

Problemet är att djupa neuronnät består ett stort antal parametrar som gör det svårt för 

operatörer att förstå vilka särdrag i bilden som neuronnätet använder för 

måligenkänning. Bristen på transparens är en utmaning för militära tillämpningar av 

måligenkänning med djupa neuronnät eftersom operatörer i slutändan är ansvariga för 

alla beslut på grund av de stora riskerna med väpnade insatser. Operatörer behöver 

därför även förklaringar av neuronnätets måligenkänning för att bedöma dess 

tillförlitlighet. 

Rapporten beskriver ett experiment där deltagarna genomförde måligenkänning av 

militära fordon i UAV-bilder tagna på låg höjd. Syftet med experimentet var att 

utvärdera om stöd av ett djup neuronnät och stöd av särdragsförklaringar (eng. saliency 

maps), som markerar framträdande särdrag för djupa neuronnäts måligenkänning, 

förbättrar måligenkänningen. Särdragsförklaringarna skapades med metoden 

Randomized Input Sampling for Explanation (RISE). Deltagarna genomförde 

måligenkänningen under tre förutsättningar: utan stöd av måligenkänningar från ett 

djupt neuronnät, med stöd av måligenkänningar från ett djupt neuronnät och med stöd 

av RISE särdragsförklaringar av det djupa neuronnätets måligenkänningar. 

Resultaten visar att tvärtemot förväntningarna så minskar deltagarnas förmåga att 

korrekt känna igen mål med stöd av måligenkänningar från ett djupt neuronnät och den 

minskar ytterligare med stöd av RISE särdragsförklaringar. Försämringen av 

deltagarnas måligenkänning beror sannolikt på en kombination av två orsaker: förlitan 

till automatiserade beslutsstöd och svårighet att bedöma neuronnätets tillförlitlighet. 

Resultaten visar att deltagarna har för låg förlitan till korrekta klassificeringar från 

neuronnätet och för hög förlitan till inkorrekta klassificeringar från neuronnätet. 

Slutsatsen från experimentet är att det inte är trivialt att presentera måligenkänningar 

från ett djupt neuronnät och förklaringar av neuronnätets måligenkänningar som 

faktiskt förbättrar operatörers måligenkänning. Ytterligare experiment behövs av hur 

information från neuronnätets måligenkänning ska presenteras och om andra lovande 

XAI-metoder förbättrar operatörers måligenkänning. 

Nyckelord: artificiell intelligens, djupinlärning, djupa neuronnät, XAI, 

särdragsförklaringar, RISE, måligenkänning, obemannade flygfarkoster 
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1 Introduction 
Target classification in imagery from low-altitude Unmanned Aerial Vehicles (UAVs) is 

increasingly important for military reconnaissance and surveillance (Rubio, 2020; Kullab, 

2023). Target classification in UAV imagery is, however, a challenging task where targets 

may appear at many locations within the field of view, at large distances, and in varying 

orientations. Other factors that affect target classification are target similarity, whether the 

sensors utilize visual or infrared light, as well as other factors, such as time pressure (Lif et 

al., 2018; Lif et al., 2021).  

A promising technique to improve target classification in UAV imagery is Deep Neural 

Networks (DNNs) (Mittal et al., 2020; Wu et al., 2021). However, since DNNs may 

consist of a very large number of parameters, it is often difficult for operators to 

understand which specific image features are most important for the DNNs’ target 

classification. This lack of transparency is a challenge for military applications where 

operators are ultimately responsible for all decisions due to the high risks of weapon 

engagements (Svenmarck et al., 2018). Operators therefore also need explanations of DNN 

classifications to be able to assess their accuracy.  

The goal of eXplainable Artificial Intelligence (XAI) is to make models, such as DNNs, 

more comprehensible and transparent to humans (Luotsinen et al., 2019; Ali et al., 2023). 

XAI is important in sensitive applications, such as military, finance, and healthcare, where 

domain specialists ultimately are responsible for any decisions using the proposed 

classifications. XAI enables domain specialists to understand and trust models, as well as 

to assess their accuracy (Hoffman et al., 2019). 

A common XAI approach to increase the transparency of DNNs for classification of 

images is saliency map explanations, which highlight the pixels that are most important for 

the DNN’s classification. Several methods have been proposed for calculation of such 

saliency map explanations (Vilone & Longo, 2020; Das & Rad, 2020; Luotsinen et al., 

2019). Most saliency map methods are intended for DNNs that classify whether an object 

of interest is present in an image. Saliency map methods for DNNs that classify every 

object of interest in an image, which is the actual task that operators perform, have only 

been proposed recently (Tsunakawa et al., 2019; Petsiuk et al., 2021). Further, saliency 

map methods should preferably be applicable to the wide range of DNNs that are used for 

image processing. Saliency map methods should therefore preferably be model-agnostic 

rather than model-specific, which limits their applicability to only some DNNs. 

User evaluations of saliency map explanations show that they can provide many benefits. 

For example, saliency map explanations increase users’ understanding of model 

predictions in proxy tasks where many examples from training data are presented to 

inform users about model output (Alqaraawi et al., 2020; Colin et al., 2022). However, 

although saliency map explanations are intuitive for users, they may not present all 

information that users need to understand model output. For example, evaluations show 

that saliency map explanations highlight where users should look, but not what finer 

details within highlighted regions they should look at (Rudin, 2019; Gahsemmi et al., 

2021; Colin, 2022). Saliency map explanations are therefore not distinct enough for users 

to detect incorrect predictions (Kim et al., 2022). Additionally, saliency map explanations 

only enable inconclusive rejection of spurious models that react to features without any 

meaningful connection to the actual task (Adebayo et al., 2022). The mixed results about 

pros and cons of saliency map explanations means that it is unclear if they reduce users’ 

tendency to trust and rely on automated decision aids (Dzindolet et al., 2003) or exacerbate 

the over-reliance on model predictions (Alqaraawi et al., 2020; Kim et al., 2022). 

Commonly, such negative effects of XAI approaches are referred to as XAI pitfalls (Ehsan 

& Riedl, 2021). 

With the increasing use of DNNs for target classification it becomes important to evaluate 

how DNNs by themselves, as well as in combination with saliency map explanations, may 
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improve performance of operator target classification. We therefore report an experiment 

where participants performed a target classification task of military vehicles in images to 

evaluate whether DNN classifications and saliency map explanations of the DNN 

classifications improve target classification performance. The experiment focused on 

saliency map explanations of a DNN that classify whether an object is present in an image 

since these saliency map methods are more mature than methods for DNNs that classify 

every object of interest in an image.  

1.1 Experiment objective and hypotheses 
The objective of the experiment was to evaluate whether support of DNN classifications 

and support of saliency map explanations of DNN classifications improve accuracy in 

target classification of military vehicles in low-altitude UAV imagery. Saliency map 

explanations were generated with the Randomized Input Sampling for Explanation (RISE) 

method (Petsiuk et al., 2018). RISE is a model-agnostic saliency map method that has 

been found to perform fairly well on most metrics for saliency map explanations, such as 

finding discriminative features, finding features that are most important for classification, 

discrimination between classes, and small effects of insignificant variations (Li et al., 

2021). Participants performed the target classification task in three different conditions: 

without support of DNN classifications, with support of DNN classifications, and with 

support of RISE saliency map explanations of the DNN classifications. Participants also 

performed the target classification task with two levels of vehicle resolution. Higher 

vehicle resolution typically increase the number of features for target classification, 

although the effect varies depending on the vehicle class. 

Since saliency map explanations may be used to detect when DNN classifications are 

incorrect, one-third of the images were selected so that the DNN classification was 

incorrect. Without this image selection, the accuracy of the DNN classifications were 

simply too high for any meaningful number of such incorrect target classifications within 

the constraints of the experiment. 

The hypotheses of the experiment was that participants were expected to: 

1) Have higher accuracy in target classification with higher vehicle resolution. 

2) Have higher accuracy in target classification with support of DNN classifications 

than without support of DNN classifications. 

3) Have higher accuracy in target classification with support of RISE saliency map 

explanations of DNN classifications than without support of RISE saliency map 

explanations.  

4) Have higher accuracy in target classification with support of RISE saliency map 

explanations when DNN classifications are incorrect. 

1.2 Outline and reading instructions 
Chapter 2 describes the method for the experiment in terms of participants, as well as the 

images of vehicles, DNN classifications, and saliency map explanations that were used in 

the experiment. Chapter 3 describes the results of the experiment in terms of how 

investigated factors affect target classification performance, response time, and reliance on 

DNN classifications. Chapter 4 summarizes the results and describes possible reasons for 

the achieved target classification performance. Chapter 5 describes the conclusions of the 

experiment and provides some recommendations of XAI-approaches for image 

classification to evaluate in future experiments. 

Readers who are mainly interested in the target classification task are referred to section 

2.3. Readers who are mainly interested in an overview of the results are referred to Figure 

4 to Figure 9, which shows the most important results with additional details in the text. 
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2 Method 
The experiment required participants to perform target classification of images from 

Virtual Battlespace 3 (VBS3). VBS3 is an interactive virtual military training environment 

developed by Bohemian Interactive Simulations1. VBS3 models military and civilian 

vehicles, weapons, and characters. The images were typical for low-altitude UAV 

reconnaissance and surveillance. 

2.1 Participants 
Sixteen participants (11 males and 5 females; mean age 25.8 years and standard deviation 

6.1 years) took part in the experiment. None of the participants had any prior experience in 

classification of military vehicles. Most participants (twelve of sixteen) regularly played 

computer games that require skills related to target classification, for example, military 

simulators, real-time simulators, role-playing games, strategy games, first-person shooter 

games or similar games. Four participants played such computer games more than five 

hours per week, three 1–2 hours per week, and five 1–3 hours per month. Four participants 

did not regularly play any such computer games. All participants had adequate vision with 

or without correction. 

2.2 Materials 
The materials for the experiment consisted of a PC workstation, DNN classifications, and 

RISE saliency map explanations of the DNN classifications. 

2.2.1 Apparatus 

The target classification task was presented on a Philips Brilliance 272B8QJEB/00 27” 

LCD monitor with a resolution of 2560 × 1440 pixels and a frame rate of 60 Hz. Images 

were presented using a web based user interface hosted on a custom PC workstation with 

an Intel Core i7-7800X 3.5 GHz processor and a NVIDIA GeForce RTX 2080 8GB GPU. 

Images from VBS3, DNN classifications, DNN confidence values, and RISE saliency map 

explanations were generated beforehand and presented using the web based user interface. 

The experiment was conducted in a quiet room with dimmed lights. 

2.2.2 Dataset, DNN model architecture, and training 

The dataset for target classification consisted of images from VBS3 with a resolution 800 

× 600 pixels. The images consisted of six vehicle classes: T-72, BMP-2, BTR-80, 2S3, 

ZSU-23, and Toyota Hilux. Toyota Hilux had a distinct color and shape compared to the 

other vehicle classes and was included as control classifications to verify that participants 

focused on the target classification task. The images were sampled from random positions 

within 12.6 km2 of a training area for Swedish Armed Forces in VBS3. The vehicles were 

sampled from random orientations, aspect angles, elevations angles 5⁰–15⁰, and 39–143 

vehicle resolution in pixels. Varying direction of the sensor relative the vehicle was used 

for changing vehicle placement within the field of view. Accuracy in vehicle resolution 

was achieved by sampling vehicle resolution at fixed distances and interpolating a 

quadratic function. The distance for desired resolution was then calculated using a root 

finding algorithm. Vehicles occupied about 1 degree of visual angle on the screen. 1,000 

images were generated for each vehicle class, totally 6,000 images. 5,400 images were 

used for training of the DNN classifier and 600 images were used for testing of the 

classifier. Bounding boxes were generated from highlighting the vehicle shape in VBS3. 

                                                        

1 https://bisimulations.com/products/vbs3 
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The DNN classifier was implemented with a convolutional neural network (CNN). The 

CNN consisted of two convolutional blocks followed by a fully connected (FC) block 

terminating in softmax activation. Each convolutional block consisted of a convolutional 

layer (2D) with ReLU activation, a max pooling layer (2D), and finally 30% dropout. The 

convolutional layers used 64 and 32 2-by-2 filter kernels, respectively. The same kernel 

size was used for max pooling, but with a stride of 2. The FC block consisted of two FC 

layers, separated by 50% dropout. The first layer had an input size of 100 × 100 pixels, 

output size of 256, and ReLU activation. Image regions within ground truth bounding 

boxes were resized by interpolation to the input size without padding or preservation of 

aspect ratio. 

The CNN was trained on all of the images in the training set for 20 epochs. Training was 

performed in PyTorch using cross entropy loss and the Adam optimizer. The DNN 

achieved a mean accuracy of 95% (confidence threshold = .5). The accuracy per class was 

96% for T-72, 89% for BMP-2, 89% for BTR-80, 98% for 2S3, 99% for ZSU-23, and 

100% for Toyota Hilux. 

It should be noted that the CNN architecture described above can be considered shallow in 

comparison to widely used image classifier architectures with higher performance (e.g. He 

et al., 2016). However, the DNN classifier’s accuracy was still sufficient for the 

experiment since it was much higher than the participants’ accuracy. The infrequent 

mistakes were also frequent enough to enable evaluation of how RISE saliency map 

explanations may increase detection of incorrect classifications. 

2.2.3 RISE saliency map explanations 

RISE is a model-agnostic saliency map method to explain the output predictions of a 

classifier (Petsiuk et al., 2018). RISE presents explanations in a saliency map that 

highlights the most important features of the input data that contribute to the classifier’s 

prediction. RISE works by generating a large number of random masks, each of which 

obscures different subsets of the input pixels, and observing the effect on the classifier’s 

output. Since the classifier’s output is more sensitive to obscuring of important pixels, 

RISE can calculate the importance of input pixels for the classifier’s output.  

RISE generates masks by upsampling of smaller random binary masks to the input size 

using bilinear interpolation to create smooth masks without sharp edges when overlaid on 

the input image. The generation of random binary masks depends on three parameters: the 

number of binary masks (N), the size of the binary masks (s) (resolution s × s pixels), and 

the probability of a pixel being on (white) in each binary mask (p). The output from RISE 

has been found to be sensitive to these parameters (Stanchi et al., 2023). RISE then 

upsamples the binary masks to the DNN input size and overlay them on the input image. 

Figure 1 shows some examples of upsampled binary masks for images with a resolution of 

100 × 100 pixels. 

Figure 1 

Examples of masks with a resolution of 100 × 100 pixels. The masks were generated with the 
parameters s = 8 and p = .5. 

    

Since suitable parameters depend on the specific classification task, a parameter search 

was performed for the parameter spans: N = [2000, 3000, 4000, 5000, 6000, 7000, 8000], s 

= [4, 6, 8, 10, 12], and p = [.1, .2, .3, .4, .5] on 18 images from each vehicle class, 108 

images in total. The output results of the model were evaluated using the deletion and 

insertion tests described by Petsiuk et al. (2018) and further detailed in Luotsinen et al. 
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(2019). In a deletion test, the most salient features (pixels) are systematically removed to 

evaluate how the model’s performance changes. Conversely, an insertion test involves 

adding salient features to observe their impact on the model’s predictions. The Area Under 

the Curve (AUC) metric was used to quantitatively compare among results across various 

settings (Bradley, 1997). For deletion, smaller AUC values are better than larger values. 

Similarly, for insertion, larger AUC values are better than smaller values. An average of 

the AUC values was calculated and plotted for each set of parameters (N, s, and p). The 

AUC values were generated on the 108 images with one parameter fixed and varying 

values for the other two parameters. The best parameters were found to be N = 6000, s = 

12, and p = .3. The calculated RISE saliency map explanations are resized from the DNN 

input size to the vehicle image size before presentation. Figure 2 shows some examples of 

RISE saliency map explanations overlaid on images for the six vehicle classes. Red pixels 

in the RISE saliency map explanations indicate features that were most important for the 

DNN classification and blue pixels indicate features that were least important for the DNN 

classification. 

Figure 2 

Examples of vehicle classes (top rows) and RISE saliency map explanations of the DNN 
classifications of the vehicle classes (bottom rows). 

   

   

T-72 BMP-2 BTR-80 

   

   

2S3 ZSU-23 Toyota Hilux 

2.3 Target classification task 
Participants viewed images of vehicles via a web based user interface for the three 

conditions: without support of DNN classifications, with support of DNN classifications, 

and with support of RISE saliency map explanations of the DNN classifications. Figure 3 

shows the web based user interface for the target classification task with support of a DNN 

for target classification and a RISE saliency map explanation. The web based user 

interface for the target classification task with support of a DNN for target classification 

was similar, but without a RISE saliency map explanation. The web based user interface 

for the target classification task without support of a DNN for target classification was also 

similar, but without the bar chart of DNN confidence values and RISE saliency map 

explanation. Participants used the computer mouse to select from the menu which vehicle 

class they had identified. There were no limits on response time. A blank screen was 

presented for five seconds between target classifications to neutralize the effect of the 
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visual stimuli on participants (Bachman & Francis, 2014). The target classification task 

was similar to Lif et al. (2021) in terms of classification of military vehicles in varying 

resolutions. 

Figure 3 

Web based user interface for the target classification task with support of RISE saliency map 
explanations of the DNN classifications. Positioned prominently on the left-hand side, a sizable 
image depicts the vehicle within its environment. A bounding box serves as a visual cue, guiding 
participants to the target location within the image. To aid in the identification process, a magnifying 
glass feature activates upon hovering the mouse cursor over the image, particularly useful for 
discerning vehicles occupying a small visual angle. Adjacent to the main image, an enlarged view of 
the vehicle, accompanied by its corresponding RISE saliency map explanation, provides further 
clarity. On the right-hand side, alongside the menu of vehicle classes, a bar chart presents the 
confidence values of the DNN classification. Each bar represents the probability of the vehicle 
belonging to a specific class, with values ranging from 0.0 (indicating low probability) to 1.0 
(indicating high probability). 

 

The images for the target classification task were selected from the test set. The images in 

the test set were only used to verify the classification accuracy of the DNN classifier and 

thus not previously seen by the DNN classifier during training. Since vehicle classification 

is notoriously difficult for people in forward and rear facing images of vehicles, only 

images with favorable aspect angles for vehicle classification were included that showed 

either the left or right side of vehicles. The images were divided into two vehicle 

resolution categories, low resolution, which varied between 39 and 72 pixels and medium 

resolution, which varied between 77 and 143 pixels. Three images were presented for each 

of the six vehicle classes in low and medium resolution. Participants viewed 36 images in 

each of the three conditions: without support of DNN classifications, with support of DNN 

classifications, and with support of RISE saliency map explanations of the DNN 

classifications. In total, each participant viewed 108 images.  

Images for the vehicle classes T-72, BMP-2, BTR-80, 2S3, and ZSU-23 were selected to 

have one-third incorrect DNN classification per vehicle class and resolution. Both 

correctly and incorrectly classified images were selected based on the criterion of having 

been difficult for the DNN classifier. An image was considered difficult for the DNN 

classifier if the DNN confidence values were low for the most likely vehicle class when 

the vehicle classification was correct and if the DNN confidence values were high for the 

most likely vehicle class when the vehicle classification was incorrect. Images for the 

vehicle class Toyota Hilux were selected so that the DNN classification was correct for all 

images due to a very high accuracy in DNN classification of Toyota Hilux. The selection 

of incorrect DNN classifications for one-third of the images for five of six vehicle classes 
meant that the accuracy of the DNN classifier within the experiment was 72.2% and not 

66.7%. 
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2.4 Design of the experiment and statistical 

analysis 
The design of the experiment was intended for evaluation of how participants’ 

performance in target classification was affected by levels of support, vehicle classes, 

DNN correctness, and vehicle resolution. The design of the experiment was three levels of 

support (without support of DNN classifications, with support of DNN classifications, and 

with support of RISE saliency map explanations of the DNN classifications), by six 

vehicle classes, by two DNN correctness (correct vs. incorrect DNN classifications), by 

two vehicle resolutions (low vs. medium). The design of the experiment was a within 

subject design, which meant that each participant performed all conditions. 

Participants’ performance in target classification was analyzed with four-way repeated 

measure analysis of variance (ANOVA) with factorial design (Field, 2024). The factors in 

the experiment were levels of support, vehicle classes, DNN correctness, and vehicle 

resolution. The analysis was performed with repeated measures ANOVA, since each 

participant performed all conditions. ANOVA uses the variance in terms of how much 

measures of performance deviate from means to estimate whether the differences between 

means are statistically significant. The size of the statistical effect is expressed as the F-

value combined with two numbers for the degrees of freedom that are based on the 

number of means (df1) and number of measures of performance (df2) that are included in 

the analysis. The F-value is reported as F followed by the value of df1 and df2 within 

parentheses and then the F-value. For example, F(3, 10) = 5.23. A higher F-value means a 

larger statistical effect. ANOVA also calculates the p-value for the probability that the 

statistical effect did not occur by chance. The criterion for a significant effect was p < .05 

and the criterion for a statistically significant tendency of effect was p < .10. The p-value 

is reported after the F-value. For example, F(3, 10) = 5.23, p = .03. Statistical effects for 

each factor are referred to as main effects and the combined effects between factors are 

referred to as interaction effects. An interaction effect typically means that means of the 

conditions for one factor shows different patterns depending on the other factor or factors. 

The t-test was used to test which differences between means were statistically significant 

(Field, 2024). The t-test is similar to ANOVA, but each t-test only tests the difference 

between two means. A two-tailed t-test was used since it was not known beforehand which 

means would be larger than the other means. The p-values were adjusted using Bonferroni 

correction to compensate for the increasing likelihood of detecting significant differences 

when testing multiple hypotheses. Bonferroni correction adjusts the p-value by 

multiplying it with the number of hypotheses. The same criterions as for ANOVA were 

used to test for statistically significant differences with the adjusted p < .05 for a 

statistically significant effect and adjusted p < .10 for a statistically significant tendency of 

effect. 

2.5 Dependent variables 
The dependent variables are the measures that were used to measure participants’ 

performance in target classifications. The dependent variables were accuracy in target 

classification, response time, reliance on DNN classification, and questionnaires for 

mental workload, trust, and satisfaction of explanations. 

2.5.1 Accuracy in target classification 

Accuracy in target classification was measured as the percentage of correctly classified 

vehicles relative to the total number of vehicles. 
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2.5.2 Response time 

Response time for target classification was measured as the time in seconds for target 

classification. 

2.5.3 Reliance on DNN classification 

Reliance on the DNN classification was measured as the percentage of target 

classifications that were identical to the DNN classification. Reliance on the DNN 

classification is a misnomer for the condition without support of DNN classifications since 

classifications were not shown to participants in this condition. However, the percentage 

of identical target classifications still served as a baseline for comparison with the other 

two conditions where DNN classifications were shown to the participants. 

2.5.4 Questionnaires 

Four questionnaires were used to measure participants’ subjective experience of the 

support of DNN classifications and RISE saliency map explanations (see Appendix). 

Mental workload was measured with an adapted version of NASA-TLX (Hart & 

Staveland, 1988), compromised of six items on a ten-point scale (1–10). Trust in DNN 

classifications and RISE saliency map explanations were both measured with six items 

from the Trust Scale recommended for XAI (adapted from Hoffman et al., 2019). 

Satisfaction of RISE saliency map explanations was measured with five items from the 

Explanation Satisfaction Scale (adapted from Hoffman et al., 2019). The trust and 

satisfaction scales were compromised of a seven-point Likert scale (1–7) from strongly 

disagree to strongly agree. 

2.6 Procedure 
Prior to the experiment, participants completed an informed consent form and a general 

background form. Participants then completed several steps as preparation for the target 

classification task. In the first step, participants were instructed about distinguishing 

features between vehicle classes, the target classification task, and the web based user 

interface, without any support of neither DNN classifications nor RISE saliency map 

explanations. For the participants, the DNN classifier was referred to as The Classifier and 

RISE saliency map explanations as Heatmap explanations. In the second step, participants 

practiced on 36 target classifications, six target classifications for each vehicle class, 

without support of DNN classifications. In the third step, participants were instructed 

about the web based user interface with support of DNN classifications and RISE saliency 

map explanations. In the fourth step, participants practiced on six target classifications, 

one target classification for each vehicle class, with support of DNN classifications. In the 

final step, participants practiced on six target classifications, one target classification for 

each vehicle class, with support of RISE saliency map explanations of the DNN 

classifications.  

Participants then performed the target classification task. The presentation order of images 

was randomized over vehicle classes and resolutions, while the order of conditions in 

terms of support of DNN classifications and RISE saliency map explanations was 

balanced between participants. The participants’ overall performance in target 

classification was therefore not affected by the presentation order of images or type of 

support. The questionnaire for mental workload was administered after every condition. 

The questionnaire for trust in DNN classifications was administered after each condition 

where DNN classifications were presented either without or with support of RISE saliency 

map explanations. The questionnaires for trust in RISE saliency map explanations and 

satisfaction of RISE saliency map explanations were only administered after the condition 

where RISE saliency map explanations were presented. 
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2.7 Imputation of missing values 
The design of the experiment was incomplete since the DNN classification of Toyota 

Hilux was always correct. Consequently, data values for target classification and response 

time were missing for incorrect DNN classification of Toyota Hilux. The missing data 

values were imputed with the participants’ mean accuracy and mean response time, 

respectively, for the correct DNN classification of Toyota Hilux. Separate mean accuracy 

and mean response time were imputed for each combination of vehicle resolution and type 

of support. 
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3 Results 
Participants’ accuracy in target classification, response time, reliance on DNN 

classification, and subjective ratings of mental workload, trust, and satisfaction were 

analyzed with separate repeated measures analysis of variance (ANOVA) with factorial 

design. This chapter presents the results of these ANOVA. 

3.1 Accuracy in target classification 
Accuracy in target classification was analyzed with a repeated measures 3×6×2×2 

ANOVA of the factors support (without DNN classifications, with DNN classifications, 

and with RISE saliency map explanations), vehicle class (six classes), DNN classification 

correctness (correct vs. incorrect), and vehicle resolution (low vs. medium). 

The analysis of accuracy in target classification showed significant main effects of all four 

factors. There was a significant main effect of support F(2, 39) = 14.6, p < .001. However, 

contrary to expectations, there was a decrease in accuracy with increasing levels of 

support. There was a significant decrease in accuracy from without compared to with 

support of DNN classifications (72.7% vs. 66.1%) and there was a significant tendency of 

decrease from with support of DNN classifications compared to with support of RISE 

saliency map explanations (66.1% vs. 59.1%) (Figure 4). For comparison, the accuracy of 

the DNN classifier within the experiment was 72.2%. 

Figure 4 

Mean and standard error of accuracy in target classification without support of DNN classifications, 
with support of DNN classifications, and support of RISE saliency map explanations. 

 

There was a significant main effect of vehicle class F(5, 75) = 50.5, p < .001. There were 

significant differences in accuracy between T-72 (74.2%) and 2S3 (76.6%) and the other 

vehicle classes: BMP-2 (50.8%), BTR-80 (39.1%), ZSU-23 (55.2%), and Toyota Hilux 

(100%). The lower accuracy for ZSU-23 was due to confusion with all other vehicle 

classes, except Toyota Hilux. The lower accuracy for BMP-2 was mainly due to confusion 
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with T-72, BTR-80, and 2S3. The lower accuracy for BTR-80 was mainly due to 

confusion with BMP-2 and 2S3.  

There was a significant main effect of DNN classification correctness F(1, 5) = 55.8, p < 

.001. There was a significant decrease in accuracy from correct compared to incorrect 

DNN classification (72.7% vs. 59.2%).  

There was a significant main effect of vehicle resolution F(1, 15) = 15.5, p = .001. There 

was a significant increase in accuracy from low compared to medium resolution of 

vehicles (62.8% vs. 69.2%).  

There were significant two-way interaction effects of vehicle class and each of the three 

other factors. There was a significant two-way interaction effect between vehicle class and 

support F(10, 15) = 2.95, p = .002. There was a significant decrease in accuracy from 

without compared to with support of RISE saliency map explanations for BTR-80 (54.7% 

vs. 35.2%) and ZSU-23 (69.5% vs. 51.6%). There was a significant tendency of decrease 

in accuracy from with support of DNN classifications compared to with support of RISE 

saliency map explanations for T-72 (80.5% vs. 53.3%).  

There was a significant two-way interaction effect between vehicle class and DNN 

classification correctness F(5, 75) = 12.1, p < .001. There was a significant decrease in 

accuracy from correct compared to incorrect DNN classification for T-72 (82.8% vs. 

65.6%), BTR-80 (55.2% vs. 22.9%), and ZSU-23 (69.8% vs. 40.6%) (Figure 5).  

Figure 5 

Mean and standard error of accuracy in target classification for the vehicle classes when the DNN 
classifications were correct and incorrect. 

 

There was a significant two-way interaction effect between vehicle class and vehicle 

resolution F(5, 75) = 7.50, p < .001. There was a significant increase in accuracy from low 

compared to medium resolution of T-72 (67.2% vs. 81.2%) and BMP-2 (35.4% vs. 

66.1%). 

There was a significant tendency of a two-way interaction effect of support and 

correctness F(2, 30) = 2.59, p = .09. There was a significant tendency of decrease in 
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accuracy from correct compared to incorrect DNN classification without support of DNN 

classifications (77.1% vs. 68.2%). There was significant decrease in accuracy from correct 

compared to incorrect DNN classification with support of DNN classifications (72.9% vs. 

59.4%) and with support of RISE saliency map explanations (68.2% vs. 50.0%). Although 

some three- and four-way interaction effects were significant, they are not reported since 

they only provided limited information about the factors’ effect on accuracy in target 

classification. 

3.2 Response time for target classification 
The response time for target classification was analyzed with a 3×6×2×2 repeated 

measures ANOVA of the factors support (without DNN classifications, with DNN 

classifications, and with RISE saliency map explanations), vehicle class (six classes), 

DNN classification correctness (correct vs. incorrect), and vehicle resolution (low vs. 

medium). 

The analysis of response time for target classification showed significant main effects of 

all four factors. There was a significant main effect of support F(2, 30) = 4.45, p = .02. 

There was a significant tendency of increase in response time from without support of 

DNN classifications compared to support of RISE saliency map explanations (10.7 

seconds vs. 13.8 seconds) and from with support of DNN classifications compared to with 

support of RISE saliency map explanations (11.3 seconds vs. 13.8 seconds) (Figure 6). 

Figure 6 

Mean and standard error of response time for target classification without support of DNN 
classifications, with support of DNN classifications, and with support of RISE saliency map 
explanations. 

 

There was a significant main effect of vehicle class F(5, 77) = 43.8, p < .001. There was 

significant increase in response time from Toyota Hilux (3.0 seconds) compared to the 

other vehicle classes: T-72 (11.5 seconds), BMP-2 (15.1 seconds), BTR-80 (14.0 seconds), 

2S3 (12.8 seconds), and ZSU-23 (15.1 seconds). There was a significant increase in 

response time from T-72 compared to BMP-2 (11.5 seconds vs. 15.1 seconds) and there 
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was a significant tendency of increase in response time from T-72 compared to ZSU-23 

(11.5 seconds vs. 15.1 seconds). 

There was a significant main effect of DNN correctness F(1, 15) = 7.15, p = .02. There 

was a significant increase in response time from correct compared to incorrect DNN 

classification (11.4 seconds vs. 12.5 seconds).  

There was a significant main effect of vehicle resolution F(1, 15) = 26.6, p < .001. There 

was a significant decrease in response time from low compared to medium resolution of 

vehicles (12.9 seconds vs. 11.0 seconds). 

There were significant two-way interaction effects of vehicle class and each of the three 

other factors. There was a significant two-way interaction effect of vehicle class and 

support F(10, 150) = 3.36, p < .001. There was a significant increase in response time for 

T-72 from with support of DNN classifications compared to with support of RISE saliency 

map explanations (9.1 seconds vs. 14.0 seconds). 

There was a significant two-way interaction effect between vehicle class and DNN 

correctness F(50, 75) = 6.37, p < .001. There was a significant increase in response time 

for ZSU-23 from correct compared to incorrect DNN classification (12.5 seconds vs. 17.8 

seconds).  

There was a significant two-way interaction effect between vehicle class and vehicle 

resolution F(5, 75) = 10.9, p < .001. There was a significant decrease in response time 

from low compared to medium resolution of BMP-2 (17.5 seconds vs. 12.8 seconds) and 

BTR-80 (16.8 seconds vs. 11.2 seconds) (Figure 7). There was a significant tendency of 

increase in response time from low compared to medium resolution of 2S3 (11.7 seconds 

vs. 13.9 seconds). Although some three- and four-way interaction effects were significant, 

they are not reported since they only provided limited information about the factors’ effect 

on response time. 

Figure 7 

Mean and standard error of response time for target classification for the vehicle classes when the 
resolution of vehicles was low and medium. 
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3.3 Reliance on DNN classification 
Reliance on the DNN classification was analyzed with a 3×4×2 repeated measures 

ANOVA of the factors support (without DNN classifications, with DNN classifications, 

and with RISE saliency map explanations), DNN classification (four vehicle classes), and 

DNN classification correctness (correct vs. incorrect). The factor DNN classification only 

included the vehicle classes 2S3, BMP-2, BTR-80, and ZSU-23 since these vehicle classes 

showed incorrect DNN classifications for all three levels of support. Reliance on the DNN 

classification is a misnomer for the condition without support of DNN classifications since 

classifications were not shown to the participants in this condition. However, the 

percentage of identical target classifications still served as a baseline for comparison with 

the other two conditions where DNN classifications were shown to the participants. 

The analysis of reliance on the DNN classification showed significant main effects of all 

three factors. There was a significant main effect of support F(2, 30) = 4.35, p = .02. There 

was a significant increase in reliance on the DNN classification when it was shown 

compared to the baseline condition without support of DNN classifications. There was a 

significant increase in reliance from without compared to with support of DNN 

classifications (40.0% vs. 49.3%).  

There was a significant main effect of DNN classifications F(3, 35) = 8.05, p < .001. 

There was a significant increase in reliance from BTR-80 (36.5%) compared to BMP-2 

(54.9%) and 2S3 (48.1%). 

There was a significant main effect of DNN classification correctness F(1, 15) = 40.0, p < 

.001. The reliance decreased significantly for correct compared to incorrect DNN 

classifications (63.4% vs. 28.0%).  

There was a significant two-way interaction effect of support and DNN classification 

correctness F(2, 30) = 12.8, p < .001 (Figure 8). When the DNN classification was correct, 

there was a significant decrease in reliance from without support of DNN classifications 

compared to with support of RISE saliency map explanations (69.1% vs. 57.4%). When 

the DNN classification was incorrect, there was a significant increase in reliance from 

without compared to with support of DNN classifications (10.9% vs. 35.0%) and from 

without support of DNN classifications compared to with support of RISE saliency map 

explanations (10.9% vs. 37.9%). Although some additional two- and three-way interaction 

effects were significant, they are not reported since they only provided limited information 

about the factors’ effect on reliance. 

3.4 Questionnaires 
Participants’ subjective ratings of the questionnaires for mental workload, trust, and 

satisfaction were analyzed with separate repeated measures ANOVAs with factorial 

design. 

3.4.1 Mental workload 

The subjective ratings of mental workload were analyzed with a one-way ANOVA of the 

factor support (without DNN classification, with DNN classification, and with RISE 

saliency map explanations). Ratings of the item Performance were reversed and the mean 

rating of workload items was calculated before analysis. The analysis did not show a 

significant effect of support.  

3.4.2 Trust in DNN classifications and RISE saliency map 

explanations 

The subjective ratings of trust in DNN classifications and RISE saliency map explanations 

were analyzed with a 3×6 repeated measures ANOVA of the factors support (with DNN 

classifications without RISE saliency map explanations, DNN classifications with RISE 
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saliency map explanations, and with RISE saliency map explanations by themselves) and 

trust item (six items). Ratings of the trust item ‘I am wary of the automatic system’ were 

reversed before analysis. 

The analysis of trust in DNN classifications and RISE saliency map explanations showed 

significant main effects of both factors. There was a significant main effect of support F(2, 

30) = 5.73, p = 0.008. There was a significant decrease in trust from with support of DNN 

classifications with RISE saliency map explanations compared to with support of RISE 

saliency map explanations by themselves (3.2 vs. 2.4) (Figure 9). There was a significant 

tendency of decrease in trust from with support of DNN classifications without RISE 

saliency map explanations compared to with support of RISE saliency map explanations 

by themselves (3.1 vs. 2.4). 

There was a significant main effect of trust item F(5, 75) = 10.3, p < .001. The mean 

ratings of the trust items was highest for ‘I like using the automatic system for decision 

making’ and lowest for ‘The automatic system is very reliable. I can count on it to be 

correct all the time.’ (Table 1). There was a significant decrease in subjective ratings from 

‘I like using the automatic system for decision making’ and ‘I am confident in the 

automatic system. I feel that it works well’ compared to ‘I am wary of the automatic 

system’ and ‘The automatic system is very reliable. I can count on it to be correct all the 

time’. There was a significant decrease in subjective ratings from ‘The outputs of the 

automatic system are predictable’ compared to ‘The automatic system is very reliable. I 

can count on it to be correct all the time’. There was a significant tendency of decrease in 

subjective ratings from ‘I like using the automatic system for decision making’ compared 

to ‘I feel safe that when I rely on the automatic system, I will get the right answers’.  

Figure 8 

Mean and standard error of reliance on the DNN classification when the classification was correct 
and incorrect for without support of DNN classifications, with support of DNN classifications, and with 
support of RISE saliency map explanations. 
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Figure 9 

Mean and standard error of subjective ratings of trust in the DNN classifications without RISE 
saliency map explanations, DNN classifications with RISE saliency map explanations, and RISE 
saliency map explanations by themselves. 

 

Table 1 

Mean and standard error of subjective ratings of the trust items. 

Trust item Mean rating Standard error 

I like using the automatic system for decision 

making. 

3.9 0.3 

I am confident in the automatic system.  

I feel that it works well. 

3.4 0.2 

The outputs of the automatic system are 

predictable. 

3.1 0.2 

I feel safe that when I rely on the automatic 

system, I will get the right answers. 

2.8 0.2 

I am wary of the automatic system. (reversed) 2.1 0.2 

The automatic system is very reliable.  

I can count on it to be correct all the time. 

2.1 0.2 

 

There was a significant two-way interaction effect of support and trust item F(10, 150) = 

3.85, p < .001. There was a significant decrease in subjective ratings from with support of 

DNN classifications with RISE saliency map explanations compared to RISE saliency 

map explanations by themselves for ‘I like using the automatic system for decision 

making’ (4.6 vs. 2.6). There was a significant tendency of decrease in subjective ratings 

from with support of DNN classifications with RISE saliency map explanations compared 

to RISE saliency map explanations by themselves for ‘I feel safe that when I rely on the 

automatic system, I will get the right answers’ (3.2 vs. 2.2). 
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3.4.3 Satisfaction of RISE saliency map explanations 

The subjective ratings of satisfaction of RISE saliency map explanations were analyzed 

with a one-way repeated measures ANOVA of the factor satisfaction item (six items). 

The analysis did not show a significant effect of satisfaction item. The mean ratings of the 

satisfaction items was highest for ‘From the explanations, I understand how the automatic 

system works’ and lowest for ‘The explanations of the automatic system shows me how 

accurate it is’ (Table 2). There were no significant differences between the satisfaction 

items. 

Table 2 

Mean and standard error of subjective ratings of the satisfaction items. 

Satisfaction item Mean rating Standard error 

From the explanations, I understand how the 

automatic system works. 

4.7 0.4 

The explanations of how the automatic system works 

have sufficient detail. 

4.4 0.5 

The explanations of how the automatic system works 

are satisfying. 

4.3 0.6 

The explanations let me judge when I should trust and 

not trust the automatic system. 

3.6 0.6 

The explanations of the automatic system shows me 

how accurate it is. 

3.6 0.5 
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4 Discussion 
The results of the experiment only support one of the four hypotheses. Firstly, the results 

of the experiment support the hypothesis that accuracy in target classification is higher for 

images with higher vehicle resolution. However, the accuracy was only marginally higher. 

This was likely due to the small difference between the vehicle resolution intervals. 

Secondly, the results of the experiment did not support the hypothesis that support of DNN 

classifications improves accuracy in target classification. The accuracy in target 

classification was lower with support of DNN classifications compared to without support 

of DNN classifications. Thirdly, the results of the experiment did not support the 

hypothesis that support of RISE saliency map explanations improve accuracy in target 

classification. The accuracy in target classification was lower with support of RISE 

saliency map explanations of DNN classifications compared to with support of only DNN 

classifications. The main reasons for the lower accuracy with RISE saliency map 

explanations were disproportionate effects of the T-72 vehicle class and incorrect DNN 

classifications. The participants also trusted the DNN classifications more than the RISE 

saliency map explanations, particularly in terms of using the DNN classifications and their 

predictability. However, the participants were still moderately satisfied with the RISE 

saliency map explanations. Finally, the results of the experiment did not support the 

hypothesis that accuracy in target classification is higher with RISE saliency map 

explanations when the DNN classifications are incorrect. The differences in accuracy in 

target classification between incorrect and correct DNN classifications were similar both 

with and without support of RISE saliency map explanations. Kim et al. (2022) report 

similar results that saliency map explanations may not be distinct enough for users to 

detect incorrect predictions. 

The experiment shows that the participants tried to use the DNN classifications and RISE 

saliency map explanations to improve accuracy in target classification. The participants’ 

response time for target classification was longer with support of RISE saliency map 

explanations compared to without or with support of DNN classifications. Additionally, 

the participants relied more on the DNN classifications compared to the baseline condition 

without support of DNN classifications where participants could only use their own 

judgement. Although DNN classifications were not shown to the participants in the 

baseline condition, the percentage of identical target classifications still enabled 

comparison with the other two conditions where DNN classifications were shown to the 

participants. The increase in reliance with support of DNN classifications was likely due to 

the participants’ difficulties in judging the reliability of the DNN classification, both with 

and without support of RISE saliency map explanations. Ideally, participants should rely 

fully on the DNN classification when it is correct and not at all when it is incorrect. 

Instead, the participants’ reliance on correct DNN classifications decreased and their 

reliance on incorrect DNN classifications increased compared to the baseline condition 

without support of DNN classifications. The DNN classifications therefore undermined 

the participants’ own judgements of target classification. Under-reliance on the DNN 

classification when it is correct and over-reliance when it is incorrect, decrease the 

accuracy in target classification with and without support of RISE saliency map 

explanations. Neither information from DNN confidence values, nor RISE saliency map 

explanations, were sufficient to improve the accuracy in target classification. The 

participants’ difficulty of judging the reliability of the DNN classification explains their 

low trust in the DNN classifications both with and without support of RISE saliency map 

explanations. Participants’ strong tendency to rely on the DNN classifications despite their 

low trust is in accordance with users’ tendency to rely on automated decision aids 

(Dzindolet et al., 2003). 

The experiment shows that the vehicle classes BMP-2, BTR-80, and ZSU-23, were more 

difficult to classify than T-72, 2S3, and Toyota Hilux. Only about half of the images of 

BMP-2, BTR-80, and ZSU-23 were classified correctly. These vehicle classes also 

required longer response time for classification, particularly for low resolution of the 
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vehicles. BMP-2 and BTR-80 were mainly misclassified as vehicles with similar overall 

features, while difficult images for ZSU-23 made it look similar to all other vehicle classes 

except Toyota Hilux. The discriminating features for these vehicles were often insufficient 

for correct target classification, which was amplified when the DNN classification was 

incorrect and for low resolution of vehicles.  
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5 Conclusions 
Target classification in UAV imagery is a challenging task where DNNs can improve 

accuracy in target classification. However, DNNs lack transparency for which image 

features are most important for the DNN’s classification. This lack of transparency is a 

challenge for military applications where operators are ultimately responsible for all 

decisions due to the high risks of weapon engagements. Operators therefore also need 

explanations of DNN classifications to assess their reliability.  

The conclusion of the experiment is that it is not trivial to create DNN classifications and 

explanations of DNN classifications that actually support operators’ target classification. 

Contrary to expectations, support of DNN classifications and confidence values decrease 

the participants’ accuracy in target classification compared to without support of DNN 

classifications. Further, the support of RISE saliency map explanations of the DNN 

classifications results in an additional decrease of the participants’ accuracy in target 

classification. A likely reason for the participants’ lower accuracy in target classification 

with these two types of support is the difficulty in assessing the DNN classifications’ 

reliability. This results in under-reliance on the DNN classifications when they are correct 

and over-reliance when they are incorrect. The two types of support therefore undermine 

the participants’ own judgment of target classifications. Other studies report similar 

negative effects of XAI that make participants more likely to follow the DNN 

classification or prediction (e.g. Zhang et al., 2020; Bansal et al., 2021; Nguyen et al., 

2021). 
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6 Future work 
Since RISE saliency map explanations were insufficient for the participants to assess the 

accuracy of DNN classifications, additional experiments should evaluate other promising 

XAI-approaches. Some examples of promising XAI-approaches are: 

 Methods that use the internal parameters of DNNs to generate more precise 

saliency map explanations of what image features are most important for the 

DNN’s classification, such as Layer-Wise Relevance Propagation (LRP) 

(Montavon et al., 2019). 

 Counterfactual explanations which highlight features that would change the 

DNN’s classification (e.g. Chou et al., 2022; Delany et al., 2023). Such 

explanations mimics human explanations of causality for choosing one option 

over another. 

 Example-based explanations that generate examples from the training set that are 

most similar to the input image in the DNN’s higher level representation of 

images (Jeyakumar et al., 2020). Results show that users prefer such examples 

over saliency map explanations. 

 Visual correspondence-based explanations that are similar to example-based 

explanations, but compare image patches instead of the whole image (Nguyen et 

al., 2021). Results show that such explanations help users reject incorrect DNN 

classifications, which results in higher performance than either users or DNN 

alone. 

 Concept-based explanations that explain DNN classifications using human-

understandable attributes or abstractions that resemble human explanations (Poeta 

et al., 2023).  

 Natural language explanations that mimics human explanations (e.g. Cambria et 

al., 2023). 

Additionally, any XAI-approach for target classification may benefit from DNNs that are 

aligned with human visual strategies for object classification (Fel et al., 2022). Additional 

experiments should also consider how XAI-approaches may be combined with alternative 

methods for measuring DNN uncertainty to inform participants about the reliability of 

DNN classifications (e.g. Astorga et al., 2023; Malmström et al., 2024). With the 

considerable research in XAI it is important to continue investigations and evaluations of 

whether such options actually support participants and increase their accuracy in military 

target classifications. 



FOI-R--5624--SE 

28 (34) 

References 
Adebayo, J., Muelly, M., Abelson, H., & Kim, B. (2022). Post hoc explanations may be 

ineffective for detecting unknown spurious correlation. In Proceedings of the International 

Conference on Learning Representations (ICLR) 2022. 

Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, 

R., ... & Herrera, F. (2023). Explainable artificial intelligence (XAI): What we know and 

what is left to attain trustworthy artificial intelligence. Information Fusion, 99, 101805. 

Alqaraawi, A., Schuessler, M., Weiß, P., Costanza, E., & Berthouze, N. (2020). Evaluating 

saliency map explanations for convolutional neural networks: A user study. 

In Proceedings of the 25th International Conference on Intelligent User Interfaces (pp. 

275-285). 

Astorga, A., Hsieh, C., Madhusudan, P., & Mitra, S. (2023). Perception Contracts for 

Safety of ML-Enabled Systems. In Proceedings of the ACM on Programming 

Languages, 7(OOPSLA2), 2196-2223. 

Bachmann, T., & Francis, G. (2014). Visual masking: Studying perception, attention, and 

consciousness. In T. Bachmann & G. Francis (Eds,), Visual Masking (pp. 1–108). Elsevier. 

Bansal, G., Wu, T., Zhou, J., Fok, R., Nushi, B., Kamar, E., ... & Weld, D. (2021). Does 

the whole exceed its parts? The effect of AI explanations on complementary team 

performance. In Proceedings of the 2021 CHI Conference on Human Factors in 

Computing Systems (pp. 1-16). 

Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of 

machine learning algorithms. Pattern recognition, 30(7), 1145-1159. 

Cambria, E., Malandri, L., Mercorio, F., Mezzanzanica, M., & Nobani, N. (2023). A 

survey on XAI and natural language explanations. Information Processing & 

Management, 60(1), 103111. 

Chou, Y. L., Moreira, C., Bruza, P., Ouyang, C., & Jorge, J. (2022). Counterfactuals and 

causability in explainable artificial intelligence: Theory, algorithms, and 

applications. Information Fusion, 81, 59-83. 

Colin, J., Fel, T., Cadène, R., & Serre, T. (2022). What I cannot predict, I do not 

understand: A human-centered evaluation framework for explainability 

methods. Advances in Neural Information Processing Systems, 35, 2832-2845. 

Das, A., & Rad, P. (2020). Opportunities and challenges in explainable artificial 

intelligence (XAI): A survey. arXiv preprint arXiv:2006.11371. 

Delaney, E., Pakrashi, A., Greene, D., & Keane, M. T. (2023). Counterfactual 

explanations for misclassified images: How human and machine explanations 

differ. Artificial Intelligence, 324, 103995. 

Dzindolet, M. T., Peterson, S. A., Pomranky, R. A., Pierce, L. G., & Beck, H. P. (2003). 

The role of trust in automation reliance. International Journal of Human-Computer 

Studies, 58(6), 697-718. 

Ehsan, U., & Riedl, M. O. (2021). Explainability pitfalls: Beyond dark patterns in 

explainable AI. arXiv preprint arXiv:2109.12480. 

Fel, T., Rodriguez Rodriguez, I. F., Linsley, D., & Serre, T. (2022). Harmonizing the 

object recognition strategies of deep neural networks with humans. Advances in Neural 

Information Processing Systems, 35, 9432-9446. 

Field, A. (2024). Discovering statistics using IBM SPSS Statistics (sixth ed.). Sage. 



FOI-R--5624--SE 

29 (34) 

Ghassemi, M., Oakden-Rayner, L., & Beam, A. L. (2021). The false hope of current 

approaches to explainable artificial intelligence in health care. The Lancet Digital 

Health, 3(11), e745-e750. 

Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): 

Results of empirical and theoretical research. In Advances in Psychology (Vol. 52, pp. 

139-183). North-Holland. 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. 

In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 

770-778). 

Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2019). Metrics for explainable AI: 

Challenges and prospects. arXiv preprint arXiv:1812.04608. 

Jeyakumar, J. V., Noor, J., Cheng, Y.-H., Garcia, L., & Srivastava, M. (2020). How can I 

explain this to you? An empirical study of deep neural network explanation 

methods. Advances in Neural Information Processing Systems, 33, 4211–4222. 

Kim, S. S., Meister, N., Ramaswamy, V. V., Fong, R., & Russakovsky, O. (2022). HIVE: 

Evaluating the human interpretability of visual explanations. In European Conference on 

Computer Vision (pp. 280-298). Springer Nature Switzerland. 

Kullab, S. (2023). Ukraine is building an advanced army of drones. For now, pilots 
improvise with duct tape and bombs. https://apnews.com/article/drones-ukraine-war-

russia-innovation-technology-589f1fc0e0db007ea6d344b197207212. 

Li, X. H., Shi, Y., Li, H., Bai, W., Cao, C. C., & Chen, L. (2021). An experimental study 

of quantitative evaluations on saliency methods. In Proceedings of the 27th ACM SIGKDD 

Conference on Knowledge Discovery & Data Mining (pp. 3200-3208). 

Lif, P., Näsström, F., Bissmarck, F., & Allvar, J. (2018). User performance for vehicle 

recognition with visual and infrared sensors from an unmanned aerial vehicle. In 

Proceedings of International Conference on Human-Computer Interaction (pp. 295-306). 

Springer. 

Lif, P., Näsström, F., Karlholm, J., Allvar, J. (2021). Värdering av AI-algoritm för 

luftburen termisk sensor [Evaluation of AI-algorithm for Airborne Thermal Sensor] (In 

Swedish) (FOI-R--5200--SE). Swedish Defence Research Agency. 

Luotsinen, L. J., Oskarsson, D., Svenmarck, P. & Wickenberg Bolin, U. (2019). 

Explainable Artificial Intelligence: Exploring XAI techniques in Military Deep Learning 

Applications (FOI-R--4849--SE). Swedish Defence Research Agency. 

Malmström, M., Skog, I., Axehill, D., & Gustafsson, F. (2024). Uncertainty quantification 

in neural network classifiers—A local linear approach. Automatica, 163, 111563. 

Mittal, P., Sharma, A., & Singh, R. (2020). Deep learning-based object detection in low-

altitude UAV datasets: A survey. Image and Vision Computing, 104046. 

Montavon, G., Binder, A., Lapuschkin, S., Samek, W., & Müller, K. R. (2019). Layer-

wise relevance propagation: An overview. In W. Samek, G. Montavon, A. Vedaldi, L. K. 

Hansen, & K. R. Müller (Eds.), Explainable AI: Interpreting, Explaining and Visualizing 

Deep Learning (pp. 193-209). Springer Nature. 

Nguyen, G., Kim, D., & Nguyen, A. (2021). The effectiveness of feature attribution 

methods and its correlation with automatic evaluation scores. Advances in Neural 

Information Processing Systems, 34, 26422-26436. 

Petsiuk, V., Das, A., & Saenko, K. (2018). RISE: Randomized input sampling for 

explanation of black-box models. In British Machine Vision Conference 2018 (BMVC 

2018) (p. 151), Northumbria University, Newcastle, UK, September 3-6, 2018. 



FOI-R--5624--SE 

30 (34) 

Petsiuk, V., Jain, R., Manjunatha, V., Morariu, V. I., Mehra, A., Ordonez, V., & Saenko, 

K. (2021). Black-box explanation of object detectors via saliency maps. In Proceedings of 

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 11443-

11452). 

Poeta, E., Ciravegna, G., Pastor, E., Cerquitelli, T., & Baralis, E. (2023). Concept-based 

explainable artificial intelligence: A survey. arXiv preprint arXiv:2312.12936. 

Rubio, L. (2020). Infantry soldiers test short-range reconnaissance unmanned aircraft 

amid COVID-19. Retrieved from https://www.army.mil/article/238277/infantry_ 

soldiers_test_short_ range_reconnaissance_unmanned_aircraft_amid_covid_19. 

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes 

decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206-

215. 

Stanchi, O., Ronchetti, F., Quiroga, F. (2023). The implementation of the RISE algorithm 

for the Captum framework. In Naiouf, M., Rucci, E., Chichizola, F., & De Giusti, L. 

(Eds.), Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2023. 

Communications in Computer and Information Science, vol 1828. Springer, Cham. 

https://doi.org/10.1007/978-3-031-40942-4_7. 

Svenmarck, P., Luotsinen, L., Nilsson, M., & Schubert, J. (2018). Possibilities and 

challenges for artificial intelligence in military applications. In Proceedings of the NATO 

Big Data and Artificial Intelligence for Military Decision Making Specialists’ 

Meeting (pp. 1-16). NATO-STO. 

Tsunakawa, H., Kameya, Y., Lee, H., Shinya, Y., & Mitsumoto, N. (2019). Contrastive 

relevance propagation for interpreting predictions by a single-shot object detector. In 2019 

International Joint Conference on Neural Networks (IJCNN) (pp. 1-9). IEEE. 

Vilone, G., & Longo, L. (2020). Explainable artificial intelligence: A systematic 

review. arXiv preprint arXiv:2006.00093. 

Wu, X., Li, W., Hong, D., Tao, R., & Du, Q. (2021). Deep learning for unmanned aerial 

vehicle-based object detection and tracking: A survey. IEEE Geoscience and Remote 

Sensing Magazine, 10(1), 91-124. 

Zhang, Y., Liao, Q. V., & Bellamy, R. K. (2020). Effect of confidence and explanation on 

accuracy and trust calibration in AI-assisted decision making. In Proceedings of the 2020 

Conference on Fairness, Accountability, and Transparency (pp. 295-305). 



FOI-R--5624--SE 

31 (34) 

Appendix. Questionnaires 

Subjective Workload 

These questions concern your subjective workload during the vehicle classification task. 

Please indicate your preferred answer regarding each statement on a scale from 1 to 10. 

Mental Demand – How mentally demanding was the task? 

 1  2  3  4  5  6  7  8  9  10
Very

Low

Very

High

Physical Demand – How physically demanding was the task? 

 1  2  3  4  5  6  7  8  9  10
Very

Low

Very

High

Temporal Demand – How hurried or rushed was the pace of the task? 

 1  2  3  4  5  6  7  8  9  10
Very

Low

Very

High

Performance – How successful were you in accomplishing what you were asked to do? 

 1  2  3  4  5  6  7  8  9  10
Very

Low

Very

High

Effort – How hard did you have to work to accomplish your level of performance? 

 1  2  3  4  5  6  7  8  9  10
Very

Low

Very

High

Frustration – How insecure, discouraged, irritated, stressed, and annoyed were you? 

 1  2  3  4  5  6  7  8  9  10
Very

Low

Very

High
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Trust in Classifier 

The following statements concern your trust in the Classifier. Please indicate your 

preferred answer regarding each statement on a scale from 1 to 7. 

1. I am confident in the Classifier. I feel that it works well. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

2. The outputs of the Classifier are predictable. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

3. The Classifier is very reliable. I can count on it to be correct all the time. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

4. I feel safe that when I rely on the Classifier, I will get the right answers. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

5. I am wary of the Classifier. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

6. I like using the Classifier for decision making. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 



FOI-R--5624--SE 

33 (34) 

Trust in Heatmap explanations 

The following statements concern your trust in the Heatmap explanations for the 

Classifier’s classifications. Please indicate your preferred answer regarding each statement 

on a scale from 1 to 7. 

1. I am confident in the Heatmap explanations. I feel that they work well. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

2. The Heatmap explanations are predictable. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

3. The Heatmap explanations are very reliable. I can count on them to be correct all the 

time. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

4. I feel safe that when I rely on the Heatmap explanations, I will get the right answers. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

5. I am wary of the Heatmap explanations. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 

6. I like using the Heatmap explanations for decision making. 

 1  2  3  4  5  6  7 
Strongly  

disagree 

     Strongly  

agree 
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Satisfaction of Heatmap explanations 

The following statements concern your satisfaction with the Heatmap explanations for the 

Classifier’s classifications. Please indicate your preferred answer regarding each statement 

on a scale from 1 to 7. 

1. From the explanations, I understand how the Classifier works.

 1  2  3  4  5  6  7
Strongly 

disagree 

Strongly 

agree 

2. The explanations of how the Classifier works are satisfying.

 1  2  3  4  5  6  7
Strongly 

disagree 

Strongly 

agree 

3. The explanations of how the Classifier works have sufficient detail.

 1  2  3  4  5  6  7
Strongly 

disagree 

Strongly 

agree 

4. The explanations of the Classifier shows me how accurate it is.

 1  2  3  4  5  6  7
Strongly 

disagree 

Strongly 

agree 

5. The explanations let me judge when I should trust and not trust the Classifier.

 1  2  3  4  5  6  7
Strongly 

disagree 

Strongly 

agree 
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